
2024 ©IEEE. Personal use of this material is permitted. Per-
mission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work
in other works.

An Open and Flexible Robot Perception Framework
for Mobile Manipulation Tasks

Patrick Mania1, Simon Stelter1, Gayane Kazhoyan1 and Michael Beetz1

Abstract— Over the last years, powerful methods for solving
specific perception problems such as object detection, pose
estimation or scene understanding have been developed. While
performing mobile manipulation actions, a robot’s perception
framework needs to execute a series of these methods in
a specific sequence each time it receives a new perception
task. Generating proficient combinations of vision methods to
solve individual perception tasks remains a challenge, as the
combination depends on the requirements of the task and the
capabilities of the robot’s hardware.

In this paper, we propose RoboKudo, an open-source
knowledge-enabled perception framework that leverages the
strengths of the Unstructured Information Management (UIM)
principle and the flexibility of Behavior Trees to model task-
specific perception processes. The framework can combine
state-of-the-art computer vision methods to satisfy the require-
ments of each perception task and scales to different robot
platforms. The generality and effectiveness of the framework
are evaluated in real world experiments where it solves various
perception tasks in the context of mobile manipulation actions
in a household domain. Code and additional material are avail-
able at https://robokudo.ai.uni-bremen.de/rkop.

I. INTRODUCTION

Introducing service robots into people’s homes presently
still requires much research, as the robots are not yet
competent enough to carry out mobile manipulation tasks
robustly in household domains. One of the main challenges
is solving the various perception tasks that are encountered in
such domains, including one-shot perception and continuous
tracking, recognizing various types of objects and humans,
estimating object poses, etc. Consider, for example, the task
of preparing a bowl of breakfast cereal. In order to fetch the
milk from the fridge, the robot has to first detect a suitable
handle on the fridge door to open it. Afterwards, it can use an
object detection model to find the milk. If different variants
of milk are present, e.g., lactose free and whole milk, the
robot needs to read the text on the milk box or recognize
the logo in order to fetch the correct type. To pour milk into
the cereal bowl, the robot needs to first detect the closed lid
and estimate its pose to be able to unscrew it.

Even though computer vision has developed robust and
impressive methods for solving individual perception prob-
lems, an overarching method that can handle the variety of

The research reported in this paper has been (partially) supported by the
German Research Foundation DFG, as part of Collaborative Research Center
(Sonderforschungsbereich) 1320 Project-ID 329551904 “EASE - Everyday
Activity Science and Engineering”, University of Bremen (http://ease-
crc.org/). The research was conducted in subproject R02. This work was also
supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 101017089 as part of the TraceBot
project. We thank everyone who contributed to the software.

1Institute for Artificial Intelligence, University of Bremen, Germany

Fig. 1. The proposed perception framework allows robots to solve per-
ception tasks by creating a combination of state-of-the-art computer vision
methods based on the requirements of the task and the capabilities of the
robot sensors. The sensor data is handled with the UIM approach and the
perception processes are represented with Behavior Trees.

vision tasks in the household domain does not exist to date.
A perception system must, therefore, allow to effectively
combine available methods, while satisfying context-specific
requirements in terms of the (1) vision methods appropriate
for the current perception task and (2) the order in which
the methods have to be executed. While a typical tabletop
segmentation approach on pointclouds can detect standard
objects with a sequential process — first plane detection,
then tabletop point extraction, then clustering — a different
method is required when working with transparent objects
that are almost invisible to depth-based approaches. In addi-
tion to one-shot perception, more complex tasks may require
a continuous and reactive process execution. For example, the
robot may need to switch from an object detection process
to a tracking process when it becomes important to keep
a specific object in focus. It may also be needed to add
verification steps at the end of the perception process, such as
ensuring that the perceived scene is consistent with respect to
the rules of physics. The need for perception frameworks that
allow for flexible combinations of different vision methods
to handle this large variation of perception tasks has been
recognized in recent literature [10].

https://robokudo.ai.uni-bremen.de/rkop

This paper presents RoboKudo, an open-source perception
framework for mobile manipulation systems that allows to
flexibly generate and execute task-specific perception pro-
cesses that combine multiple vision methods (see Fig. 1).
RoboKudo is based on a novel concept that we call Unstruc-
tured Information Management (UIM) on Behavior Trees
(BTs), short UIMoBT, which is a mechanism to analyze
unstructured data with non-linear process flows. We ex-
plain how this concept can be applied to robot perception
and present the key representational structure of RoboKudo
that implements the UIMoBT approach called Perception
Pipeline Tree (PPT).

RoboKudo is developed to be included in a perception-
action loop of a robot system. The system can state per-
ception tasks to RoboKudo via a query-answering interface.
The interface translates a perception task query such as
“find a milk box in the fridge” into a specialized perception
process, represented as a PPT, which contains a combination
of suitable computer vision methods to fulfill the given task.

The contributions of this work are as follows:
1) We propose a novel concept of combining Unstruc-

tured Information Management with Behavior Trees
called UIMoBT.

2) Applying this concept to robot perception results in
a representational structure that we call PPT. We
contribute a formalization of PPTs.

3) We provide RoboKudo, an open-source robot per-
ception framework that builds upon the other two
contributions. It is written in Python with C++ bindings
and supports ROS.

RoboKudo has been successfully evaluated on multiple real
robot platforms performing various mobile manipulation
tasks (see Section V) and can be flexibly extended for new
use cases. To our best knowledge, no other perception system
has been shown to achieve comparable capability on real-
world mobile manipulation robots in scenarios that require
to adapt the perception process to changing perception tasks
at run time (see Section II).

II. RELATED WORK

There exists a wide range of approaches to solve per-
ception tasks for specific use cases based on the available
sensors, models and autonomy of the system [12, 21, 27].
While frameworks such as TensorFlow [22] or OpenCV
[4] immensely support the creation of state of the art
vision methods, it still requires other frameworks to make
use of the required vision methods at the right time. [17]
presented a combination of available deep neural networks
for visual perception. They do not address the adaptation
to a given perception task and, therefore, focus on the
individual vision aspects. In contrast, RoboKudo flexibly
selects different PPTs to suit the given task, as demonstrated
in Section V. [1] proposed a notable example of a task-
adaptable robotic perception system for mobile manipulation
robots. Their system has in common with ours that not a
single vision method is used to solve a perception task, but
rather a combination of methods infers the required object

information, such as a pose, color, etc. In contrast to the
sequential perception processes of [1], RoboKudo exhibits
flexible non-linear perception processes represented as PPTs,
which enables robots to support a broader range of use cases.

UIM was originally proposed by IBM [8] and gained a
lot of attention when the Watson system won against expert
human competitors in the “Jeopardy!” Quiz show. The idea
of UIM is to treat incoming data as unstructured information
that needs to be analyzed by multiple processing compo-
nents, called experts, that derive partial information from it
and provide structure that allows to gain an understanding
of the data. Information derived by the different experts
is mostly complementary but can also be overlapping or
even contradictory. The original implementation of UIM was
mostly focused on text inputs and “simple linear flows”
[8]. This is especially problematic for systems that need to
support non-linear execution flows for their analysis. For
example, in perception this could be switching between
one-shot and continuous vision subprocesses, reacting to
perception or system events, re-iterating or supporting nested
recursive processes for the verification of previous results.

BTs are a representation with concise semantics that
allows to flexibly switch between tasks [6]. They were
originally developed [14] and are currently actively employed
in the video game industry to model reactive behavior of
artificial agents. BTs have received a lot of attention in
robotics in the last years [16, 11, 3, 9]. Due to the flexibility,
simplicity, generality and expressiveness to represent task
policies, robotics research has investigated the application of
BTs in plan execution [25] and control [19, 26], collaborative
[23] and social robotics [7], etc. [5] provides a concise
overview of BTs with a formal definition and discusses
the specifics of applying them in robotics. An excellent,
comprehensive introduction on the combination of BTs, AI
and Robotics can be found in [6].

III. PERCEPTION PIPELINE TREE

A. PPT process flow

A behavior tree G(V, E) is a directed rooted tree with |V|
nodes and |E| edges (see an example in Fig. 2). When an
edge (x, y) ∈ E is directed from x to y, x is called a Parent
node and y is its Child node. The leaf nodes of a BT are
execution nodes, they perform tasks and can be of type Action
() or Condition (). The non-leaf nodes are control-flow
nodes, they guide the execution flow through the tree and can
be of type Sequence (→), Fallback (?) or Parallel (⇒).

The execution of the tree is driven by a tick signal which
is generated periodically with a fixed frequency. The tick
is propagated through the tree by the rules of different
node types and may be forwarded to one or more child
nodes. Nodes are only activated when receiving a tick and
immediately return either a Success, Running or Failure
value. Action nodes execute subtasks and immediately return
one of the values based on the subtask execution state. These
return values are used by the control-flow nodes to guide
the propagation of the tick signal. A Sequence ticks its
children one after another until either one returns Failure or

→
Pipeline [CAS]

→
Preprocessing

Capture
Percept

PC
Generation

→
Annotators

→
Object

Detection

PC Filter Supporting
Plane

PC Cluster
Extractor

⇒
Parameter
Estimation

Object
Color

→
Pose

Estimation

Object Pose ICP Pose
Refinement

Fig. 2. Perception processes are modeled as Perception Pipeline Trees
(PPTs) that are based on BTs. The nodes in the tree represent (1) control
structures to control the flow of the process (grey) or (2) individual vision
methods like NN-based object detection or RGBD segmentation (green).

Running, or all return Success. A Fallback ticks its children
sequentially when they return Failure, until one returns either
Running or Success, at which point the Fallback returns
the same value. If no child is left to tick, a Fallback
returns Failure. A Parallel ticks all children sequentially
and checks afterwards their return values. If the number of
children γ that returned Success is > nsuccess, a Parallel
returns Success. If γ > nfailure children returned Failure,
a Parallel returns Failure. Otherwise Running is returned. A
comprehensive definition of BTs can be found in [6, 13].

We propose using BTs as a process model for robot
perception systems. Vision methods like Neural Networks or
classical feature-based approaches and their pre- and post-
processors are implemented as execution nodes. They can
be self-contained, implementing a full vision method, or
communicate with external programs via Remote Procedure
Calls if they run on a separate machine or in docker con-
tainers. The control-flow nodes are used to execute the vision
methods in the right order by respecting their desired inputs,
reacting to failures and switching between processing modes,
e.g., switching between one-shot detection and continuous
tracking processes. As BTs are hierarchical, they can be used
to combine multiple subtrees of perception subprocesses into
a complete perception process accomplishing a high-level
perception task. We denote a BT that models a perception
process as described above a Perception Pipeline Tree (PPT).

Fig. 2 illustrates a simple example of a PPT to detect an
object and compute its pose via tabletop segmentation. First,
percepts are read from the sensors (Capture Percept) and the
data is preprocessed to generate a pointcloud (PC Genera-
tion). Next, the search space is reduced by filtering the depth
data (PC Filter). A supporting surface for objects is detected
(Supporting Plane) to extract object candidates above this
surface (PC Cluster Extractor). After these sequential steps,
further analysis on object candidates can be parallelized to,
e.g., concurrently compute the color histogram of the object
(Object Color) and its pose (Pose Estimation).

B. PPT data flow

A robot perception system has to be able to infer task-
relevant object information from high-frequent, large band-

width sensory data streams. An approach to cope with these
large amounts of data is UIM [2]. In this paper, we propose
to realize the UIM approach of multi-expert analysis of
large unstructured data through the flexible, modular and
reactive representation of BTs. We call this concept UIMoBT
(Unstructured Information Management on Behavior Trees).
In the following, we describe how data flows in a PPT,
realizing the UIMoBT concept.

Execution nodes that read in sensor data or are expert vi-
sion methods that extract information from the data are called
Annotators. Annotators exchange information via a shared
data structure that is called Common Analysis Structure
(CAS) in the UIM framework. In UIM for perception, a CAS
holds the sensor data as well as the annotations produced by
the Annotators. A CAS is defined as CAS(O,M) where O
denotes the received sensory observations and M is a set
of annotations that refer to regions in O. Over the course
of a running perception process, the CAS is extended with
annotations provided by the Annotators (see Fig. 3). M
can contain annotations providing hypotheses about object
properties or semantic information about the scene like object
classes, shapes, recognized texts and more. Each annotation
is grounded into a shared type system that allows the
Annotators to request information with the desired semantics.

A PPT is a nested structure that can potentially grow very
broad and deep, for example, when using multiple cameras at
the same time for different tasks or when employing separate
hypothesis verification processes. To ensure modularity, we
propose to create one CAS for each subtree that has a
certain task-specific semantic purpose. Take, for instance,
two subtrees A and B. Subtree A models an object detection
sequence that is able to find objects with the head camera
of the robot. Subtree B uses images from a camera on the
robot’s hand to track an object in a visual servoing control
loop that guides object grasping. The CAS of subtree A —
CASA — stores annotations that refer specifically to the
object detection steps using the head camera sensor image.
Subtree B can look up the results of object detection from
CASA, transform the estimated object pose into the frame
of the hand camera, start tracking the object in the hand
camera and then store the annotations and results of tracking
in CASB . A similar reasoning can be provided to organize
a “hypothesize and verify” process [18], where one subtree
generates perception results and the second subtree uses these
to instantiate a rendering environment for visual verification.

A subtree that has a CAS associated with it is called a
Pipeline. Each Annotator, thus, belongs to a certain Pipeline.
In Fig. 2, the entire BT represents one Pipeline. Pipelines
are used as a representation of perception subprocesses that
are observation-specific and task-centric.

Observation-specificity allows a Pipeline in the PPT to
focus solely on the expected sensory inputs. For example,
data from an RGB-only hand camera will be processed by
its own Pipeline that will only employ algorithms on RGB
data. If data from multiple sensors would be stored in one
Pipeline, each Annotator in the Pipeline would have to be
parametrized which camera data it should analyze.

Fig. 3. The architecture of RoboKudo, the proposed perception system. Each perception task received from a high-level control program is processed with
a task-specific Perception Pipeline Tree (PPT). During analysis, experts within the PPT share information through a Common Analysis Structure (CAS).
The inferred belief of the world feeds into a physics-driven, photorealistic Game Engine-based Belief State (GE Belief) for imagistic reasoning.

A pipeline is task-centric if it explicitly models the subpro-
cesses of a perception task for a specific semantic purpose.
Task-centricity allows to avoid storing semantically unrelated
data in one CAS, resulting in a more structured association
between the perception subprocesses and the information
they manage. In contrast, BTs that do not implement the
proposed UIMoBT approach often feature a global “black-
board” data storage that is shared with all tree nodes. Task-
centricity also promotes explainability, as the system can
reason about meaningful subprocesses and model them with
an explicit representation, clearly showing the relationship
between the different parts of the perception process such as
object detection, tracking or verification.

Having introduced PPTs and the CAS, we can now formal-
ize PPTs. A Perception Pipeline Tree (PPT) is a variant of
a BT that is defined as G(V, E , ϕ,P). An Annotator node a,
a ∈ A ⊂ V , is an Action or Condition node that accesses
a cas for its computation. Function ϕ : A → CAS maps
the set of Annotator nodes to their corresponding CAS. As
previously described, a cas is scoped by a Pipeline p ∈ V ,
which is a specialized Sequence node. The set P contains
tuples (p, cas) that associate each Pipeline p to an individual
cas. Therefore, ϕ is defined by traversing the PPT upwards
from the input v ∈ V until the currently visited node vi is
found in tuple (p, cas) with p = vi. In that case, cas is
returned by ϕ, otherwise the upwards traversal is continued.
Each Annotator a must be a direct or an indirect child of
Pipeline p. In each valid PPT, |P| > 0 must hold.

IV. ARCHITECTURE OF THE FRAMEWORK

The previous section presented PPTs, the cornerstone
representation of the proposed perception framework,
RoboKudo. This section describes the architecture of the
framework and its external interfaces, as illustrated in Fig. 3.

The inputs of the framework are (1) the data provided
by the sensors of the robot (Sensor Data) and (2) a task
description of the object or phenomena that shall be per-
ceived to support the current step of the robot action plan
(Perception Task). A robot performing mobile manipulation
actions needs to solve a plethora of perception tasks to

acquire accurate knowledge about the world and to detect
changes therein, e.g., “detect a cereal box on the table” or
“track the blue cup when the human is pouring from it”.
RoboKudo takes as input a vague description of a perception
task in a form of a list of nested key-value pairs.

The Analysis Engine (AE) is the main processing entity
of RoboKudo. It collects sensor data (Collection Reader)
and processes it based on the incoming perception tasks.
The Task Interface translates a perception task description
into a modification and parametrization of the PPT suitable
for solving the given task, as described in Subsection IV-A.
Then the AE runs the PPT in a real-time loop (Perception
Pipeline Tree). The CAS data structures facilitate information
exchange between the nodes in the PPT. After the execution
of the PPT is finished, the annotated hypotheses are collected
and interpreted (Hypothesis Interpretation & Reasoning). In
this step, the AE fuses the results of all the annotators.1

Resulting information is stored in a hybrid belief state (GE
Belief), similar to [18].

Ultimately, the final result is communicated to the other
components of the robot system (Perception Result). Note
that this can be information requested by the task-level
controller of the robot as well as the motion controller that
uses continuous perception feedback to control robot body
parts in a real-time closed loop (see Section V).

A. Task Interface: Mapping of Perception Tasks to PPTs

A PPT is designed by considering which Annotator node
can provide the required perceptual information for a given
perception task. The ordering of the Annotators in the tree
depends on their inputs and outputs w.r.t. their Pipeline’s
CAS, as each Annotator requires specific sensor data or
inputs from other Annotators. If Annotator a requires only a
single input that another Annotator b provides, both Anno-
tators are put under a Sequence node as its direct or indirect
children. If Annotators a and b do not depend on each other
but both require the output of another Annotator c, a and b
are put in a Parallel node after c to speed up computation.
If Annotators a and b can both potentially provide an

1Works such as [20] show how to fuse annotations in this step.

output required by c but only one would suffice, they can
be composed into a Fallback node to represent priority-
based execution of alternative approaches for generating the
required output. Note that Annotator nodes in RoboKudo can
run in either a blocking or a threaded mode, where the latter
does not block the execution of the tree and, therefore, allows
true parallelization.

A PPT can be changed during run time by the Task
Interface. This allows the system to analyze the incoming
perception task and change subtrees based on the Annotators
and control-flow nodes required for this task. The current
perception task can be accessed by the Annotators to select
at run time the correct parametrization for the given task,
e.g., to adjust hyperparameters to suit the specified problem
class or to choose a suitable object detection model.

V. EXPERIMENTS

As this paper presents a framework for combining individ-
ual vision methods in a flexible, modular, intuitive and easy
to use manner and does not propose a novel vision algorithm,
none of the commonly used perception datasets was suitable
to evaluate the proposed approach. The evaluation dataset
for this paper has to originate from an embodied agent
performing mobile manipulation actions in the real-world
and has to address a variation of vision tasks. Unfortunately,
common datasets typically concentrate only on one specific
task. Therefore, we designed a multi-step scenario involving
mobile manipulation and human-robot interaction actions
that require a variety of perception tasks, including one-shot
and continuous perception as well as object detection, human
activity recognition and body configuration estimation. All
perception tasks are tackled by the same running instance
of RoboKudo for the complete duration of the experiment,
whereby the used perception processes are adapted at run
time towards the currently active perception task. We report
on the variations of vision method combinations that employ
parallelization(⇒), looping() and subtrees(), as well
as provide statistics on execution success rates and run times.

All PPTs used in the scenario have the common parent
subtree, shown in Fig. 4. The ⟨Subtree⟩ node is a placeholder
where vision task specific subtrees are inserted at run time.

⇒
Root

Visualization →
Pipeline [CAS]

Initialization Query Analysis →
Task Generation

Task Scheduler
⟨Subtree⟩

→
SSOD

...

Human Pointing

...

→
Human Tracking

...

→
Free Space

...

Fig. 4. Root PPT with an embeddable task subtree node.

The key parts of the experiment can be seen in Fig. 5. A
Toyota HSR robot assists a human in carrying groceries to a

Fig. 5. Photos showing the key steps of the experiment. (1) One-shot
object detection and pose estimation. (2) Continuous perception to check
if the human is pointing at one of the detected objects. (3a) Continuous
perception for human tracking and following and (3b) pointing detection
for intended storage place. (4) Free space estimation and placing. See the
video at https://robokudo.ai.uni-bremen.de/rkop.

storage place. The steps of the robot plan are the following:
(1) Perform single-shot object detection and pose estimation
(SSOD) for unknown objects. (2) Move the head to look
in the direction of the human. (3) Continuously detect and
monitor the human until she points at one of the previously
detected objects (Human Pointing). (4) Grasp the object
pointed at from the table. (5) Move the head to look at the
human again. (6) Follow the human in a perception-control
loop and concurrently monitor if the human is pointing to
a storage place (Human Tracking). (7) Move the head to
look at the storage place. (8) Perform single-shot free space
estimation on the storage place (Free Space). (9) Place the
object in a free space in the storage location. In steps (1),
(3), (6) and (8) the proposed perception system is queried.
For motion planning and control we use Giskard [26].

SSOD is done by exploiting semantic, spatial knowledge
about the environment to filter RGBD data with the Region
Filter and detecting objects by clustering with PC Clustering.
Afterwards, the pose is estimated and the object information
is stored internally.

Human Pointing

Perceive Human Pose
Detector Pointing Detection

Result

→
Pointing Detection

Activity
Recognition

Pointing
Detected?

Human Pointing
Estimation

Pointing
at Object?

Fig. 6. Human pointing task subtree with pointing detection subtree.

Human Pointing (see Fig. 6) features a state of the
art human detection and keypoint estimation(joints) from
YOLOv8 [15] with the Human Pose Detector. To recognize a
human pointing activity, we use the CLIP multi-modal vision

https://robokudo.ai.uni-bremen.de/rkop

model [24] to query the image of the detected human for
typical activities (“standing”, “pointing”, etc.) in the Activity
Recognition annotator. If a pointing activity is detected and
annotated in the CAS(Pointing Detected?), we employ a
self-implemented Human Pointing Estimation which uses the
estimated joint positions of the detected human to estimate
the pointing direction. If the pointing targets a previously
detected object (Pointing at Object?), the PPT returns a
description of it to the robot control for grasping (Result).

→
Human Tracking

Track Human and
Detect Pointing

Perceive Human Pose
Detector

⇒
Track and Detect

→
Tracker

Cluster Position Update Human
Tracker

Tracker Feedback
to Controller

Pointing Detection

Result

Fig. 7. Human tracking task subtree reusing pointing detection from Fig. 6.

Human Tracking is the most complex tree (see Fig. 7).
It concurrently (Track and Detect) (a) tracks the human in
the camera frame and feeds her 2D position to the control
system and (b) uses the Pointing Detection subtree to check
if the human is pointing at a storage place. Before (a) and
(b), percepts are received (Perceive) and humans are detected
with Human Pose Detector. For (a) we developed a particle
filter approach that heuristically filters human detections and
associates the observation zXt with the filter, given ŝt as the
estimated position:

zXt = argmin
z∈Zt

∥z − ŝt∥.

In the final step, the Free Space subtree reuses the Region
Filter of the SSOD subtree to recognize if known storage
regions contain 3D points, implying blocked storage places.

As can be seen in the PPTs, some of the annotators are
reused in different perception tasks, which demonstrates the
modularity of our approach. Because perception processes
are modeled as PPTs, one can easily visualize them and their
runtime state. Designing new processes into maintainable
structures is supported by having to abide by the strict
semantics of behavior trees.

We conducted experiments with eight different persons
and ten household objects (see Tab. I). Experiments where
motion plans failed or hardware issues occured were re-
peated. A total of 31 experiments were analyzed.

TABLE I: Quantitative results of our real world experiments
Pointing Grasping Following Free Space Placing Overall

Success 29/31 29/29 23/29 23/23 22/23 22/31
% 93.55 100 79.31 100 95.65 70.96

The process handling of the framework was successful in
all runs. Most failed runs (4) were caused by manipulation
(Object slipped) errors in different experiment phases. Three

failed runs were caused by lost human tracking in the
following task, when humans were distant from the robot.
Two runs failed due to incorrect object pointing estimation.

The system processed 4418 percepts. Component run
times have been recorded. Components in the experiment
which are extracting key information and have an average
run time above 2ms are depicted in Figure 8. The complex
CLIP neural network for visual concepts used in the Activity
Recognition node has the highest impact on the run time.

Fig. 8. Boxplot showing runtime distributions for key vision components in
the experiment. The complex CLIP-based Activity Recognition, while ver-
satile, is the most time-consuming. The control PC running the framework
contains an i7-12700K CPU, 32 GB RAM and an RTX 3080 10GB GPU.

Additional evaluation material is accessible on the web-
page mentioned in the abstract, which also provides results
from experiments on PR2 and Tiago, as shown in Fig. 9.

Fig. 9. Photos from the auxiliary experiments with different robots
performing mobile manipulation actions. (left) One-shot detections for pick
& place and pouring actions. (middle) A continuous perception task with
object tracking. (right) HSR in a RoboCup@Home scenario. Details are
available at https://robokudo.ai.uni-bremen.de/rkop.

VI. CONCLUSION

This paper introduced RoboKudo, an open-source frame-
work for robot perception that generalizes towards diverse
perception tasks. The central idea of the approach is to model
perception processes through Behavior Trees and leveraging
the Unstructured Information Management principle for data
communication between nodes. The concepts are imple-
mented in data structures we call PPTs. We presented the
architectural foundation of RoboKudo and demonstrated how
perception task queries seamlessly map onto PPTs. Empirical
validation through an extensive case study highlighted the
versatility of our framework, effectively supporting a wide
array of perception tasks from single-shot to continuous
processes as well as a diverse set of reusable vision expert
methods enabling robots to dynamically adapt to a broad
range of perceptual requirements.

https://robokudo.ai.uni-bremen.de/rkop

REFERENCES

[1] Ferenc Bálint-Benczédi. “Task-adaptable, Pervasive
Perception for Robots Performing Everyday Manip-
ulation”. PhD thesis. 2020.

[2] Michael Beetz et al. “RoboSherlock: Unstructured
information processing for robot perception”. In: IEEE
International Conference on Robotics and Automation
(ICRA). 2015.

[3] Bruno Bouchard et al. “Modeling Human Activities
Using Behaviour Trees in Smart Homes”. In: Pro-
ceedings of the 11th PErvasive Technologies Related
to Assistive Environments Conference. PETRA ’18.
Association for Computing Machinery, 2018.

[4] Gary Bradski and Adrian Kaehler. Learning OpenCV:
Computer vision with the OpenCV library. ” O’Reilly
Media, Inc.”, 2008.

[5] Michele Colledanchise and Lorenzo Natale. “On the
Implementation of Behavior Trees in Robotics”. In:
IEEE Robotics and Automation Letters 6.3 (2021),
pp. 5929–5936.

[6] Michele Colledanchise and Petter Ögren. “Behavior
Trees in Robotics and AI: An Introduction”. In: CoRR
abs/1709.00084 (2017). arXiv: 1709.00084.

[7] Sara Cooper and Séverin Lemaignan. “Towards using
Behaviour Trees for Long-term Social Robot Be-
haviour”. In: 17th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI). 2022.

[8] David Ferrucci and Adam Lally. “UIMA: An Archi-
tectural Approach to Unstructured Information Pro-
cessing in the Corporate Research Environment”. In:
Natural Language Engineering 10.3–4 (2004).

[9] Razan Ghzouli et al. “Behavior trees in action: a study
of robotics applications”. In: Proceedings of the 13th
ACM SIGPLAN International Conference on Software
Language Engineering. 2020, pp. 196–209.

[10] Florenz Graf et al. “Toward Holistic Scene Under-
standing: A Transfer of Human Scene Perception to
Mobile Robots”. In: IEEE Robotics and Automation
Magazine 29.4 (2022), pp. 36–49. DOI: 10.1109/
MRA.2022.3210587.

[11] Danying Hu et al. “Semi-autonomous simulated brain
tumor ablation with RAVENII Surgical Robot using
behavior tree”. In: IEEE International Conference on
Robotics and Automation (ICRA). 2015.

[12] Alexandros Iosifidis and Anastasios Tefas. Deep
learning for robot perception and cognition. Academic
Press, 2022.

[13] Matteo Iovino et al. “A survey of Behavior Trees in
robotics and AI”. en. In: Robotics and Autonomous
Systems 154 (Aug. 2022).

[14] Damian Isla. “Handling complexity in the Halo 2 AI”.
In: Game Developers Conference 2005 Proceeding.
2005. URL: https://www.gamedeveloper.
com/programming/gdc-2005-proceeding-
handling-complexity-in-the-i-halo-
2-i-ai.

[15] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO
by Ultralytics. Version 8.0.0. Jan. 2023. URL: https:
//github.com/ultralytics/ultralytics.

[16] Simon Jones et al. “Evolving Behaviour Trees
for Swarm Robotics”. In: Distributed Autonomous
Robotic Systems: The 13th International Symposium.
Ed. by Roderich Groß et al. Cham: Springer Interna-
tional Publishing, 2018, pp. 487–501.

[17] Chung-Yeon Lee et al. “Visual Perception Framework
for an Intelligent Mobile Robot”. In: 17th Interna-
tional Conference on Ubiquitous Robots (UR). 2020.

[18] Patrick Mania et al. “Imagination-enabled Robot Per-
ception”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2021.

[19] Alejandro Marzinotto et al. “Towards a unified be-
havior trees framework for robot control”. In: IEEE
International Conference on Robotics and Automation
(ICRA). 2014.

[20] Daniel Nyga, Ferenc Balint-Benczedi, and Michael
Beetz. “PR2 looking at things — Ensemble learning
for unstructured information processing with Markov
logic networks”. In: IEEE International Conference
on Robotics and Automation (ICRA). 2014.

[21] Miguel Oliveira et al. “A perceptual memory system
for grounding semantic representations in intelligent
service robots”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. 2014.

[22] Bo Pang, Erik Nijkamp, and Ying Nian Wu. “Deep
learning with tensorflow: A review”. In: Journal of
Educational and Behavioral Statistics 45.2 (2020).

[23] Chris Paxton et al. “CoSTAR: Instructing collaborative
robots with behavior trees and vision”. In: IEEE
International Conference on Robotics and Automation
(ICRA). 2017.

[24] Alec Radford et al. “Learning transferable visual mod-
els from natural language supervision”. In: Interna-
tional conference on machine learning. PMLR. 2021,
pp. 8748–8763.

[25] Francesco Rovida, Bjarne Grossmann, and Volker
Krüger. “Extended behavior trees for quick definition
of flexible robotic tasks”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
2017.

[26] Simon Stelter, Georg Bartels, and Michael Beetz. “An
open-source motion planning framework for mobile
manipulators using constraint-based task space control
with linear MPC”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2022.

[27] Abolfazl Zaraki et al. “Design and evaluation of
a unique social perception system for human–robot
interaction”. In: IEEE Transactions on Cognitive and
Developmental Systems 9.4 (2016), pp. 341–355.

https://arxiv.org/abs/1709.00084
https://doi.org/10.1109/MRA.2022.3210587
https://doi.org/10.1109/MRA.2022.3210587
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

	Introduction
	Related Work
	Perception Pipeline Tree
	PPT process flow
	PPT data flow

	Architecture of the framework
	Task Interface: Mapping of Perception Tasks to PPTs

	Experiments
	Conclusion

