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Abstract— The vision of service robots that autonomously
manipulate objects as skillfully and flexibly as humans is still
an open challenge. Findings from cognitive psychology suggest
that the human brain structures manipulation actions along
representations of contact events and their perceptually distinc-
tive sensory signals. In this paper, we investigate how to reliably
detect and classify contact events during robotic wiping actions.
We present an algorithm that learns the distinct shapes of force
measurements during contact events using multidimensional
time series shapelets. We evaluate our approach on a dataset
consisting of 460 real-world robot wiping episodes that we
collected using a table-mounted robot with a wrist-mounted
force/torque sensor. Our approach shows good performance
with 10-fold cross validation yielding 97.5% precision and
99.3% recall, and can also be used for online contact event
detection and classification.

Index Terms— Force and Tactile Sensing, Learning and
Adaptive Systems, Service Robots

I. INTRODUCTION

The service robots of the future shall manipulate objects
as skillfully and flexibly as humans. Findings from cognitive
psychology research suggest that humans achieve high ma-
nipulation competence because they mentally structure their
actions using representations of events like contact events
[1], [2], [3]. Examples of such contact events are the making
and breaking of contacts between objects involved in the
manipulation. These contact events usually serve as subgoals
for action phases that activate and adjust motor controllers,
which in turn cause the desired events. More importantly,
these contact events bring about discrete and distinct sensory
signals. The human brain exploits these distinct sensory
signals to reliably monitor the evolution of actions and, in
particular, predict the associated contact events [1], [2], [3].

Today’s service robots cannot match the manipulation
competence of humans because they lack the necessary
perceptual capabilities. One missing skill is the ability to
perceive the consequences of their actions, e.g. contact events
caused by motions. Without these perception skills, robot
programmers are struggling to develop flexible but perfor-
mant models of robotic manipulation actions. In our research,
we aim at transferring insights from cognitive psychology to
enable our robots to manipulate objects more skillfully and
flexibly, e.g. to perform robot wiping actions.
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Fig. 1: Representation of a table wiping action structured by
contact events, inspired by cognitive psychology [1], [2], [3].

We use the term robot wiping actions to refer to actions
in which robots move tools along support surfaces to manip-
ulate potential third media in between. These tasks are rich
in contact events that trigger either subsequent subactions or
error recovery. We consider robotic wiping to be a model
problem of robot manipulation.

Figure 1 depicts how we represent an action like wiping
a table using contact events. Manipulation actions are struc-
tured into subgoals that bound action phases. Action phases
activate motor controllers that cause contact events that, in
turn, support action monitoring and scheduling because they
bring about perceptually distinctive sensory signals.

In this paper, we investigate how to reliably detect and
classify contact events during robot wiping actions. We
hypothesize that contact events cause perceptually distinc-
tive force measurements and that a learning system can
reliably detect contact events using only shape information.
Supportingly, other robotics researchers reported that it is
easier to detect contact events than contact states from
force measurements because the information content of the
signals is higher directly after contact events than during
contact states [4], [5]. Finally, we assume that our robots
use stereotypical motions during wiping to ensure force
measurements with distinct shapes.



To investigate our hypothesis, we identified time series
shapelets [6] as a promising candidate to capture the distinct
shapes of force measurements during contact events and
to serve as classifiers. We gathered a dataset comprising
460 real-world robot wiping episodes using a table-mounted
robotic manipulator with a wrist-mounted force/torque (F/T)
sensor. Within the dataset, we manually identified 10 differ-
ent contact event classes, and learned a separate shapelet-
based classifier for each of them. The learned classifiers
show good performance, with 10-fold cross validation yield-
ing 97.5% precision and 99.3% recall. In this paper, we
contribute to the state of the art in robotic manipulation
in several ways: (1) We demonstrate that contact events
during robot wiping tasks cause force measurements with
distinct shapes, and that a classifier using only shape in-
formation can reliably detect these contact events. (2) We
show that multidimensional time series shapelets correctly
capture these distinct shapes. (3) We present an algorithm to
discover multidimensional time series shapelets that assumes
the individual dimensions are dependent. (4) Finally, we
present two methods for candidate pruning to greatly speed
up the algorithm’s learning phase.

II. RELATED WORK & BACKGROUND

Robotics researchers have already developed various meth-
ods to extract contact information from F/T measurements.
In early research, hidden Markov models (HMMs) were
successfully used to segment the F/T data of teleoperated
peg-in-hole tasks into subgoals [7]. However, that approach
was evaluated on a small problem set with only four contact
states. In another peg-in-hole study, contact events were
successfully recognized by applying HMMs on the frequency
components of F/T measurements [5]. In a follow-up paper,
HMM-based contact detectors were used as process monitors
for an industrial assembly task [8].

More recent studies focused on analyzing F/T data in
teleoperation or programming by demonstration (PbD) sce-
narios. During teleoperation, HMMs and Support Vector Ma-
chines (SVM) can segment force signals without considering
contact information [9]. Force measurements within a PbD
framework were successfully segmented using particle filters
constrained by contact states [10]. Another PbD study classi-
fied contact states of compliant motions using boosting [11].
Continuous force profiles during PbD have been encoded
using Gaussian Mixture Models (GMM), but that investiga-
tion did not consider any discrete contact information [12].
Neither of these approaches addresses contact event detection
and classification. When using HMMs, one cannot visually
inspect the time series captured by the model. Time series
shapelets, however, offer such visual inspection.

Time series shapelets were introduced as a promising
feature for data mining [6]. First learning algorithms focused
on 1-dimensional shapelets and combined brute-force search
with candidate abandonment to reduce runtime [6]. Since
then, other runtime optimizations have been proposed, e.g.
computation reuse [13], candidate pruning [13], [14], time
series compression [14], [15], and GPU computing [16].

Time series shapelets for multidimensional data have been
presented recently [17]. Assuming that individual time series
dimensions are independent, ensembles of 1-dimensional
shapelet-based decision trees have been shown to outperform
ensembles of n-dimensional shapelets [17]. This assumption
is not generally valid for F/T data from a single sensor.
In fact, our paper presents a shapelet-based algorithm that
assumes the dimensions of force data to be dependent.

Recently, deep learning has shown great promise in solv-
ing hard robotics problems, e.g tactile material [18] or object
classification [19], or tactile slippage detection [20]. A key
factor seems to be deep learning’s ability to learn good data
representations in an unsupervised fashion [21]. Here, we
hypothesize that shapelets are a good representation for the
distinct shapes of force signals. If this is true, a generic deep
learning algorithm will require more training data than a
shapelet-based approach to reach similar performance as it
will have to learn a good data representation first.

In our own prior work, we recently published a taxonomy
of robotic compliant manipulation tasks that focused on
the example of robot wiping actions [22]. We presented a
reasoning framework for robot wiping actions that plans wip-
ing motions using a particle-based simulation of the wiping
medium [23]. Most recently, we showed how to use haptic
perception to infer the effects of wiping motions [24]. With
this paper, we contribute to our body of research on robot
wiping actions by showing how to use multidimensional time
series shapelets to detect contact events in wiping actions.

III. METHODOLOGY
Let us briefly introduce the basic concepts and notations

that we use in the remainder of this paper:
A time series tx is a sequence of real values, and len(tx)

is its length. We denote the real value at index i as tx[i],
with the additional requirement 1 ≤ i ≤ len(tx).

A time series subsequence ux of tx is denoted by
ux ⊑l tx with l = len(ux) ≤ len(tx), and is a sequence
of consecutive values taken from tx.

A multidimensional time series t is a set of time series,
and dim(t) denotes the set of associated dimension labels.
If x ∈ dim(t) is the label of a particular dimension, we call
the corresponding time series tx. We require that ∀x, y ∈
dim(t) : len(tx) = len(ty) = len(t).

A multidimensional time series subsequence u of t
denoted by u ⊑(l,d) t, is a multidimensional time series
with l = len(u) ≤ len(t), and d = dim(u) ⊆ dim(t).
Additionally, we require that the time series subsequences
ux are generated with a consistent offset index i:

∀x ∈ dim(t), ∀j ∈ {1, .., len(ux)},
∃i ∈ {1, .., len(tx)} : tx[i+ j] = ux[j].

A multidimensional time series shapelet (MTS) S is
a triple (s, δ, c), where s denotes a multidimensional time
series, c a class, and δ a threshold. If δ is unbound, we write
(s,?,c) 1.

1For ease of readability, we will use the terms MTS and shapelet
interchangeably in the remainder of this paper.



(a) A table-mounted robot with a wrist-mounted F/T
sensor wipes a table with a sponge.

(b) Wiping over an empty table.
Events: wipe {startend }.

(c) Wiping along a fixated box.
Events: slide {leftright} {startend }).

(d) Wiping into a movable box.
Events: movable box.

(e) Wiping over a tightened screw.
Events: fixed screw.

Fig. 2: Experimental setup: Subfigure a) depicts the robot, while subfigures b) - e) show some of the contact events.

Let us briefly outline the rest of this section. First, we
describe our experimental setup and learning dataset. Then,
we show how to classify, learn, and detect contact events with
MTS. Finally, we present candidate pruning techniques.

A. Experimental Setup

Figure 2 depicts our experimental setup. It consisted
of a table-mounted 6-DOF manipulator with a F/T sensor
mounted between the end of the manipulator and an in-
dustrial parallel-jaw gripper. The robot held a soft sponge
in its gripper while performing straight-line wiping motion
on the table surface. In the depicted experimental setup, we
placed a movable object into the path of the robot. We created
different environments by placing moveable objects on the
table or rigidly attaching objects to the table using screws.

To ensure force signals with distinct shapes our robot
performed stereotypical wiping motions. All movements
started in a contact-free state above the table. First, the
gripper moved down to touch the table. Then, the robot
wiped the sponge over the table in a straight line. Across all
experiments, we produced contact forces of different maxi-
mum magnitudes (0N − 9.7N ) and trajectories of different
lengths (0.2m − 0.45m), end-effector speeds (0.46m/s −
0.55m/s), and angles between sponge front and wiping
direction (0−π/4). The experiments ended with the gripper
releasing contact and moving back to its starting position.

B. Dataset

Our training dataset D comprises 460 wiping episodes,
equaling 93min of meaningful experimental data. Each wip-
ing episode d is a triple (t, Ct, rt).
t is a multidimensional time series representing the 3-

dimensional force measurement with dim(t) = {x, y, z}
from the wrist-mounted sensor, downsampled to 25 Hz.2

We transformed all t, such that the x-axis points from the
beginning of a wiping motion to its end and that the z-axis

2In this study, we focused on obtaining good performance and fast learn-
ing times with downsampled force data, only. Future studies investigating
more or different contact events should reconsider these choices.

points towards the table surface. We use this automatic data
pre-processing to facilitate our learning problem, and can do
so because we used only straight-line wiping motions.
Ct is a list of hand-labeled contact events. Figure 2 depicts

the 8 contact event classes that we identified: wipe {startend },
movable box, fixed screw, and slide {leftright} {startend }. The
classes slide * denote events that may occur when wiping
along a fixated box on its left or right side. We also noticed
that our algorithm reliably detects long-lived events like
force {incdec}, even though they could be considered transient
contact states. force {incdec} events occur when wiping motions
are not parallel to the table plane, and contact forces slowly
but constantly increase or decrease, respectively.

For each c ∈ Ct, rt(c) is a list of hand-labeled time points
at which contact events occurred. Please note that we use
rt(c) only during the evaluation, and not during learning.

C. Classification with MTS

An MTS S = (s, δ, c) can be used as a binary classifier of
a multidimensional time series t. To this end, we calculate
the best match distance (BMD) between s and t like this:

BMD(s, t) = min
u⊑(l,d)t

l=len(s)
d=dim(s)

∑
x∈dim(s)

len(s)∑
i=1

|z(sx)[i]− z(ux)[i]|
len(s) · |dim(s)|

(1)
where z(tx) denotes the normalization of tx using z-

scores:

z(tx)[i] =

{
tx[i]−µtx

σtx
, if σtx ≥ σmin

tx[i]− µtx , otherwise
(2)

σmin is a user-specified parameter, which prevents the
amplification of noise. We estimate this parameter by using
the maximum standard deviation of subsequences in episodes
of the training set where the gripper is not touching anything.

If the BMD is below the threshold δ, t belongs to c. For
simplicity, we used the manhattan distance, but it might also
be replaced by e.g. the Euclidean distance.



It is important to apply z-normalization to both signals (sx
and ux) because it ensures that the BMD is biased towards
similarity in shape. Without it, differences in scale or offset
dominate the results.

To allow for the possibility that an event might not be
captured in all dimensions of the original measurements, the
classifier only uses a subset of all possible dimensions. To
detect a collision with a box during wiping, for instance, a
shapelet with dim(s) = {x, z} proved more reliable than
one with dim(s) = {x, y, z}.

D. Learning MTS

In this subsection we describe how we learn MTS that
capture the characteristic shapes of force measurements
during contact events. We approach this learning task as a
multi-label classification problem using the binary relevance
method [25], i.e. we train a separate binary classifier for
each contact event class. In total, our learning algorithm has
five user-specified parameters: slmax, Nmax, dmax, σmin,
and wext. We describe them when presenting the relevant
subalgorithms.

We require our learning algorithm to work with labeled
data that we can generate easily. Each label only indicates
that a contact event occurred at least once during a wiping
episode. For each episode, the learning algorithm does not
need to know when or how often a contact event occurred,
or how long the candidate shapelets should be.

Algorithm 1: Main loop of the learning algorithm.
function find shapelets(dataset D):
CLS← empty dictionary
C ← {c | (∃(t, Ct, rt) ∈ D) [c ∈ Ct]}
dims← {dim | (∃(t, Ct, rt) ∈ D) [dim ∈ dim(t)]}
SL← { slmax·i

Nmax
| i ∈ {1..Nmax}}

foreach c ∈ C, dims′ ⊆ dims, sl ∈ SL do
shapelets← candidates(D, sl, dims′, c)
foreach S ∈ shapelets do

Dnew ← features(D,S)
cls← train classifier(Dnew, S)
CLS[c]← best classifier(CLS[c], cls)

return CLS

Algorithm 1 outlines the proposed learning algorithm. For
each type of contact event in the dataset, the algorithm
searches for the best shapelet to use as a binary classifier. To
this end, it exhaustively considers all possible dimensionality
subsets and shapelet lengths to create shapelet candidates.
This search results in long computation times for a dataset of
relevant size. Hence, we devised means of candidate pruning
which we describe in subsection III-F. Regarding parameters,
slmax specifies the maximum shapelet length, and Nmax

controls how many candidate lengths will be considered.
Algorithm 2 depicts how we calculate a new training

dataset Dnew for each candidate shapelet S = (s, ?, c). To
this end, we use the decision whether an episode contains
an event of type c to binarize the original dataset D, and
employ the BMD as a feature extractor to calculate Dnew.

Algorithm 2: Feature extraction using BMD.
function features(dataset D, shapelet S = (s, ?, c)):
Dnew ← empty sequence
foreach (t, Ct, rt) ∈ D do

if c ∈ Ct then
Dnew ← append(Dnew, (BMD(s, t), 1))

else
Dnew ← append(Dnew, (BMD(s, t), 0))

return Dnew

Using the new training dataset Dnew, we complete the
new classifier by calculating the distance threshold δ for the
candidate shapelet S = (s, δ, c). To this end, we adapted the
method presented by [26] to obtain the algorithm depicted
in Algorithm 3.

Algorithm 3: Training of binary classifiers.
function train classifier(training dataset Dnew,

shapelet S = (s, ?, c)):
fc ← KDE({d | (∃(d, f) ∈ Dnew) [f = 1]})
f c ← KDE({d | (∃(d, f) ∈ Dnew) [f = 0]})
pc ← |{d | (∃(d, f) ∈ Dnew) [f = 1]}| / |Dnew|
pc ← |{d | (∃(d, f) ∈ Dnew) [f = 0]}| / |Dnew|
δ candidates← {d ∈ R | Pc(d) = 0.5}
δ ← argmax

δ′∈δ candidates
IG(Dnew, δ

′)

return (S = (s, δ, c), i = IG(Dnew, δ), e = fc(δ))

We use Gaussian kernel density estimation to calculate
fc(d) and f c(d) that denote the probability densities of a
time series t with BMD d to be of class c or not, respectively.
We then calculate the probability that a time series t is of
class c using

Pc(d) =
pcfc(d)

pcf c(d) + pcfc(d)
, d = BMD(s, t) (3)

where pc and pc denote the corresponding prior proba-
bilities. We use Pc(d) to choose a distance threshold δ at
50% as depicted in Figure 3. If both classes are not as well
separated as in this example, there might be multiple points
with probability 50%. In that case, we choose the δ with the
highest information gain.

Fig. 3: Selection of threshold δ using the probability Pc(d).



Finally, we choose the better of two candidate classifiers
in a similar fashion to selecting the best distance threshold
δ at the end of Algorithm 3: The classifier with the higher
information gain has priority. If both classifiers happen to
have the same information gain, we select the one with the
lower probability density at the respective threshold.

E. Contact Event Detection
Algorithm 4 depicts how we use a learned MTS S =

(s, δ, c) to detect contact events of type c in a multidimen-
sional time series t. Using the BMD in a moving window
approach, we calculate the intermediate time series dt,S .
Finally, we calculate the relative minima of dt,S with a
window length of len(s) to obtain the time indices of contact
events. As a result, the algorithm does not detect multiple
contact events in close proximity.

Algorithm 4: Detection of contact events using shapelets.
function detect(multidimensional time series t,

Shapelet S = (s, δ, c)):
dt,S ← empty sequence
foreach u ⊑(len(s),dim(s)) t do

dt,S ← append(dt,S ,min(δ,BMD(s, u)))
return relative minima(dt,S , len(s))

Figure 4 visualizes this algorithm with an example. The
top picture depicts the time series t, the middle plot shows
the shapelet S, that we classify with, and the bottom figure
visualizes the intermediate distance time series dt,S and the
detected time index. There is a time span from approximately
70 to 80, with a BMD lower than δ. Because we detect
contact events with the relative minima operation, only one
time index is selected.

Fig. 4: Visualization of Alg. 4 that detects contact events c in
a multidimensional time series t using MTS S = (s, δ, c)).

F. Candidate Pruning
Algorithm 5 depicts how we prune candidate shapelets to

speed up the main loop of our learning algorithm. Basically,
we employ two strategies for candidate pruning.

Firstly, we hypothesize that contact events bring about
force readings with clear extrema either in the raw measure-
ments or its derivatives. Hence, we extract multidimensional
time series subsequences that have such extrema in their
center. The window length wext that we use to calculate
the relative extrema is a user-specified parameter.

Secondly, we exploit that contact events cause force
readings with distinct shapes. To this end, we cluster the
candidate shapelets using the BMD as a distance measure,
and only use the shapelets closest to a cluster center as
candidates for learning.

Algorithm 5: Calculation of candidate shapelets.
function candidates(dataset D, shapelet length l,

dimensions dim, event class c):
tmp← empty sequence
shapelets← ∅
foreach t ∈ {t | (∃(t, Ct) ∈ D) [c ∈ Ct]} do

extrema← find relative extrema(t, dim, wext)
foreach e ∈ extrema do

tmp← append(tmp, z(subseq(t, l, dim, e)))
foreach s ∈ cluster(tmp) do

shapelets← shapelets ∪ (s, ?, l)
return shapelets

Algorithm 6 depicts how we prune candidate shapelets
using clustering. We first cluster the candidates using the
BMD as a distance measure. Importantly, we use the mean
of all multidimensional time series within a cluster as the
center of a cluster. We calculate the mean of a set of
multidimensional time series (T ) using

meanx(T )[i] =
∑
t∈T

tx[i]/|T |. (4)

Finally, we choose the 1-nearest neighbors (1-NN) of
all cluster centers as candidate shapelets because the mean
centers might not look like a real measurement at all. The
distance threshold dmax for the cluster size is the final user-
specified parameter of our learning algorithm.

Algorithm 6: Clustering to prune candidate shapelets.
function cluster(sequence of multi. time series T ,

threshold dmax):
assert((∀t ∈ T )(∃l)(∃d) [len(t) = l ∧ dim(t) = d])
centers← ∅
outs← T
while out ̸= ∅ do

ins← {t ∈ outs | [BMD(t, outs[1]) ≤ dmax]}
centers← centers ∪ {mean(ins)}
outs← {t ∈ outs | (∀u ∈ centers)

[BMD(t, u) > dmax]}
return {t ∈ T | (∃u ∈ centers) [t = 1-NN(u, T )]}

Because we use the mean of a set of inliers as cluster
centers, we avoid using candidates that are close to the border



of a cluster. The authors of [14] presented a clustering-
based pruning technique that faced such a problem because
it seeded cluster centers with randomly chosen samples.

IV. EVALUATION

We evaluated our method on the dataset described in III-
B. For our experiments we used a PC with an Intel 4.0 GHz
CPU and 16GB main memory. To ease reproducibility, we
released our source code and evaluation dataset at github.
com/code-iai/iai_shapelets, branch: RAL17.

A. Contact Event Detection

As every learned MTS constitutes a single-label classifier,
we evaluated contact event detection for one label at a time.
Given the list of predicted pt(c) and real events rt(c) for
event class c and time series t, we define the list of correctly
predicted events TP (t, c) as described in Algorithm 7.

Algorithm 7: Calculation of true positives TP .
function TP(multi. time series t, event class c):
TPs← empty dictionary
sl← lookup shapelet length(c)
foreach r′t ∈ rt(c) do

p′t ← argmin
pt∈pt(c)

|pt − r′t|

if |p′t − r′t| < sl and |p′t − r′t| < |p′t − TPs[p′t]| then
TPs[p′t]← r′t

return |TPs|

Using TP (t, c), we calculate the false positives FP (t, c),
false negatives FN(t, c) and true negatives TN(t, c) as

FP (t, c) = pt(c)− TP (t, c) (5)
FN(t, c) = rt(c)− TP (t, c) (6)
TN(t, c) = len(t)− rt(c)− FP (t, c). (7)

We define true negatives like this because contact events
can potentially occur at every point in a time series. Hence,
standard accuracy is an unfitting evaluation metric for our
domain. Instead, we use precision and recall that yield more
meaningful measures. Consider a dummy classifier that never
predicts any event at all. It would have an accuracy of almost
100%, but an undefined precision and recall of 0%.

precision(D, c) =

∑
t∈D

TP (t, c)∑
t∈D

(TP (t, c) + FP (t, c))
(8)

recall(D, c) =

∑
t∈D

TP (t, c)∑
t∈D

(TP (t, c) + FN(t, c))
(9)

Table I depicts average precision, recall, and time dif-
ferences between the labeled time points and the center of
the predicted shapelets for 10-fold cross validation. Average
precision and recall are high with 97.5% and 99.3%, respec-
tively. In fact, only the precision of event class slide left end
is low with 85.7%. For the average time difference between

label number prec recall ∆time [s]
wipe start 370 0.966 1.0 0.26
wipe end 360 0.994 1.0 0.122
force inc 30 1.0 1.0 0.696
force dec 30 1.0 1.0 0.452

slide left start 30 0.935 0.967 0.132
slide left end 30 0.857 1.0 0.103

slide right start 30 1.0 1.0 0.0653
slide right end 30 1.0 1.0 0.247
movable box 70 1.0 0.986 0.0603
fixed screw 160 1.0 0.981 0.0555

average - 0.975 0.993 0.219

TABLE I: Results from 10 fold cross validation. dmax = .5,
σmin = 0.325, wext = 25, Nmax = 3, slmax = 50.

labeled and predicted contact events we report 0.219s, which
is remarkably good because the learning algorithm does
not use the time points of labeled contact events. force inc
and force dec show the highest time differences, presumably
because they resemble transient contact states for which
exact time points are harder to determine.

Figure 5 depicts the extracted shapelets when learning
from the entire dataset. Regarding wipe start, the algorithm
extracted a time series which exhibits an increase in force
along −z. Intuitively, this makes sense because the z-axis of
the measurement frame points towards the wiping surface.
In comparison, wipe end looks complementary. However,
wipe end contains an additional force decrease along −x that
makes the shapelet more specific. force inc is also interesting
because it is very long and contains the end of a wipe.
Anecdotally, wipe end can be detected within force inc.

B. Candidate Pruning

We evaluated our candidate pruning approaches by com-
paring the learning times and numbers of shapelet candidates
for all possible combinations of pruning techniques. Without
pruning, we were forced to train with only 10% of our
dataset. Using more data, the algorithm hit the working
memory limit during training. We report our results in Table
II, with Subtables IIa and IIb depicting our findings when
using 10% or 90% of our data for training, respectively. To
ensure consistency, we calculated the results of each subtable
row using the same training and test datasets.

Subtable IIa shows that both pruning techniques con-
siderably reduce the number of candidates and runtime.
Combining both techniques reduces computations even more,
while precision and recall are high for all tested scenarios.
Please note that we ensured that each contact event class was
part of at least 3 episodes of the training set.

Subtable IIb confirms the findings from Subtable IIa: Both
pruning techniques reduce the number of candidates, while
their combination prunes even more candidates. The number
of candidates after clustering are roughly the same for both
experiments. Hence, we conclude that the clustering reliably
detects the MTS that are associated with the individual
contact events. Unfortunately, the learning algorithm did not
finish for the non-pruning and extrema-only cases.

github.com/code-iai/iai_shapelets
github.com/code-iai/iai_shapelets


Fig. 6: Influence of the learning parameters on average precision, recall and training time when using 10-fold cross validation.
For each subfigure, the fixed parameters were set to dmax = .5, σmin = .4, Nmax = 3, wext = 25, slmax = 50.

Fig. 5: The shapelets for each event, if the whole dataset is
used for training. dmax = .5, σmin = 0.325, Nmax = 3,
wext = 25, slmax = 50.

C. Learning Parameters

Fig. 6 depicts the influence of the learning algorithm’s
parameters on average precision, recall and training time
when using 10-fold cross validation. For each subfigure, we
have fixed 4 of the 5 parameters.

Most parameters are fairly easy to tune. There is clear a
trade-off between training time and performance. Only σmin

and slmax warrant a brief discussion. Sensor noise is prop-
erly filtered out for σmin ∈ [0.3, 0.7], leading to low training
times and good performance. Choosing slmax ∈ [40, 70]
ensures short and long shapelet candidates that properly
capture all event classes, otherwise performance suffers.

V. DISCUSSION

Let us briefly discuss advantages and limitations of the
proposed approach, starting with the advantages.

Our proposed algorithm simultaneously detects and clas-
sifies contact events during wiping actions. Furthermore, our

pruning tech. |S| left runtime [s] avg prec avg recall
( ) extrema 100% 736.418 .932 .967
( ) cluster 641,361
(x) extrema 10.9% 90.106 .926 .967
( ) cluster 69,895
( ) extrema .418% 7.624 .984 .998
(x) cluster 2,678
(x) extrema .264% 3.385 .988 .965
(x) cluster 1,695

(a) 10% train, 90% test split.
pruning tech. |S| left runtime [s] avg prec avg recall
( ) extrema 100% n/a n/a n/a
( ) cluster 5,788,041
(x) extrema 11.1% approx. n/a n/a
( ) cluster 640,171 4000-5000
( ) extrema .05% 85.926 .957 1.0
(x) cluster 2,893
(x) extrema .0342% 27.737 1.0 .967
(x) cluster 1,982

(b) 90% train, 10% test split.

TABLE II: Evaluation of the pruning techniques. All rows
of the same table have used the same training and test set.
dmax = .5, σmin = .4, Nmax = 3, wext = 25, slmax = 50.

learning algorithm is able to discover perceptually distinctive
and discriminative shapelets in much longer force measure-
ments even though given labels neither contain any timing
information nor number of occurences. As discussed in [27],
most literature on time series classification assumes that the
start and end points of patterns of interest can be correctly
identified, both during the training and later deployment. Our
approach does not make this assumption. Additionally, the
discovered shapelets can be visually inspected and intuitively
analyzed. This combination of properties makes the algo-
rithm easy to use. Finally, the algorithm can also be used for
online event detection.

Of course, the algorithm’s performance relies on having a
good training dataset. In particular, we encountered problems
with datasets that did not allow a clear separation of two
co-occurring event types, e.g. wipe start and wipe end that
always appeared together. However, just splitting a single
recording in half and adding both to the dataset fixed the
issue. In fact, we observed that the performance for one
type of event improved when adding new event types that
look similar to or contain that event type, e.g. force inc



and wipe end. As a result, we believe that the algorithm
scales rather well with increasing numbers of event types
and dataset sizes. Unfortunately, long shapelets lead to both
longer delays in online detection and increased temporal
errors. Hence, future work has to investigate whether the cur-
rent algorithm is sufficient for reactive control. Potentially,
users have to introduce a bias towards shorter shapelets or
reduce slmax. Finally, the algorithm’s learning times increase
exponentially with the number of measurement dimensions.
Hence, more optimizations will be required when applying
it to time series data with much more than 3 dimensions3.

Several important research questions are outside of the
scope of this paper and remain as future work. While
we focused on straight-line motions, certain wiping tasks
require curved motions, e.g. cleaning the inside of a pot. A
possible approach could be to transform the instantaneous
force measurements using the known current end-effector
velocity to emulate the readings of a straight-line motion.
Also, we demonstrated the algorithms capability to cope
with varying end-effector velocities only for a small velocity
range. To scale to broader variations, one could use dynamic
time warping or shapelet down- or upsampling, respectively.
Finally, we did not investigate how shapelets cope with
changing friction properties. Our intuition is that a database
with sets of shapelets for each contact event could address
this problem, while its design is an interesting research topic.

VI. CONCLUSION

In this paper, we presented an algorithm that reliably
detects and classifies contact events during robotic wiping
actions. Our approach uses MTS to discover and capture
the distinct shapes of force measurements caused by contact
events. To evaluate our algorithm, we gathered a large dataset
of real-world robotic wiping episodes, for which the algo-
rithm yielded good detection and classification performance.
Our results showed that MTS can capture the distinct shapes
of force measurements, and that MTS can reliably detect and
classify contact events during robotic wiping actions. As an-
other contribution, we presented two methods for candidate
pruning that greatly improved the speed of learning.

We believe that the presented MTS-based algorithm can
be a key component of a haptic perception system for mobile
manipulation, and hope that it helps to bring about the service
robots of the future that perceive their environments and the
consequences of their actions.
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