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ABSTRACT
A major bottleneck in the realization of autonomous robotic
agents performing complex manipulation tasks are the re-
quirements that these tasks impose onto perception mech-
anisms. There is a strong need to scale robot perception
capabilities along two dimensions: First, the variations of
appearances and perceptual properties that real-world ob-
jects exhibit. Second, the variety of perceptual tasks, like
categorizing and localizing, decomposing objects into their
functional parts, perceiving the affordances they provide.

This paper, addresses this need by organizing percep-
tion into a two-stage process. First, a pervasive and ‘calm’
perceptual component runs continually and interprets the
incoming image stream to form a general purpose hybrid
(symbolic/sub-symbolic) belief state. This is used by the
second component, the task-directed perception subsystem,
to perform the respective perception tasks in a more in-
formed way. We describe and discuss the first component
and explain how it can manage realistic belief states, form a
memory of past perceptual experiences, and compute valu-
able perceptual attributes without delaying plan execution.
It does so by exploiting that perception is not a one-shot task
but rather a secondary task that is pervasively and calmly
performed throughout the lifetime of the robot. We show
system operating on a leading-edge manipulation platform.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—3D/stereo scene analysis, Perceptual reasoning,
Architecture and control structures

General Terms
Performance, Algorithms, Design

∗Calm refers to the term “calm technology” introduced by
Mark Weiser [29], who considers calm information process-
ing systems as systems “that inform but don’t demand our
focus or attention.” For us we consider a calm perception
system to be one that continuously runs and provides use-
ful perceptual information without demanding high compu-
tational resources and in particular without requiring the
robotic agent to wait for the results of perception processes.
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Figure 1: PR2 looking at a cooking scenario.
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1. INTRODUCTION
Autonomous mobile robots performing fetch and place

tasks in a factory, a supermarket, or a household have to
fetch all kinds of objects, in all kinds of scenes, and put
them where they are needed. The perception tasks that
such robots face are tremendously difficult. Some objects
are characterized by their shape, others by their visual ap-
pearance, others are translucent. The robots must fetch
objects based on descriptions and often within very clut-
tered scenes as for example inside of drawers and cupboards
or the shelves of supermarkets where the individual objects
are lined up together making it almost impossible to visually
segment an object from the next one.

On the other hand, the tasks also exhibit a considerable
amount of structure. The robots navigate around in their
environment continuously and for long periods of time while
the rate in which the environments change is typically slow.
They can therefore form strong expectations about what
they are going to perceive. In addition, there is a lot of
temporal redundancy in the perceptual data and they often
know what they will be looking for long before they can start
the perception process.



The design and investigation of perception systems that
aim at tackling these challenges as well as exploiting the
structure of the perceptual tasks to be more efficient, ro-
bust, and exhibit better performance has received surpris-
ingly little attention so far. There are partial solutions to
some of the challenges in the areas of biological approaches
to low-level vision [8] and multi-object tracking [22]. The
research work of Collet et al. [9] is a notable exception who
is looking into the lifelong exploration, object learning, and
re-detection of textured objects. Also, autonomously driv-
ing cars have developed their own need for continual visual
observation of traffic scenes and the individual entities in
the scene [26].

In this paper, we propose PerCaP a pervasive ‘calm’ per-
ception component of RoboSherlock [2, 4], for longterm
autonomous robot manipulation. This component is to sup-
port the high-level perception system of the robot, which
receives perception tasks such as “detect the red cup on the
table”, “find the box with the Kellogg’s logo”, etc. by perva-
sively collecting perception data and preparing information
by interpreting the data and making logical assertions to a
knowledge base, in order to facilitate the fast and robust
accomplishment of requested perception tasks.

To do so, PerCaP provides the following functions:

• It estimates the partial belief state of the robot with
respect to the current state of the environment,and
the current poses and attributes of objects in use and
provides information useful for requested perception
tasks, without having any previous knowledge about
the objects in the environment; and

• it maintains a perceptual memory of past perceptual
data and interpretations thereof, which are also used
for lifelong learning.

The main contributions of this paper are the following
ones:

• configurable, high-performance preparatory perception
system which computes:

– symbolic representations and context information
for simplifying perception tasks;

– extracts sensor data of object hypotheses;

• belief state management including perceptual memory

– object identity resolution

– symbolic, relational model

– reasoning with background knowledge (exploiting
the closed world assumption)

Results and executable pipelines of PerCaP are publicly
available on the OpenEASE [3] web-page1, an online know-
ledge representation and processing service. In the remain-
der of the paper we proceed as follows. Section 2 and 3
describe the motivation and the system overview followed
by a presentation of the low-level pervasive perception in
sections 4, 5 and 6. How pervasive perception is used
in task dependent robotic actions is explained in Section 7,
followed by the evaluation of the validity of our approach in
Section 8. We conclude by presenting state-of-the-art and
future work in Section 9 and 10.

1www.open-ease.org

2. MOTIVATION AND USE CASE
Performing everyday manipulation and activities in a hu-

man environment is a sophisticated task for a robot. The
main source for information in such an environment is the
perception system of the robot. The perception system has
to work in an open scenario and be responsive under the
limitations of the restricted computation capabilities of the
mobile hardware. Under these circumstances the perception
system has to be taskable and has to decide which algorithms
to execute at a certain point in time.

A human entering a kitchen, is constantly receiving, pro-
cessing and storing information, on objects that he sees,
without actively inspecting each object in detail. If he later
starts a cooking task where a bowl, capable of holding 1
liter is needed, he will first look for the objects that could
be possible candidates from the ones he has seen in the past,
instead of starting a search.

For a robot this is a difficult task. If the perception sys-
tem always detects and categorizes all the objects it sees,
it would consume much of the limited processing capabili-
ties of the mobile hardware. This could decrease the overall
responsiveness. But on the other hand, if the perception
system only perceives the objects of actual interest, it will
have to search for them each time they are requested.

PerCaP solves this issue by constantly perceiving and
memorizing the objects it sees without running any demand-
ing high level perception algorithms all the time. It stores all
collected information on the objects, including images and
point clouds and creates a partial belief state of the current
world that the perception system can use to quickly reply to
queries or to analyze objects in more detail if needed. With
our preparatory perception system applied to the above ex-
ample, it is possible to lookup all perceived bowls and cal-
culate their capacity just by using the memory, without any
active search in the environment.

Another use case might be that the robot just sees the
backside of an object of interest at the current position, but
needs information from the front cover to identify the object.
With our perception system it is possible to lookup all the
viewpoints in which this object was seen to filter out frontal
views. This way the object can be identified without the
need to physically interact with it or to move the robot to
another position.

3. SYSTEM ARCHITECTURE
As an extension to RoboSherlock, PerCaP operates

according to the unstructured information management ar-
chitecture (UIMA) [10]. The system is composed of a set of
expert analysis engines (AEs). Some AEs detect point clus-
ters in the RGB-D point cloud data that might correspond
to objects and object groups in the operating environments.
Others analyze the object (group) hypotheses and structure
and interpret the regions that correspond to the objects and
add inferred information as annotations for the object hy-
potheses.

In UIMA the basic data structure is called the Common
Analysis Structure (CAS). The CAS consists of the sensor
data (called the artifact), a number of SofA s (Subjects of
Analysis), which represent the object hypotheses, annota-
tions of the SofA s, which include the inferred information
about hypotheses, and a common type system that enables
the different AEs to exchange information in a common for-



Figure 2: Architectural overview of the pervasive ‘calm’ perception system

mat. The types of information the SofA s can be annotated
with include the estimated size, color, texture, and shape of
the hypothesized objects. More sophisticated and complex
annotations are shapes, text written on the objects, logos,
the identity of objects, and other kind of semantic informa-
tion.

Figure 2 presents an overview of the underlying architec-
ture of PerCaP. During task-execution a robotic agent can
issue perceptual task descriptions which in turn get inter-
preted by a taskable perception pipeline. We consider one
of two kinds of perceptual task descriptions:

1. detect obj-descr to find objects in the sensor data
that satisfy the description obj-descr and return the
detected matching object hypotheses. i.e.: (an object
(category spoon) (color red)).

2. examine obj-hyp attributes asks the perception sys-
tem to examine a given hypothesis obj-hyp in order to
extract additional attributes requested. i.e. exact pose
of the object or its 3D model.

PerCaP addresses the first kind of task descriptions. In
Figure 2 a low-level perception system processes, interprets,
and maintains high-volume sensor data at a rate of 5-10 Hz
without slowing down the operations of the robot, and stores
the generated information in a perceptual memory. It is the
base pipeline that is always run and on the results of which
all other pipelines build up. It is designed for robotic agents
operating in household environments and uses knowledge
about the environment, like semantic maps [21] and loca-
tion of the robotic agent in its environment. The proposed
system is continuously perceiving and memorizing low level
percepts of objects it sees. The later part has two require-
ments: a basic perceptual pipeline for detecting objects and
adding low level annotations, and a persistent perceptual
memory system combined with object identity resolution ca-
pable of storing all information for each processed frame.

Objects stored in the perceptual memory are further pro-
cessed by resource intensive asynchronous processes. These
expert methods are computationally inexpensive for the ro-
bot, but their response times do not meet the execution-
time requirements of the low-level pipeline. Examples of
such kind are web services (e.g. Google Goggles or Bar-
coo) or computationally more expensive algorithms running

on a server (integrated using ROS2 services). In previous
work [20] we reported on how some of the results produced
by the annotators are used as evidences, to probabilistically
infer information about objects in the robots environment.
PerCaP makes use of these annotators and more to build
a preliminary belief-state. A more detailed presentation of
the annotators used is presented in Table 1.

Figure 3: Overview of the low level perception sys-
tem.

4. LOW-LEVEL PIPELINE
Following the UIMA paradigm each image obtained by a

camera is seen as unstructured information. The low-level
pipeline has to identify structures in this information. This
is done by multiple algorithms (ensemble of experts) which
are designed for specialized task.

Since the robot is localized in a known household envi-
ronment, there are many static objects in the world, like
cupboards, counters, tables. The map of the environment
and the position of these static objects is known and stored
in a knowledge base that is actively used to focus the atten-
tion of the perception system. In this environment objects
of daily use appear either on top of tables or counter tops
or inside drawers, cupboards, oven, refrigerator.

For object detection only the supporting planes of these
furnitures are of interest. Therefore to reduce processing
power for detecting volumetric objects, first the normals of
each point of the point cloud is estimated. Then supporting
planes are identified by a plane annotator. Each plane is
then used to detect objects on it by euclidean clustering. For
flat objects, that do not possess dominant 3D characteristics

2http://ros.org



Annotator Process Type Symbolic
Representation

Description

Color Fast-Loop color(cluster, color) returns symbolic color annotation and color histograms
based on color distribution in HSV color space.
Depending on the distribution, one object can have
multiple symbolic color labels assigned.

Size Fast-Loop size(cluster, size) labels objects into small,medium or big depending on
the volume of the 3D bounding box normalized with
the distance to the camera to the object.

Goggles Asynchronous logo(cluster, logo)
text(cluster, text)
texture(cluster, t)

sends the image region of an object hypotheses to the
Google Goggles servers and interprets the answer to
extract text, logo, and texture information.

FlatObject Fast-Loop shape(cluster, shape) looks for additional object hypotheses in color space
(e.g., cutlery . . . ).

PrimShape Fast-Loop shape(cluster, shape) fits lines and circles to 3D point clusters projected on
to the 2D plane using RANSAC [12]. Values returned:
box, round

SACmodel Fast-Loop shape(cluster, shape) recognizes cylindrical objects and planes in 3D space.
for objects the number of inliers found needs to exceed
the given threshold (60% of the total points in a
cluster). Value returned: cylinder

Semantic Location Fast-Loop loca-
tion(cluster,location)

interprets object positions in terms of a semantic
environment map [21] and returns places such as
counter tops, tables, fridges, and drawers.

PCLFeatureExtrac-
tion

Fast-Loop fea-
ture(cluster,<feat>)

Extracts 3D feature descriptors implemented in PCL
[23] for every cluster(e.g. VFH, PFH, SHOT)

LineMod Asynchronous instance(cluster,
category)

matches each object hypothesis to a set of object
models that the robot should actively look for using the
Linemod algorithm [13].

PoseAnnotation Low-level pose(cluster,
<pose>)

estimates an oriented 3D bounding box, and annotates
the clusters with the respective pose

FeatureAnnotation Low-level fea-
ture(cluster,<feat>)

extracts key-points and their respective key-point
description. Wraps around the key-point extraction
functionalities in OpenCV[7]

Table 1: Description of the annotators, the conditions under which they work and the symbolic representation
they result in

a color based segmentation is applied, exploiting the color
distribution of the supporting plane.

Multiple experts are run on all detected objects and add
low level annotations to them, including pose, shape, 3D
bounding, image features, color histograms, semantic color
description, semantic relational locations, etc. Some of these
low-level experts and more detail about them is shown in
Table 1.

5. PERCEPTUAL MEMORY
The perceptual memory is the main service that PerCaP

provides to the overall perception system. The perceptual
memory stores all the objects that the robot has detected
over its operation time, maintains the identity of these ob-
jects, and accumulates and updates the knowledge about
these objects.

The knowledge about the objects stored in the percep-
tual memory includes pieces of the raw sensor data that
have been used to perceive the objects, other data struc-
tures that resulted from processing these sensor data, and
symbolic assertions that were produced from the expert per-
ception routines running on the detected object hypotheses.
Thus, the symbolic assertions that were generated for the
detected ketchup bottle on the table (see Figure 2) include
the following ones:

• color(s0,red)

• shape(s0,cylinder)

• logo(s0,Hela Ketchup)

• text(s0,Curry)

The set of assertions of all objects detected on the kitchen
table can therefore be considered as a partial knowledge base
of the table scenario that can be used to reason about the
context of the table scene in a more informed manner. To
this end, the facts are asserted into a logical (Prolog) knowl-
edge base. Using Prolog we can encode reasoning knowledge
in the form of rules that states that a cylindrical object with
the logo “Hela Ketchup” and some text “Curry” could be the
ketchup bottle:

category(Obj,Cat) :-
logo(Obj,Hela Ketchup), text(Obj,Curry),
shape(Obj,cylinder)
Cat is ‘Ketchup’.

Another rule might state that in the context of a table set
for breakfast ketchup often co-occurs with salt which can
be used by the task-directed perception system to actively
search for objects that could be salt containers.

Maintaining a perceptual memory is not only advanta-
geous for guiding perception processes with background and
context knowledge. It is also a resource for ensemble learn-
ing. The robotic agent can learn the co-occurrence of objects
in scenes as well as the co-occurrence of objects and per-
ceptual appearance attributes or it can learn using the raw



image data of an object how to best detect ketchup bottles
on breakfast tables.

To facilitate these learning tasks the perceptual memory
is realized as a “big data” data storage that collects data
over time. For this purpose we choose to use MongoDB as
an implementation basis for the perceptual memory. Mon-
goDB is a good choice for storing data in a native way in
an object oriented database [19]. It is the most prominent
noSQL database, enables better intercommunication with
other systems like KnowRob [27], and organizes the mem-
ory structure in a document-like manner.

The perceptual memory of PerCaP is implemented to
be highly efficient. To this end, the stored data are rigor-
ously typed in a structure called FeatureStructure, which
can be a list, an array, or a structure of features. A feature
is either of a basic type (like boolean, byte, integer, floating
point, string) or is a FeatureStructure itself. In MongoDB
all data is stored in the BSON (Binary JSON) format. The
BSON format is object oriented and each object has mul-
tiple named elements with certain types (including integer,
double, string, binary, array, another BSON object). This
enables a near native 1-to-1 mapping between the UIMA
FeatureStructures and the BSON objects. PerCaP applies
a generic algorithm for converting from UIMA data into
BSON and vice versa. The algorithm can store and load
any CAS to and from the database and is independent of the
type system that is being used. To improve the performance
the algorithm automatically stores large lists and arrays of
basic UIMA types as binary data elements in BSON.

The perceptual memory is organized into two databases:
one containing the scenes and one containing the known ob-
jects. After the low-level pipeline from PerCaP is run, all
information is stored as a new entry in the scenes database
and the perceptual memory checks whether this could be
a re-detection of an object that is already contained in the
memory. This is necessary to perform perception in a more
informed way. Keeping track of object identity also enables
PerCaP to accumulate perceptual knowledge about objects
over longer time. Object identity resolution, which we will
detail in the next section, updates the global belief state
and connects the objects from the actual scene to the ones
already known.

Resource intensive asynchronous processes e.g. web based
algorithms like Google Goggles or computational expansive
high level perception algorithms like CAD based model fit-
ting can then be executed on demand and detached from the
low-level pipeline. These processes find the objects in the
database and further analyze them. New annotations get
added and updated ones replace existing annotations. The
results are then again stored in the object database.

6. OBJECT IDENTITY RESOLUTION
The low-level pipeline detects objects in each frame ob-

tained by the sensors. Each frame is only a snapshot of the
current scene. By default the objects detected in one frame
are detached from the ones detected in previous or future
frames. To connect each of these objects to an specific ob-
ject over time we use an object identity resolution that uses
the low level percepts.

The object identity resolution is based on the entity res-
olution framework proposed by Blodow et. al. [5]. This
framework uses a probabilistic first order model which con-
siders the shape, position and a numerical similarity mea-

surement in order to achieve a globally consistent belief state
even in the presence of ambiguity and partial observability.

Each object contains a number of annotation computed
by the low-level pipeline. Shape and position needed by the
entity resolution framework are directly given by annotators
of the low-level pipeline. For the similarity measurement we
use a subgroup of other low level annotations; these are ge-
ometry, color histograms and image features. To compute a
numerical similarity measurement from these annotations a
distance function distt(at, bt) → [0 . . . 1] is defined for each
of the annotations. The distance function takes two anno-
tations of the same type t as parameter and computes a
normalized distance dt. Each distance dt is weighted by the
factor wt, which is statically defined for each type. The
overall distance for an object to another is than the sum of
all weighted distances normalized to [0 . . . 1]:

dist(a, b) =

∑
wt ∗ distt(at, bt)∑

wt

The weighting is applied to prioritize certain annotations
that are more reliable and discriminating than others. For
example shapes are similar for many objects while color his-
tograms and image features differ much. The weight for each
annotation is based on empirical results on their reliability
and discrimination.

For the geometry annotation, which contains a minimal
bounding box, the distance is the normalized sum of the
distances in each dimension (width, depth, height) of the
bounding box:

distgeo(a, b) =
distd(wa, wb) + distd(da, db) + distd(ha, hb)

3

The distance for each dimension is the absolute difference
divided by the minimal length, limited to 1. Every difference
that is greater than or equal to the doubled minimal distance
is mapped to 1, everything lower is linear mapped from 0 to
1:

distd(a, b) = min(1,
|a− b|

min(a, b)
)

The distance between two color histograms, which are nor-
malized, is the sum of absolute differences per bin divided
by 2:

distcolor(a, b) =

∑
|ai − bi|

2

All image features (SIFT, ORB, FREAK) descriptors from
one object are matched against the ones from the other ob-
ject using a brute force matching algorithm, which gives
back a minimal distance di for each descriptor. These dis-
tances are summed up and divided by the product of the
number of descriptors n and a constant maxDist which de-
fines the maximal distance between descriptors that is taken
into account. The result is limited to 1 if higher:

distfeature(a, b) = min(1,

∑
di

n ∗maxDist
)

The maximal distance maxDist can be defined lower than
the real maximal distance between descriptors. Image de-
scriptors can be considered as dissimilar even if they are not
near the maximal distance. This increases the resolution for
the similarity measurement for near descriptors and reduces
the limit of dissimilarity that is inspected.



For each detected object the similarity to each known ob-
ject is computed and together with their pose and shape
passed to the entity resolution framework, which gives back
the probabilities for each cluster belonging to which object.
Based on the results the clusters are assigned to the best
candidate, get added as new clusters, while objects that are
not in the current scene are marked as persistent.

7. TASK SPECIFIC PERCEPTION
In our laboratory PerCaP is used on all of our robots

for all the tasks they perform. This is a broad range of
tasks, from pick-and-place in a kitchen environment, to DNA
extraction in a chemical laboratory environment. For all
these tasks the preparatory perception system is used and
all task specific parts build on top of it.

We showcase the use of PerCaP on two tasks of a robotic
agent performing different experiments and show how the
taskable perception pipeline makes use of the preliminary
belief state generated by PerCaP in order to come up with
the correct answers.

Pick and Place Surgical Utensils
The first task involves a robotic agent picking up surgical
utensils, and putting them in a bowl. The input image,
the generated clusters, and their respective annotations are
shown in Figure 4. Finding the object clusters was achieved
using a color based segmentation, class labels were assigned
by using a nn-classifier trained on Hu-moments[14] for the
objects that were used in the experiment. Because of the flat
nature of the objects the 6 DOF poses were calculated using
the camera parameters and the equation of the supporting
plane.

In this scenario the taskable perception system receives
queries of the form:

(detect (an object
(shape (flat)), (location (on-table))
(category (C)), (pose (P))))

Figure 4: Surgical utensils on a table: Color (left),
SofAs (center) and pose (right)

PerCaP continuously detects the objects, calculates the
Hu-moments and the pose estimate for these, adding them
to the initial belief space. The taskable perception system
triggers the execution of the classification in order to find
the correct object labels.

Chemical experiment
In a very different scenario the robotic agent’s task was to
perform pipetting in a DNA extraction scenario. This in-
volves picking up the pipette, mounting a tip on it, getting
some solution from the bottle and releasing it into one of

Figure 5: Pipetting scene as seen by the robot. Left:
RGB, Right: PointCloud

the tubes found in the rack. The challenges for perception
here are

1. not all objects can be perceived using RGB-D sensors
(see Fig. 5), hence segmentation methods need to be
combined.

2. it is not enough to detect and track the objects in the
environment to execute the task. Parts of objects need
to be found depending on the current sub-task, e.g. in
order to get solution from the bottle, its cap needs to
be removed and the opening detected.

Although this task is significantly different from picking
and placing surgical utensils, the same low-level perceptual
pipeline is used in order to generate the belief-state. Ob-
ject hypotheses are being constantly updated in the percep-
tual memory and the basic characteristics of the objects are
stored. During the different subtasks of pipetting, the high-
level perception queries PerCaP and finds the object parts
needed by the robotic agent to successfully accomplish its
goal.

In both tasks executed by the robot PerCaP provides
valuable information without delaying execution times while
maintaining a perceptual memory that enables offline learn-
ing.

8. EXPERIMENTS AND EVALUATION
Because PerCaP does not use any models of the objects it

is to encounter in the environment, a key element in the suc-
cessful application is the precision of the individual experts
that are used in the perception pipeline and the maintenance
of a correct belief state about the objects in the environment.
To this end we conducted experiments to evaluate the cor-
rectness of the individual annotators and then the reliability
of the belief state.

We report the correctness of the symbolic representations
returned by the annotators on a collection of scenes con-
taining objects of daily use in a kitchen scenario as it was
shown in [20], in Figure 6. We took 50 scenes with different
number of objects in a scene (between 4 and 8). The objects
were chosen so that they vary in defining characteristics (tex-
tured, untextured, etc.). The data was hand labeled with
ground truth for each of the annotators. Correctness of the
different annotators is shown in Figure 7.

Evaluation of the belief state management system was
done on a sequence of images (Figure 8), with increasing
complexity both in the number of objects in the environ-
ment but also in clutteredness/occlusions of these. We took
60 scenes gradually increasing the number of objects, adding
and removing them, and also moving the robot around. We
compared the actual number of objects introduced in the



Figure 6: Example of table top scenes used to eval-
uate the individual annotators

Annotator
# total

Annotations
# correct

Annotations

Color 289 231 (79.9%)
Goggles 80 —
Prim. Shape 336 233 (69.3%)
SACmodel 38 31 (81.5%)
FlatObject 142 116 (81.6%)
Linemod 90 45 (50%)

Figure 7: Evaluation of annotators: Correctness of
their annotations Shape, SACmodel and FlatObject
have been aggregated since they all contribute to
the “shape” predicate.

robot’s environment to the number of object-hypotheses in
the belief state. Note that none of the objects used in the ex-
periments are previously known to the robot, and we solely
base our identity resolution on the low-level percepts gener-
ated by PerCaP. The objects were also chosen to have more
and more similarities between them as the scene’s complex-
ity grew.

#
Obj

#
Scenes

#
Clusters

# Obj.Hyp.
(O/Ohyp)

2 10 20 2(100%)
4 13 47 5(80%)
6 17 92 8(75%)
11 20 170 19(57%)

Figure 9: Evaluation of the belief state

In Figure 9 we report the results of our experiments. In
the total of 60 scenes we introduced 11 different objects re-
sulting in a total of 329 clusters after segmentation. These
clusters were assigned to a total number of 19 object hy-
potheses at the end of the experiment. As it can be observed
the number of object hypotheses in the belief space grows
with the number of objects introduced in the environment.
This is due to the fact that with the increase objects and oc-
clusion the chances of confusing them also grow, as specially
since the low-level pipeline contains very basic perceptual
capabilities. The relation between the objects in the real
world and the object hypotheses in the robot’s belief stat
are also shown in Figure 10.

Since a robotic agent, during a task execution does not
need to deal with an unlimited number of objects (Chap-
ter 7), even though the initial belief space gets more and
more imprecise, the number of objects that need to be ex-
amined drops significantly. Compared to a conventional
pipeline in RoboSherlock this means that PerCaP will
speed up the lookup for objects, because the robot can di-
rectly analyze all previously seen objects to first find the

Figure 10: Relationship between objects in the
robots environments and the belief-state

searched object and then look to the last known position to
see if the object is still there. We experimented with differ-
ent task descriptions (like the ones presented in Chapter 3
and 7) on the complete belief-state containing 19 objects and
came to the conclusion that for any query where we give at
least two atomic evidences for the searched object (e.g. size
and color or color and shape) the system needs to analyze
at most five object hypotheses. In a table-top scene like the
ones in the bottom row of Figure 8, where significantly more
objects are found, this helps limit our search space for the
correct answer, thus speeding up processing time.

9. RELATED WORK
Current robotic perception systems mostly consider the

case where a database of objects models are used in order
to match them with the sensor data. Furthermore, these
systems usually focus on the development of individual al-
gorithms, that work on objects with specific characteristics
e.g. point features for 3D opaque objects [1], visual key
point descriptor based systems like MOPED [9] for textured
or [16] for translucent objects. These also is no single al-
gorithm that can perceive the wide range of characteristics
objects can possess. However, several methods exist that
handle subproblems of perception reasonably well, many of
which are complementary and could be combined to boost
performance.

We expect that the combining various approaches with
complementary strengths can improve over the individual
performance of the methods [24, 28] and make it generalize
better [15]. In the application domain of machine learning
this has been demonstrated through the NetFlix Prize [25].
During the challenge ensemble learning became a prominent
and very successful approach, as individual teams started to
join efforts.

There are many existing perception frameworks that im-
plement stat-of-the-art task specific algorithms e.g. PCL
[23], OpenCV [7], which can be used as building blocks for
general robotic perception systems, but the perception tasks
that a robot assistant has to accomplish go substantially
beyond what is supported by the perception libraries and
frameworks. Frameworks, mostly based on middleware like
ROS, such as SMATCH [6])or REIN [18] have targeted the



Figure 8: Images of the table top scenes used for evaluation. Complexity of the scenes grows from top down,
object or robot positions change left to right

ease of program development but the problems of boost-
ing perception performance through more powerful method
combination has received surprisingly little attention.

The UIM architecture allows both for the incorporation
of the ensemble learning framework from [17] and allows for
steering the processing work flow in order to support active
classification [11].

Our work builds on top of the existing state of the art,
bringing the context of a task being executed and a percep-
tion capabilities of a mobile robotic platform closer.

10. PERSPECTIVES
Using pervasive ‘calm’ perception the robot collects com-

prehensive data and information about perception in task
contexts. For every perception task it stores the relevant im-
age parts that were processed in order to perform the task,
the outcome of the perception task, and statistics about the
way the task was approached and performed. The statis-
tics keep information about what succeeded and failed and
how long individual processing steps took. In addition, the
memory mechanism will also propagate reliable results as
“ground truth data” to low quality observations of the same
object. For example, if the milk pack is the only blue object
on the table and at some point the robot can read the bar
code on the package, it can then label the blue object in
the same scene as being milk, as long as the scene does not
change. This way the robot will be able to automatically
generate supervised learning tasks.

Based on the collected experiences of perception tasks,
the robot can automatically learn the perception tasks that
are typically performed in given manipulation actions. For
example, while setting the table the robot typically looks for

knives and forks in the drawer. We can learn statistics of
how often perception failed until a knife or fork was found,
we can also identify cases where the plan later signaled a
failure “wrong object acted on”. Learning about the internal
operations of perception pipelines the robot can also learn
which expert methods worked and which ones did not. It
can also learn new experts or improve already existing ones
by performing supervised learning tasks on captured images
with labeled results.
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