
2025 ©IEEE. Personal use of this material is permitted. Per-
mission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers 
or lists, or reuse of any copyrighted component of this work 
in other works.



Towards Autonomous Verification: Integrating Cognitive AI and
Semantic Digital Twins in Medical Robotics
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Abstract— In medical laboratory environments, where pre-
cision and safety are critical, the deployment of autonomous
robots requires not only accurate object manipulation but also
the ability to verify task success to comply with regulatory
requirements. This paper introduces a novel imagination-
enabled perception framework that integrates cognitive AI
with semantic digital twins to allow medical robots to sim-
ulate task outcomes, compare them with real-world results,
and autonomously verify the success of their actions. Our
approach addresses challenges related to handling small and
transparent objects commonly found in sterility testing kits
and other related consumables. By enhancing the RoboKudo
perception system with parthood-based reasoning, we enable
more accurate task verification through focused attention on
object subparts. Experiments show that our system significantly
improves performance compared to traditional object-centric
methods, increasing accuracy in complex environments without
the need for extensive retraining. This work demonstrates a
novel concept in making robotic systems more adaptable and
reliable for critical tasks in medical laboratories.

I. INTRODUCTION

In recent years, the integration of robotic systems into
medical laboratory settings has gained significant attention
due to the potential for increased efficiency, precision, and
safety in tasks that are often repetitive and prone to human
error. However, the successful deployment of such systems
in critical environments, such as sterility testing processes,
necessitates not only the ability to perform complex manip-
ulation tasks but also the capability to verify the success of
these tasks autonomously. A key challenge in this domain
is ensuring that robots can accurately assess whether their
actions have achieved the desired effect, especially when
dealing with delicate and transparent objects, such as those
found in commonly used laboratory testing kits.

To overcome these challenges, we introduce a novel frame-
work that extends imagination-enabled robot perception[10]
specifically for the complex demands of medical robotics,
enabling robots to autonomously hypothesize, simulate, and
verify task outcomes in real-time. By simulating the post-
action environment within a semantic digital twin—a highly
detailed virtual replica of the real-world scenario equipped
with semantic knowledge—the robot can compare this hy-
pothesized state with the actual outcome observed through its
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sensors. This capability enables the system to autonomously
verify task completion or identify the need for corrective
actions, which is a crucial requirement for flexible robotic
systems to meet regulatory standards where correct task
execution must be proven.

Our work is inspired by the principles outlined in [17]
which emphasizes the importance of cognitive AI systems
that can reason about their actions and verify their outcomes.
The work define five core domains: Functionality, Physics,
Intent, Causality, and Utility (FPICU). These domains are
key to enabling AI systems to reason autonomously and
verify task success. Understanding the functional properties
of objects helps the system predict and validate the outcomes
of interactions, especially with transparent or small objects
found in medical labs. Causal reasoning allows the AI to
predict and verify the physical results of actions, ensuring
tasks like placing or clamping are correctly performed. Addi-
tionally, intuitive physics helps the system to reason about the
interactions of the robot and objects within the environment.
Applying these principles to robotic systems in medical labs
is crucial, as it enables creating robots that not only perform
tasks but also understand their actions, hypothesize intended
effects, and autonomously confirm successful task execution.

In the demanding environment of sterility testing, where
tasks often involve transparent and small objects like those
in the Steritest™ NEO kit(see Fig. 1), traditional vision
systems face significant challenges. Accurately representing
such objects in digital twin simulations is challenging, com-
plicating real-world and hypothesized imagery comparisons.
Our approach addresses this by incorporating geometric and
material knowledge, improving similarity detection between
expected and observed states.

Furthermore, we leverage the flexibility and modularity of
the RoboKudo framework[9], which allows for the dynamic
adaptation of perception pipelines to the specific demands
of different tasks and the usage of multiple vision experts.
By integrating object knowledge and task-specific features
into this framework, we can simplify the perception process
while maintaining high verification accuracy. This approach
not only streamlines the process but also reduces the need
for retraining vision models for each new task, making
the system more versatile and easier to deploy in various
laboratory scenarios.

Our key contributions are as follows:
1) We provide the concept for imagination-enabled medi-

cal robot perception, outlining the key mechanisms and
models for task success verification.

2) To tackle the specific requirements of lab items, we



propose the introduction of object knowledge and
parthood relations to provide an attention mechanism
of a visual similarity process.

3) We describe the required changes to a robot perception
system to extend the typically object-centric analysis
towards a more generic analysis scheme, which in-
cludes the analysis of subparts of objects in combi-
nation with semantic annotations.

II. RELATED WORK

Fig. 1. Photo of key consumables in the Steritest™ NEO kit for sterility
testing. It is used as the main example throughout our studies. The red and
yellow cap can be attached to the canister (middle) to seal outlets on the
top and the bottom. The grey needle on the left is shipped with a protective
blue cap.

Robotics in medical and laboratory environments has seen
significant growth in recent years, particularly in the automa-
tion of repetitive and precise tasks such as drug preparation,
sample handling, and sterility testing. Notable advancements
have been made in automating processes that traditionally
required human intervention, with a focus on increasing
efficiency and ensuring sterility in controlled environments.

Medical robots, such as those designed for the automation
of repetitive tasks, often operate in highly structured envi-
ronments where precision is crucial for tasks like sample
pipetting, sorting, and sealing. Systems like Tecan’s Freedom
EVO [2] and Beckman Coulter’s Biomek series [7] are
widely used for automating laboratory workflows, yet they
are limited to rigid, pre-programmed tasks that rely on
specialized hardware and offer little flexibility for adaptation.
Introducing more flexible robotic systems is a promising
solution to solve more repetitive task and increase the overall
level of automation in laboratories[15].

In life science laboratories, robotics have been widely
deployed for repetitive tasks such as liquid handling, sample
transport, and high-throughput screening. Wolf and Széll
review existing technologies, such as XYZ gantry robots for
liquid handling and selective compliance articulated robots
for sample transportation, which are commonly employed
in pharmaceutical research and development[14]. Although
mature, these systems are rigid, excelling at specific tasks

but lacking the flexibility to handle dynamic environments
or adapt to new processes. Studies like [1] and [13] highlight
how current lab automation boosts productivity but still
requires significant human intervention due to specialized
hardware and the need for robust task completion verification
to meet regulatory standards.

In the specific context of sterility testing, the Steritest™
NEO kit (see Figure 1) represents an example, where manual
steps, such as placing caps or securing seals, still demand
human involvement due to the challenges associated with
manipulating small, flexible and transparent components.
Research in medical robotics has yet to fully address the
need for systems capable of not only performing these ma-
nipulations but also autonomously verifying their successful
execution to fulfill regulatory requirements.

The importance of precision and minimizing human error
is further emphasized by Zaninotto and Plebani in [16], who
explored the role of automation in hospital laboratories. They
stress that automation not only ensures higher accuracy but
also reduces human error in critical diagnostic processes.
Mencacci et al. also noted that automation significantly
decreases human involvement, thereby enhancing safety and
efficiency in laboratory workflows[11]. However, the in-
herent limitations of these systems, primarily the lack of
cognitive capabilities, still necessitate human intervention for
complex or unpredictable tasks.

The need for cognitive robotics arises from the short-
comings of current systems, which are typically limited to
task-specific applications. As noted in [15], many existing
robotic solutions are highly focused on performing a singular
task, lacking the flexibility and adaptability to manage di-
verse workflows autonomously. Cognitive robotics—systems
that can reason, adapt, and make decisions based on the
task environment—are essential to overcome this challenge.
These systems can dynamically modify their behavior based
on real-time data, which is especially crucial in medical or
laboratory settings where variability is common.

An excellent example of this evolution towards cognitive
robotics is the integration of AI into automated experi-
mentation. Burger et al. [4] demonstrated a mobile robotic
chemist that autonomously optimized photocatalyst formu-
lations, conducting nearly 700 experiments in eight days.
Using Bayesian optimization, the system efficiently selected
chemical combinations for hydrogen production, showcasing
AI and robotics’ ability to handle complex decision-making
tasks traditionally dependent on human expertise.

While the system presented in [4] is primarily focused on
chemical research, the underlying principles of autonomous
operation, adaptability, and hypothesis testing are applicable
to the medical domain as well. Such advancements can
be translated into healthcare and laboratory automation,
enabling robots to perform more complex tasks, adapt to
changing conditions, and reduce the burden on human oper-
ators. This shift from task-specific automation to cognitive,
adaptable systems is critical for advancing the field.

In conclusion, the current generation of robotics has made
significant strides in automating repetitive tasks in medical



and laboratory settings, but limitations remain due to their
lack of cognitive adaptability. The future lies in integrating
AI and cognitive capabilities, as seen in the mobile robotic
chemist, to enable robots to not only perform tasks but also
autonomously hypothesize, adapt, and optimize their actions.
The novel approach of integrating imagination-enabled robot
perception, as proposed in this paper, represents an advance-
ment in this direction, providing robots with the ability to
predict outcomes and adjust autonomously, making them
better suited for life-critical applications.

III. SYSTEM OVERVIEW

To create a system within medical robotics that has a
,,mind’s eye” mechanism to imagine how task outcomes shall
look like, a comprehensive architecture composed of multiple
interacting components is necessary. This system (see Fig. 2)
operates by simulating the target environment and allowing
the robot to form an internal hypothesis of the expected
outcome for manipulation tasks, which is then compared to
the actual observed state in the real world (RW). This chapter
outlines the essential components and mechanisms that must
be developed and integrated to enable this process, as well
as the challenges involved.

Fig. 2. High-level system overview depicting the interaction of the key
components of an imagination-enabled robotic system. A digital twin is
continuously maintained by the robot control program and the perception
system of the robotic system to enable task success verification.

A. Semantic Digital Twin: A High-Fidelity Simulation Envi-
ronment

At the core of this approach is the semantic digital twin
of the selected use case. It is a high-fidelity simulation that
mirrors the RW environment in terms of both objects and
their physical properties. The digital twin is not limited to the
robot itself but includes all relevant elements within the target
environment, such as incubators, work surfaces, fixtures, and
medical devices like pumps. The goal is to create a highly
realistic simulation that can support imagination-enabled

reasoning about the process steps the robot must perform.
This simulation will be denoted as artificial world (AW).

Unlike traditional low-poly or low-fidelity simulators typ-
ically used in robotics and automation, which prioritize
simplicity over detail, our simulation environment must
support realistic rendering of objects. This is achievable
due to advancements in the availability of high-quality
CAD-models and modern simulation technologies that allow
detailed material properties, geometries and behaviors to
be replicated in the virtual environment. For example, the
system must accurately simulate both the visual appearance
and the physical behavior of objects, such as the movement
of liquid in a container or the attachment of a cap to a
canister.

The challenge here lies in the balance between realism
and computational efficiency. Photorealistic environments
and highly detailed object simulations are computationally
expensive, especially when these simulations must run in
real-time and interact dynamically with the robot’s actions.

B. Actable Simulations: Dynamic and Real-Time Interaction

For the imagination process to function, the digital twin
must be actable, meaning it can replicate the dynamics of the
robot’s actions in the RW. The robot arm movements, gripper
interactions, and physical manipulations of objects must be
mirrored in the AW in real-time. This includes processes such
as picking and placing objects or performing more complex
manipulations like attaching caps to containers. To achieve
this, the simulation must support physics simulation and real-
time capabilities to ensure the robot’s imagined actions in the
AW can be kept synchronous with its real-world operations.

One of the primary challenges in achieving real-time
synchronization between the RW and the AW is maintaining
the fidelity of physics-based interactions while ensuring the
simulation remains responsive. For example, when a robot
attempts to grasp an object in the RW, the same action
must be instantly replicated in the AW, with accurate physics
governing the interaction between the gripper and the object.
As consumable items in the targeted use case are also
regulary attached and removed from each other (e.g. blue
cap and needle; red cap and canister), the simulation must
support the handling of object compositions efficiently.

C. Perception System: Bridging the Gap Between RW and
AW

An essential component of the system is the perception
system, which connects the robot’s vision in the RW with its
imagistic reasoning counterpart in the AW. The robot’s per-
ception system, using standard computer vision techniques
such as object detection and pose estimation, identifies
objects in the RW and then synchronizes the detections of the
RW with the AW. This ensures that the digital twin remains
an accurate reflection of the real-world environment at any
given time.

Once the perception system has established the current
state of the RW, it can request renderings from virtual sensors
placed in identical positions within the AW. These renderings



allow the system to compare the expected visual appearance
of objects in the AW with their observed appearance in the
RW. This comparison is critical for determining whether the
robot’s actions have produced the intended outcomes.

For instance, if the robot attempts to place a red cap on a
canister but fails to grasp the cap, the system may not detect
this failure due to noisy tactile feedback. In the AW, the
system simulates the attachment of the red cap as intended,
resulting in the cap being placed on the canister. In contrast,
in the RW, the same motion is executed, but the initial failure
to grasp the cap means that no cap is actually attached.
When comparing the outcomes in both environments after
the action is performed, the canister in the RW will lack the
red cap, while in the AW, the cap is expected to be present.
To identify this discrepancy, the system should report that
the expected outcome was not achieved, signaling a failure
in the grasping and placement of the red cap.

D. Key System Components

To achieve the aforementioned functionality, the system
integrates several key components:

• Robot Operating System(ROS) plays a critical role in
managing the robot’s operations, enabling the commu-
nication of its state to various process nodes, including
the simulation environment. ROS provides real-time
data exchange and standardized description formats,
allowing the AW to replicate the robot’s structure
and movements accurately. Its broad compatibility with
different robot arms and effectors makes it a flexible
platform for developing a wide range of complex robotic
applications.

• A high-fidelity simulation environment which is based
on Unreal Engine, a feature-rich game engine known for
its ability to produce photorealistic renderings and sim-
ulate complex physics. While Unreal Engine alone lacks
specific capabilities for robotics simulation, the use of
URoboSim[12] extends its functionality. URoboSim al-
lows the import and simulation of robots using standard
ROS formats, enabling seamless integration between the
virtual and real worlds. It also provides the ability to
simulate the dynamics of non-robotic elements, such
as lab equipment, ensuring that the digital twin is a
comprehensive replica of the RW environment.

• The final component, is a perception system that pro-
vides a strong basis for real world computer vision tasks
but is also able to exploit the imagery generated by
the virtual sensor in the AW. For this part, we use
the RoboKudo perception system. It was designed to
support imagistic reasoning fed by game engine belief
states. We extended the system to support symbolic and
geometric knowledge about objects which can be used
to visually analyze subparts of the objects depending on
the task-context. In the example above where the robot
fails to attach a red cap to a canister, we can for example
ask RoboKudo to focus task success verification only on
the region in the image where the red cap is supposed
to be put. By instructing the system where the attention

shall be directed to, we were able to increase the
robustness of the visual comparison for task success
estimation as demonstrated in our evaluation.

While RoboKudo has been applied in mobile manipulation
tasks previously, our work introduces several key ideas that
elevate its applicability to the medical domain. The primary
novelty lies in the integration of imagistic reasoning within
a digital twin environment for task verification, especially
in challenging scenarios with small, transparent objects.
Unlike existing systems that rely on static object detection,
our approach dynamically hypothesizes task outcomes and
visually compares predicted and actual results in real time,
leveraging detailed object knowledge and intuitive physics
reasoning. This combination allows for improved detec-
tion of task success, addressing the limitations of earlier
works(see Section V), which often fail to capture subtle, task-
specific details or rely solely on predefined parameters. By
incorporating parthood reasoning, our system surpasses stan-
dard object-centric methods, making it adaptable to complex,
composite objects commonly found in medical labs.

IV. IMAGINATION-ENABLED PERCEPTION PROCESS

After providing an high-level overview of the proposed
system, this section details the practical implementation of
our imagination-enabled medical robot perception system.
By leveraging the RoboKudo perception framework and an
Unreal Engine-based semantic digital twin, we integrate real-
world actions with a high-fidelity simulation environment
(i.e. AW) to enable autonomous verification of task success.
Figure 3 illustrates the comparison process and the interplay
of AW, RW and the perception system.

A. Artificial World

The first stage in implementing the system is the creation
of the AW using Unreal Engine as the simulation platform.
To achieve real-time synchronization with the robot operating
in the RW, we employed the following components:

We begin by loading a URDF of the robot’s kinematic
structure into Unreal Engine, enabled by URoboSim. URo-
boSim interfaces with ROS to replicate the robot’s joint
movements in real-time. By reading the joint states from
ROS topics, the robot’s exact movements in the RW are
mirrored in the AW, ensuring that manipulation tasks are
synchronized between both environments. This ensures that
every action performed by the robot in the RW has a
corresponding simulation in the AW, allowing for precise
hypothesis generation and outcome comparison.

Relevant objects used in the robot’s tasks are integrated
into the simulation as CAD models. Simple objects are
loaded as standard meshes, while more complex objects, such
as a needle with a detachable needle cap, are implemented
using Unreal Engine Blueprints. This approach enables the
AW to support dynamic object interactions during the task
execution. Additionally, these object models are enhanced
with physical properties, ensuring that simulated interactions,
such as picking, placing, or assembling components, reflect
their real-world counterparts accurately.



Fig. 3. Illustration of the imagination-enabled task success verification. Operations performed in the Real World (RW) are continuously replicated into
a simulation environment called Artificial World(AW). It acts as a digital twin which allows the robot to create a visual expectation of the current world
state. Actions of the robot as well as perception beliefs (e.g. object detections) are synchronized during task exection to maintain a world model which
can be rendered by a virtual sensor. These renderings as well as the images from the RW camera can be compared for visual similarity before or after
manipulation actions. The system can also guide the attention if necessary, for example when expected changes in the image (e.g. ,,Is the red cap on the
canister?”) only effect a small region in the image space of the affected object. Ultimately, the visual comparison between the RW camera images and the
rendered expectation can be used to verify the success of the intended action.

By combining real-time synchronization of robot move-
ments with detailed object modeling, the AW provides a
fully actable simulation that allows the robot to generate
hypotheses about the expected outcomes of its actions.

B. Perception system integration

The next critical step in the system implementation is in-
tegrating the perception pipeline with RoboKudo. It realizes
the interpretation of real-world data and its synchronization
with the AW. RoboKudo is responsible for two key functions:

1) Processing Real-World Perception: RoboKudo accepts
task-specific perception queries, such as identifying canisters
or verifying the attachment of a cap. It processes real-
world camera images through a set of Annotators—modular
experts within the framework. These Annotators generate
ObjectHypotheses, which identify potential objects in the
scene, and additional object-related information (called An-
notations) such as shape, color, and class. This perception
data is continuously updated in the system’s belief state,
forming a real-time understanding of the objects present
and their attributes. By tracking changes in object states
across frames, RoboKudo ensures that the RW representation
remains consistent with the robot’s ongoing actions.

2) Synchronizing with the AW: The perception belief state
generated in the RW is used to keep the AW representation
up-to-date. Whenever new objects are detected or object
properties change (e.g., position, orientation), RoboKudo
sends the necessary updates to the AW. Following these
updates, the system requests a rendering of the AW to
generate an image of the hypothesized outcome of the robot’s

actions. This image serves as the expected result of the task,
which will be compared against RW observations. Internally,
RoboKudo represents objects in the AW similar to the ones
in the RW, making it possible to apply the same Annotators
to both types of imagery to get semantic descriptions.

C. Generalized Visual Analysis Using Analyzables

During the system’s early testing, we identified limitations
in visual comparisons between the RW and AW for tasks
involving small-scale visual changes. For example, attaching
a small red cap to a canister often led to minimal changes in
pixel space, making it difficult to verify task success through
standard object-level analysis. To overcome this, we extended
the RoboKudo framework with the concept of Analyzables.

Analyzables generalize the system’s analysis capabilities
by allowing it to focus on both whole objects and their sub-
parts. Using the Parthood concept from the SOMA Ontology
[3], the system can now use background knowledge to
break down objects into smaller, meaningful components or
features. For instance, in the red cap attachment scenario, the
system isolates the region of interest (ROI) where the red cap
is expected to be placed on the canister. This provides a more
focused basis for visual analysis, enabling more accurate
verification of task success.

RoboKudo’s Annotators were extended to operate on
the new Analyzable superclass, which comprises Objec-
tHypotheses (representing entire objects) and ParthoodHy-
potheses (representing parts of objects). For example, an
Annotator tasked with verifying the placement of a red cap
now only analyzes the specific region where the cap should



be, rather than attempting a global image comparison. This
more granular approach simplifies the task of verifying subtle
changes in the scene, such as detecting whether the red cap
is properly attached to the canister.

D. Visual Similarity and Task Success Verification

The final step in the system’s operation is the actual task
verification process, which involves comparing the rendered
image from the AW with the RW camera image. These are
the key steps in this process (as illustrated in Fig 3):

1) Rendering the expected outcome: After updating the
AW to reflect the robot’s manipulation actions, a simulated
image of the expected post-task environment is generated.
This image is based on the updated state of the objects and
robot in the AW.

2) ROI extraction: The system extracts ROIs from both
the RW and AW images, focusing on areas relevant to the
task, such as the area where the red cap is expected to
be attached. This targeted comparison allows the system
to ignore irrelevant parts of the image and concentrate on
verifying the specific elements affected by the robot’s action.

3) Verifying task success: The ROIs from the RW and
AW are then compared using both pixel-wise and semantic
analysis. If the expected outcome, such as the red cap
being correctly placed, matches the observed result in the
RW, the system concludes that the task was successful. If
discrepancies are detected, the system identifies the task as
incomplete or erroneous and triggers corrective actions.

V. EXPERIMENTS

Existing lab automation systems do not integrate cognitive
reasoning or imagistic perception. Our approach uniquely
enables robots to conduct imagistic reasoning about task
outcomes to verify task success. In our experiments, we
studied different approaches for visual task success estima-
tion. We were investigating which methods can deal best
with the challenges that lie in the simulation of transparent
objects such as the canister, where accurate renderings are the
hardest to achieve. In contrast to the work in [10] where only
big, textured objects have been used, we will provide results
towards the imagination-based comparison of transparent and
small objects.

In our study, we investigated the performance of three
categories of methods (abbreviations for the methods as
shown in Fig.4 are put in parentheses): 1) Neural-Network-
based Appearance Similarity based on several state of the
art networks: ConvNeXt(CNX)[8], Resnet50(Res)[6], DINO-
ViT(ViT)[5]. 2) A color histogram similarity estimation
(His). 3) Our semantic analysis method called SemanticCom-
parisonEquality(SCE) which compares Annotations provided
by the RoboKudo system for the targeted subparts of the
comparison process. The results are further divided into
comparison of the ROIs showing the full object (F) and only
the targeted subpart (PH) based on ParthoodHypotheses. All
methods have been implemented as individual Annotators in
the RoboKudo framework.

Fig. 4. Results of our similarity estimation experiments which verify the
visual presence of indicators for task success. We have conducted two ex-
periments on Canister-related experiments for the succcessful/unsuccessful
attachment of the red cap and yellow cap as well as successful/unsuccesful
removal of the blue needle cap on the needle (ref. to Figure 1 for a picture
of these objects).

The experiment was done on three typical manipulation
actions for the targeted sterility testing process: Attaching a
red cap to the canister on the top, attaching a yellow cap to
the canister bottom and removing the blue needle cap from
the needle. 1713 images with varying conditions have been
analyzed. We can observe in the combined results (see Fig.4)
that on average, the NN-based similarity estimation and SCE
method performed better than the histogram-based approach.
When further dividing the results, we can observe that the ad-
dition of the ParthoodHypothesis as discussed in Section IV
led to an improved performance in the -PH Results because
of the focus on the relevant regions. The best performing
method was SCE, which compares the semantic annotations
provided by RoboKudo on the ParthoodHypotheses of AW
and RW. It was able to generalize well between the different
use cases by benefiting from the provided knowledge about
the objects and the perception task.

VI. CONCLUSION

This paper presents a novel framework for imagination-
enabled medical robotic perception, enhancing task verifica-
tion in laboratories. By integrating cognitive AI with a se-
mantic digital twin, the system autonomously simulates and
verifies tasks, effectively handling the challenges posed by
transparent and flexible objects. Experiments demonstrated
that focusing on object subparts significantly improves veri-
fication accuracy, particularly in complex lab environments.

The system is designed to be modular, scalable, and adapt-
able to various applications beyond sterility testing. Through
the RoboKudo framework, new tasks and object classes can
be incorporated by updating models and task-specific anno-
tators, allowing adaptation to different laboratory processes.
Future work will focus on extending the system to more
complex tasks like liquid handling and drug preparation. Its
scalability ensures it can be deployed across a wide range of
robotic arms, lab equipment, and environments, making it a
flexible solution for diverse laboratory automation needs.
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