Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
teaching:se-iu-ss15 [2015/04/15 15:46]
jworch [Semantische Bildverarbeitung]
teaching:se-iu-ss15 [2015/04/22 09:50] (current)
jworch [News]
Line 19: Line 19:
   * Please register for the seminar on [[https://​elearning.uni-bremen.de|Stud.IP]].   * Please register for the seminar on [[https://​elearning.uni-bremen.de|Stud.IP]].
   * First seminar will be held on 20.4.   * First seminar will be held on 20.4.
- + 
 +=== Topics === 
 + 
 +  * Camera Model | RGBD-Camera Registration 
 +  * 3D-Feature Detectors and Descriptors 
 +  * Hough Transformation 
 +  * RANSAC | ICP 
 +  * Object Recognition 
 +  * Object Detection 
 +  * Object Model Reconstruction 
 +  * Human Detection 
 +  * Probability Theory 
 +  * Tracking Algorithms 
 + 
 +==Literature==  
 + 
 +For a general overview about perception in robotics students are encouraged to look at the following paper : 
 +  * Vision for Robotics, //Markus Vincze and Danica Kragic// in Foundations and Trends in Robotics Vol. 1, No. 1 (2010) 1–78 [[http://​www.nowpublishers.com/​media/​Journal-Article-PDFs/​2300000001.pdf|[pdf]]]  
 + 
 +==Object Detection and Recognition==  
 +  *Richard Szeliski: Computer Vision:​Algorithms and Applications,​ Chapter 14 [[http://​szeliski.org/​Book/​|(link)]],​ 
 +  *Collet et.al. Object Recognition and Full Pose Registration from a Single Image for Robotic Manipulation 
 + 
 +==Hough Transform, RANSAC, ICP== 
 +  *Wikipedia is normally a great place for geting familiar with these algorithms 
 +  *Papzov et.el. An Efficient RANSAC for 3D Object Recognition in Noisy and Occluded Scenes 
 +  *Find more applications of these algorithms in robotics e.g.:  
 + 
 +==Tracking and Recognizing Humans==  
 +  *Forsyth et.al. Computational Studies of Human Motion: Part 1, Tracking and Motion Synthesis([[http://​luthuli.cs.uiuc.edu/​~daf/​Papers-local/​0600000005.pdf|pdf]]) 
 +  *Pons-Moll et.al. Metric Regression Forests for Human Pose Estimation( [[http://​www.bmva.org/​bmvc/​2013/​Papers/​paper0004/​paper0004.pdf|pdf]])