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Abstract. This study explores gesture interpretation by utilizing an ontological
context. The aim is to store gestures and scene context data in an ontology and use
its knowledge graph to actuate the robot arm to perform sets of manipulation tasks
used in various environments. The knowledge graph captures the relationships be-
tween gestures, objects in the scene, and the desired actions. By putting the onto-
logical context into use, the system can understand the meaning behind the gestures
and execute the appropriate actions. The paper focuses on the development of the
ontology, including the creation of class properties and the embedding of gestures
within the ontology. Additionally, the paper explores how the integration of speci-
fying context interpretation from the ontology may look to enhance the interpreta-
tion of gestures. The proposed approach aims to provide more intuitive and adap-
tive gesture-based supervisory control of robots in general. We tested the proposed
ontological system in several tests so that it may be used in our future applications.
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1. Introduction

Human-robot interaction (HRI) plays a crucial role in enabling robots to assist humans
in various tasks. One important aspect of HRI is the ability of robots to understand and
interpret human gestures accurately. Gesture recognition allows robots to perceive and
respond to human commands and intentions, enhancing their usability and effectiveness
in assisting humans. Similarly, the ability to understand and represent gestures enables
robots or virtual agents to behave in a way that is easily interpretable by humans.

Robot control using hand gestures so far is mainly considered a direct mapping be-
tween gestures and actions without any context of the environment (e.g. [19]). However,
context is crucial to properly interpreting meaning of the nonverbal communication. The
human intent for robot control may be determined from a set of gestures in the given con-
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text [8], [21] (i.e., interpreting the gestures with respect to the user, objects on the scene,
or performed task), however a very simplified representation of the environment and con-
text was considered, which makes it hard to reason correctly on the historical data and
make a generalization to new environments. There are also a few efforts that propose a
more robust knowledge representation of nonverbal communication [15], however, these
do not consider the context of the environment, objects, and robot itself and are more fo-
cused on human-device interaction, i.e., using gestures for operating a game/tablet which
is compared to human-robot interaction in a simplified environment that requires also
different representation of affordances.

In this work, we link these two worlds by proposing a robust knowledge representa-
tion for the interpretation of gestures within the context of realistic robotic environments.
To achieve accurate and context-aware gesture recognition, we built upon our previous
work [21], and, in addition, represent the gestures and the relevant context in an ontol-
ogy. The ontology enables us both to collect experiences from historical interactions and
to reason on top of the acquired knowledge or current state. Our approach utilizes a pre-
trained set of gestures based on a semaphoric model which discretely classifies differ-
ent types of gestures and employs the gesture toolbox [23] to prepare the target set of
gestures specifically designed for the tested environment. The focus is on the applica-
tion of gesture recognition in the context of kitchen environments, which can be further
expanded to other workspaces.

The kitchen environment presents unique challenges for robots, as it is relatable and
understandable for humans and contains various basic manipulation tasks such as food
preparation, desk organization, and cleaning in a kitchen setting. In these scenarios, a
subset of objects from the YCB dataset [3] is utilized consisting of kitchen equipment
and food items.

The proposed ontology and related code is available at https://github.com/
petrvancjr/gesture-ontological-context-interpreter.

2. Related Work

First, we review related work about the usage of human gestures for robot control. Sec-
ond, we summarize the most significant works on modeling and representing gestures.

In previous works, hand movements were used to teleoperate the robot by directly
mapping the user’s hand to the robot end-effector [25]. In [4], hand motions recognized
by a combination of depth cameras and inertial measurement units (IMUs) were used for
robot teaching. Another way of control is commanding gestures using action signaling
(e.g., [21]). In this case, recognized gestures are linked to specific robot actions.

Most of the current gesture-controlled devices (e.g., Hi5 VR Glove [7]) were used
only experimentally. Only a few (e.g., Leap Motion [24], Oculus Quest’s hand tracking)
made it into mass production and even fewer people started using them on a daily basis.
One example is the smartphone industry, where developers used hand gestures to control
basic controls, e.g., music [14] or resizing pictures. Gestures are also used in virtual
reality, including environment control [12]. In contrast to these approaches, all consider
only a very simple notion of context. Our hypothesis is that using situation context from
a rich knowledge graph is the key to making gestures a reliable and natural means of
communication.
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The modeling of gestures is in many cases rather informal (e.g., [1]), or restricted
to geometrical characteristics (e.g., [16], [11]). For example, Ousmer et al. [16] decom-
poses gestures into different segments with associated hand poses to support the recog-
nition of gestures. In contrast, our goal is rather to support their interpretation, and thus
geometrical characteristics are not sufficient. A well-formalized account is provided by
the SUMO ontology which focuses on modeling the communication underlying a ges-
ture [17]. However, gestures are not characterized by the affordances of the environment
in the SUMO ontology. Another related ontology is the HDGI ontology [18]. It is de-
signed for human-device interaction and puts particular emphasis on the link between
gestures and device context and affordances. However, here we consider human-robot
interaction which requires a more detailed representation of affordances and context.

In most works the scene context is not taken into account, e.g. the system uses fixed
mapping from gestures to robot task [19]. Other formal accounts rather employ proba-
bilistic representation [9] for human intent recognition in shared-control robotics. It looks
at the integration of human gestures and robotic actions. We build upon [21] method
for mapping the context, which is using a Bayesian neural network to estimate the next
user-intended action. The key is to construct a feature vector that properly describes the
scene context. Contextual characteristics were extracted from the working data set based
on their natural properties which were hand-picked based on common sense and stored
as ontological properties.

3. Application Domain

In this section, we will describe the considered application domain including the uti-
lized objects (Sec. 3.1), robot actions (Sec. 3.2), and gestures (Sec.3.3). For the gesture
detector, we use the Leap Motion Controller [24] and Franka Emika Panda [5] as our
robot which is popular to be used for human-robot interaction while being able to easily
manipulate the objects.

3.1. Objects

The scenario in consideration comprises a table and several items that are on top of it.
The objects are a subset of the popular YCB dataset [3] because they are objects which
people interact with on a daily basis. We took mainly kitchen equipment and food items
to accomplish specified tasks, which we will describe in the next section. The objects are
randomly arranged on the scene within every new task. See Fig. 1 for the set of selected
objects.

3.2. Set of actions

We defined the number of actions the robot can perform while still being able to accom-
plish given scenarios. The final list consists of 7 actions: Pick, Pour, Put, Place, Move-
up, Move-right, and Move-left. Actions Pick, Pour, Put, and Place are tied to a specified
object. Action Place places the object into specified storage, the storage defined within
reach on the side of the table.

Action Move-up moves the robot end-effector into the home (upper) position. Ac-
tions Move-left or Move-right move the robot end-effector according to the common co-
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Figure 1. Set of the selected objects. It is a subset of YCB objects [3].

ordinate axis by a certain amount. Additional object-focused features might be added for
convenience. For example, if an object is near the end-effector position, the position is
adapted to attain the position above the given detected object.

Additionally, the system supports a non-robotic action Select-object which computes
probabilities of objects being selected based on the direction of the pointing finger (see
Sec. 3.3 for more details).

3.3. Gesture description

Our system utilizes two gesture types: action gestures and point (deictic) gestures.

The first action gesture type is defined based on gestures taxonomy [10], the
Semaphoric Gestures Model. It is used to discretely classify a pre-trained set of gestures.
We selected a set of 8 action gestures that are shown in Fig. 2. The detectors used in
our system are returning the confidence of each gesture from this set in real-time. When
any gesture has enough evidence, its data are written into the ontology. The gesture de-
tection uses a combination of static and dynamic gesture detectors. The static detector
uses a single time-frame hand structure (see Fig. 4), from which then the feature vector
(of length 57) is extracted for gesture classification. On the other side dynamic gesture
detector uses a moving time frame of hand movement but only hand pose as the feature
is used. The detectors are combined to form the final Compound gesture, resp. specific
hand configuration plus movement (see Fig. 2 description).

Point (deictic) gestures have the effect of triggering the procedure of object choice.
The procedure chooses the closest object to the user’s pointed line. This involves the
calibration with a scene [22]. The poses of objects are retrieved from the knowledge
graph which saves recent object positions. We use the CosyPose detection method [13]
to get 6DoF poses of objects.

4. Ontological Characterization

The ontological nature of gestures appears to be somewhat diverse. Gestures are, on the
one hand, acts of non-verbal communication where an agent attempts to convey some
information to other agents in its surrounding. They are, on the other hand, also bodily
expressions in the form of postures and motions. This observation is captured, for ex-
ample, in the SUMO ontology where a gesture is seen as any body motion which is also
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Figure 2. Set of gestures. Gestures are a combination of Static and Dynamic detectors (see 3.3). For example
Steady-Grab (a) is a combination of no movement with Grab hand configuration. Same way the Thumbs-Left
(h) is hand movement left and Thumb-left hand pose.

an instance of communication [17]. Another foundational account for an ontological no-
tion of gestures is included in the ontology for Information Objects where a gesture is
seen as an instance of bodily motion, and each bodily motion is seen as the realization of
an abstract piece of information[20]. However, such foundational definitions are rather
vague about the actual meaning of gestures. In our implementation, we commit to the
IO ontology definition simply for pragmatic reasons as the alignment with the adopted
knowledge framework was less cumbersome.

The intended meaning of a gesture can often only be understood when taking context
into account. A hand gesture indicating a stop signal, for instance, is vague and can only
be understood if it is clear to which objects and actions it refers. Another aspect is that the
detection of gestures could be wrong, but that the falsely detected gesture does not make
sense in the current context in which case it could be discarded or re-classified. This
suggests the importance of relationships between gestures and the context in which they
occur. These relationships are of primary concern for us, but they are rarely considered
in related literature about gesture ontologies or are not designed for robotics use cases.

Nevertheless, it is worth investigating to what extent existing ontologies that link
gestures and context could be adopted for robotics use-cases. To this end, we adopt the
HDGI ontology [18] as it defines a rather comprehensive model of gestures that also
includes links to device affordances and context. The ontology does however not model
interactions between agents and what is afforded to them. But this interaction is important
for robotics use-cases as robots have different capabilities to execute an action. Thus,
we rather employ a more fine-grained notion of affordance from an existing ontology
that was designed with robotics use-cases in mind [2]. We consider an affordance as the
description of a disposition and a disposition is an absolute property, it does not depend
on a context. Furthermore, the ontology defines affordances as the descriptive context
between dispositional pairs and thus can express a relation between two disposed objects.
For example, the robot is disposed to handle small-sized objects while a small-sized
object is disposed to be grasped, carried, thrown, and so on. The concepts and relations
used or defined in the proposed ontology are shown in Fig. 3.

The central notion is the Gesture concept. It is characterized as a type of task, i.e. as
a sub-concept of CommunicationTask. The notion of task is imported via the robotics
affordance ontology [2] which in turn imports the foundational ontology DOLCE+DNS
Ultralite (DUL) [6]. Following DUL, tasks describe how certain events are to be inter-
preted, executed, etc. In the case of CommunicationTask, this is done through the three
roles linking sender, receiver, and message to the task. For gestures, the role of the mes-
sage is actually taken by the event that executes the gesture, i.e. the act of performing the
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Figure 3. Ontology graph shows class definitions with Composed Gesture in the middle. Gesture set if defined
in Fig. 2, Object set is defined in Fig. 1, Hand Description in detail is on Fig. 4, Scene objects have qualities
of static properties (see Fig. 5. In our implementation, we define four easy robot tasks, see Sec. 3.2.

gesture is the message transported. Finally, we say that each gesture is defined in one or
more affordances representing some action potential in the environment. For example,
gesture grab has affordance representing picking the object.

Definition 1 A gesture is a communication task that is defined in an affordance.

An affordance further defines a task related to affordance and creates constraints for
objects taking the roles of the task. Namely, those objects need to be the host of certain
dispositions. For example, an affordance of picking up an object may refer to a task
where the picked object must be a host of the pickable disposition, and where the agent
must be the host of the can-pick capability (disposition).

The gesture concept is further decomposed into three cases: DeicticGesture,
ActionGesture, and ComposedGesture. First, a deictic gesture is a pointing gesture
used to draw the attention of the receiver to a particular object or region of interest. Sec-
ond, an action gesture refers to a task request. Finally, a composed gesture is a combina-
tion of several gestures during an episode. An instance of ComposedGesture is created
each time the gesture episode ends. In our implementation, this depends on our hand
sensor [24], which has a limited field of detection. The end of the episode is defined as
the hand disappearing from the detection area. Each gesture event gives us data about
confidence, timestamp, name of gesture which has been triggered, and potentially the
relevant selected object, on which the user wants to work.

Features of scene objects are defined as object properties. These properties are
shown in Figure 5 with relation to object type (e.g., Bowl). Properties are hand-picked
based on our needs: Sizes (SmallSize and LargeSize) based on the ability to fit inside the
PandaGripper, Color as a visual property, Sharpness property defining rounded or sharp
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Figure 4. Hand structure definition. The human can Figure 5. Small sample of ob-
have max. 2 instances of Arm with the property if it ject relations with its static prop-
is RightArm or LeftArm. Each Arm has always single erties.

Hand. One hand has always 5 fingers and each finger
has 4 finger bones (except the Thumb which got 3).

objects (this property might be used when clarifying object choice), and finally Object
types defining whether the object is a container and of which type (Liquid-container, or
Object-container). Dynamic properties are supposed to be updated in real-time to keep
the world representation up-to-date. They include current Container capacity, Accessi-
bility (disposition to be interacted, e.g. object is on top of a stack or in reach by robot’s
gripper), or if an object has been already manipulated, which can help estimate the user’s
next choice based on their preference. Geometric parameters include instant Pose value.
Perception methods might be used for some properties, e.g. get pose (in our case by
CosyPose method [13]) of the object. If no such technique is available, the logic methods
might be used, e.g. when action Pour is done, the capacity of a container changes.

5. Experience Acquisition

In this chapter, we discuss the potential approach for acquiring experience in the con-
text of gesture interpretation using ontological context. While this work is currently in
progress, we outline the steps and considerations that could be taken to acquire the neces-
sary to test the usage of our knowledge graph and the possibility to improve the context-
based gesture control system.

To acquire experience in gesture interpretation, a large dataset of human-robot in-
teractions needs to be collected. This dataset should include our defined kitchen scenar-
ios and tasks in which humans interact with the robot using described gestures. From
the interactions, the data about the user’s Task instance reference for the current context
(Dynamic properties of objects and applied gesture). The next step is to take advantage
of ontologies and scale the number of object properties.

Instantaneous object properties are written in real-time into ontology. As we dis-
cussed poses of objects [13] and other properties experimentally or by hand, e.g. current
capacity of Liquid-container. Accessibility of an object by the property, that the given
object is in a predefined boundary, and checker to estimate if no other object is detected
on top of the given object.
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The Arm instances also enable us to store raw hand movements. Based on this data
structure, we may run gesture set classification that uses collected data training and im-
proving discussed gesture recognizers.

6. Discussion and Conclusion

Representing world and gesture information as ontology enables us to define the knowl-
edge of the world in the right format with the possibility to scale its properties by size
without getting confusing. One of the ways is to generate a better embedding vector for
context-dependent action generation.

The following steps involve the validation of the proposed setup and a comparison
test of how useful is using the knowledge graph to other methods in terms of scaling, for
example, the number of properties on context-based action estimation. Last but not least,
it would be interesting to explore the assembly of context vector embeddings with auto-
matic methods. This would involve some scraping method, evaluator, and discriminator,
to evaluate if the context vector is chosen properly for a given environment.
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