A Framework for Self-Training Perceptual Agents in Simulated
Photorealistic Environments

Patrick Mania*

pmania@cs.uni-bremen.de

Abstract— The development of high-performance perception
for mobile robotic agents is still challenging. Learning appro-
priate perception models usually requires extensive amounts of
labeled training data that ideally follows the same distribution
as the data an agent will encounter in its target task. Recent
developments in gaming industry led to game engines able to
generate photorealistic environments in real-time, which can be
used to realistically simulate the sensory input of an agent.

We propose a novel framework which allows the definition
of different learning scenarios and instantiates these scenarios
in a high quality game engine where a perceptual agent can act
and learn in. The scenarios are specified in a newly developed
scenario description language that allows the parametrization
of the virtual environment and the perceptual agent. New
scenarios can be sampled from a task-specific object distribution
that allows the automatic generation of extensive amounts of
different learning environments for the perceptual agent.

We will demonstrate the plausibility of the framework by
conducting object recognition experiments on a real robotic
system which has been trained within our framework.

Index Terms— Self-Training Perception, Robotic Simulation,
Unreal Engine, Scenario Description

I. INTRODUCTION

In recent years computer vision has made impressive
performance jumps in terms of recall[1] (the probability that
they do not overlook objects in images) and precision[1]
(the probability that the detections are correct). Much of
this progress is achieved through intensive use of machine
learning technology that trains perception capabilities for the
respective perception tasks using huge training sets showing
the original images and the results the algorithms are to
return. In many of these cases the bottleneck is obtaining
the huge data sets and in particular the results that should
be returned for each image ([2],[3]).

For images made by humans such data can be accessed
through the world wide web and websites such as FLICKT,
wikimedia, etc. The images that are available for training are
unfortunately untypical for robot vision applications. This
is because people carefully direct their cameras at objects
and scenes they want to capture in a way that those are
easily detectable and clearly visible. In contrast, when a
robot performs tasks in a kitchen, such as setting the table,
many objects are occluded, seen from a bad angle, under
inferior lighting conditions, partially depicted, and so on. For
some applications, such as autonomous driving, such data
sets can be generated by recording image streams and taking

* The author is with the Collaborative Research Centre Everyday Ac-
tivities Science and Engineering (EASE), University of Bremen, D-28359
Bremen, Germany, WWW: http://ease-crc.org/

Michael Beetz*
beetz@cs.uni-bremen.de

Scenario-trained
perception model

L

Fig. 1: With the proposed framework, it is possible to
generate Scenario-based training data in game engines for
learning perceptual agents.

images in which objects can be detected well and tracking the
objects backwards to generate training data for more typical
image distributions[4]. However, these techniques cannot be
easily transferred to other robot applications such as doing
manipulation tasks in a household.

A second recent development is the level of photoreal-
ism that can be achieved with modern game technology.
For example, the game engine Unreal Engine 4(UE4) has
powerful tools for realistic materials, including transparency,
reflectance patterns and lighting, which make it possible to
move a camera through a simulated environment and produce
images' similar to those obtained in the real world([5],[6]).

Robot vision can make use of this powerful game engine
technology to generate high quality training data for com-
puter vision. The basic idea is that the game engine exactly
knows where each object in the virtual environment is placed.
Having this knowledge, one can calculate which parts of the
incoming sensory data correspond to a given object, annotate
it with additional information (for example: class labels, see
Fig. 1) and store it in the set of training examples.

UnrealCV[6] provides a module that can be loaded into
UE4 to generate RGB, depth and object mask images from
cameras inside of a virtual environment. It has been used to
generate synthetic data for different purposes, for example
to learn an object detection model[7] or to generate optimal
trajectories for UAVs in scanning tasks[8].

In this paper, we build on the UnrealCV infrastructure and
propose a framework for self-training perceptual agents that

Thttps://www.youtube.com/watch?v=E3LtFrMAvQ4

© 2019 IEEE


pmania
© 2019 IEEE�


can generate distributions of training data that correspond to
the distributions that robot control programs generate when
performing realistic tasks in realistic environments. This
method can be expected to boost the learning performance as
many learning algorithms assume that the distribution of the
images in the training data is the same as the one generated
by the robot application later([9],[10]).

The framework consists of the following components that
are at the same time the research contributions of this paper:

o A Training Data Collector: This system samples scenes
in a virtual environment and executes fragments of
the parameterized high-level robot plans simulating the
respective perception-action loop of the robot control
program. For each captured image it generates a tuple
together with the ground truth data that are computed
from the data structure of the environment as a training
data entry for the learning task. In the experiment
section, we will show that the generated training data
can be used for an object recognition task on a real
robot and compare it to real world training data.

o A Scenario Description Language (SDL): We propose
SDL, a semantic specification language that enables
robot programmers to specify distributions of scenarios
and behavior specifications for robotic agents in a
transparent and modular way. A scenario consists of a
normative scenario, which is then probabilistically mod-
ified by eliminating and adding objects, and changing
the pose of objects. In addition, a parameterized high-
level behavior for the robot can be specified where again
the parameterization can be probabilistically modified.

o A Semantic Scenario Sampler: This sampler takes the
probabilistic scenario description and converts it into a
stochastic process that draws examples implied by the
distribution defined by the SDL specification.

II. MOTIVATION

Robotic agents perform perception tasks in order to ac-
complish their manipulation actions. Thus if a robotic agent
executes a fetch and place task, it has to detect the object to
be picked up and examine it in order to find the proper place
to grasp and hold them. Depending on which task context
the fetch and place program is called the same category
of objects looks very different. Consider for example a
household robot. The robot is to set the table, serving the
meal, and cleaning the table afterwards. If the robot is to set
the table or serve a meal, then it first has to find the plate in
the cupboard. Plates will be stacked and therefore the task
of the perception system is to find the topmost horizontal
line in the cupboard. Typically, lighting conditions inside
the cupboard are poor so the robot has to detect the plate
in a dark setting. This is shown in Fig. 2 in the middle.
When the robot is serving the meal then the plates typically
appear as ovals in the image. In the case that the plates
are textured the robot might want to detect the plate pattern
in the image. The lighting conditions are typically bright
and you might get reflections from sunlight (see Fig. 2
left). Finally, when the robot is to clean the table then the

table setti

bl o

ng serving

i

Image |

e —.
Fig. 2: The appearance of objects changes substantially,
depending on the task context.

plates look like the ones for table setting but they might be
dirty as shown in Fig. 2 on the right. Thus, Fig. 2 shows
images captured by the robot in order to detect plates and
how the appearance of plates changes depending on the task
context and the desired output of the detection routine in
the lower row. The figure suggests that if we learn different
detection routines for each task context that these detection
routines can be expected to be more robust, more accurate,
and more efficient than a general plate detector. This process
of optimizing perception by exploiting the regularities and
constraints imposed by the task and environment context has
been called environment and task specialization by Horswill
and its potential of specialization was intensively discussed
and investigated in [11].

ITII. SYSTEM ARCHITECTURE

Fig. 3 shows the software architecture of the proposed sys-
tem and the essential data flow and computational processes.
The system consists of three major components:

The Scenario Runner creates scenes according to a given
scenario in the Simulation Environment and uses the High-
Level Agent Control module to parametrize the agent that
is to be improved, according to the Feedback of the Critic.
The Simulation Environment is composed of a state of the
art game engine and an Interface Layer, which implements
efficient communication capabilities and the necessary logic
to manipulate the virtual environment programmatically.
After the scene and the agent have been instantiated in
the Simulation Environment, the agent uses its High-Level
control program and perception system to sense its environ-
ment, reason about its actions and solve the task at hand.
Each percept can be stored in a Percept Database to log the
experiences of the robot and provide a data basis to further
evaluate and improve its given models.

Each situation that an agent should be confronted with
will be modeled as a Scenario in our SDL. Each Scenario
contains three major parts: The Scenario Meta Data is
used to identify each Scenario and its different components
uniquely. To decrease the synthetic nature of the sensor data,
one can also define noise models in this section of the SDL.
A description of the virtual environment where the agent



Training Data Collector

Scenario Meta Data
Environment Parametrization
High-Level Parametrization

Semantic
Scenario Sampler
Scenario
Runner

User defined ¥

Scenarios

Interface Layer

Agent Control

Perceptual Agent

Perception System

Critic

F

Simulation

Environment
Percepts

Object models

Actin
Environment

Store percepts

Controls ™~ w
-
-

Percept Database

High-Level

Agent High-Level

l“'

Fig. 3: Overview of the proposed system. Scenarios from different domains can be expressed in our SDL and stored in a
specialized Database. These Scenarios can be set up in a simulation environment where a perceptual agent can act in. The
agent perceives sensory data from the environment and uses its perception system to accomplish a task. A critic component
uses ground truth from the Scenario description to feedback the current performance to the perception system.

should act in is defined in the Environment Parametrization.
This includes for example the definition of entities like
primitives or 3D-Models or different parametrizations for
lighting which may effect vision algorithms. To support the
study of different agent behaviors within this framework, the
High-Level Control for the agent can also be parametrized
on a Scenario-level. All Scenarios are collected in a Scenario
Database and can be defined in different ways. One possi-
bility is the creation of Scenarios by hand, as one might do
it under lab conditions. The desired environment will be set
up in the simulation by the given editing tools like Move,
Rotate, etc. After everything is set up, the structure of the
environment can be saved as a Scenario and stored into the
Scenario Database.

To generate an extensive amount of Scenarios for mobile
robotic agents that generate typical image distributions of
the objects to manipulate, we propose the usage of prob-
abilistic models. By employing these models and an initial
distribution of the task-specific objects in a given scene, new
object constellations in a relevant task context can be gen-
erated and used as a training input for the perceptual agent.
The Scenario Runner can setup arbitrary amounts of these
sampled Scenarios in the Simulation Environment, place and
start the perceptual agent in it, wait for its completion and
observe the achieved performance. Within this perception-
action-feedback loop, the agent can improve his contextual
perception routines based upon the received percepts of the
sampled scenes and the feedback of the Critic.

A. Scenario Description Language

Before describing the individual components of the sys-
tem, the developed SDL will be discussed briefly. When
running computer vision tasks in the context of task-specific
learning, very often one will need a) an experimental setup
where you want to validate or train your system on, b) the
necessary ground truth for it, ¢) instructions for the agent to
cope with the task at hand and d) some meta data to identify
the individual results on the different Scenarios. These four
parts are described in our SDL, which is roughly of the
following form:

(a scenario

(identified-by (a date) (an #id)

(an environment
(an object (type classy) (pose p1) (distribution dist;))
(a light (pose p2) (with light-parameters(...))))

(an agent
(task-description (a task(...)))
(with startup-parameters

(param-type; valy)

.('[')aram-typen val,))))

The Environment Parametrization contains all the nec-
essary information to describe an environment where the
agent should act in. Object descriptions are supplied for each
object which should be spawned in the virtual environment
and includes the spatial parameters, distribution properties,
ground truth data and parameters to define the appearance
in the simulation. To get realistic object renderings in a
simulation, properly setting up light sources is a crucial part
of the virtual environment design process and can therefore
also be specified.

Supporting the initialization and parametrization of differ-
ent agents is accomplished by the High-Level Parametriza-
tion part of the SDL, which allows the definition of the
starting process of the agent and an object-action task
description. This description is used to start the agent that is
run by the Scenario Runner, which coordinates the execution
of the agent and the setup and destruction of the virtual
environment. The last part of the SDL is the Scenario Meta
Data, which is used to index individual Scenarios, hold
a reference to the Environment Parametrization & High-
Level Parametrization and user-defined meta data which is
necessary for the task at hand (for example sensor noise
models or textual descriptions of a Scenario etc.).

The process of generating new Scenarios according to
typical distributions of entities is implemented by the Se-
mantic Scenario Sampler. First, we distinguish Scenarios
into two types: Normative and Concrete. Both Scenarios
are declared in the same SDL, but are necessary for two



different tasks: Normative Scenarios are used as a prior
to model the abstract structure of the scene. In a table-
setting example, this would include the potential position and
amount of all task-relevant objects. Using this basic structure
in addition to the distribution properties for every object in
the Environment Parametrization, we can sample an infinite
amount of different Scenarios to improve on in a stochastic
process. Inside of this process, the sampler will decide if
objects from the Normative Scenarios will be removed from
the scene, modified in their amount or be placed in other
areas. These new, generated Scenarios will be described in
our SDL and are called Concrete Scenarios. This kind of
Scenario will be instantiated in the Simulation Environment
and be used to improve the perceptual capabilities of the
agent.

B. Simulation Interfacing

The main component of the Simulation Environment in
our proposed framework is Unreal Engine 4[12], which is a
modern game engine capable of producing highly realistic
renderings. UE4 uses a proprietary data format to describe
a virtual environment in it. To set up the environment
which has been defined in our SDL in this game engine, a
communication layer was implemented that allows to modify
the Simulation Environment during runtime. This allows our
framework to setup different environments without needing
time-consuming restarts of the Simulation Environment and
therefore a higher throughput of Scenario executions. Our
communication layer is based upon ROS (Robot Operating
Systems), which is a widely used robotic framework in the
scientific community. Each action like spawning or destruc-
ting objects or changing light settings can be accomplished
using standard ROS communication methods. The central
endpoint of this communication layer is the implemented
Interface Layer inside of UE4. This layer handles the com-
munication stack and provides methods to manipulate a given
virtual environment. A central component is the SDL Spawn-
ing module, which processes the object creation requests.
One can either spawn geometric primitives or 3D-Meshes.
Primitives might be useful for robot belief state visualization
or learning the outcome of physical processes, like in [13],
while 3D-Meshes are indispensable when learning from
image distributions in real life tasks with textured objects like
household products. To record the spatial relation of objects
during runtime, we implemented ROS tf2 [14] in UE4 to
analyze the movement of objects during the execution of the
agent or to record a given setup as a Scenario.

We are publishing® our interface between UE4 and ROS,
which is necessary to manipulate virtual environments pro-
grammatically and allows other researchers to do their own
experiments in this game engine.

C. Optimizing Perceptual Agents

This section explains the integration of perceptual agents
in this framework. The most important source of data for

2https://github.com/code-iai/ROSIntegration

perceptual agents, are the actual percepts that are generated
from the Simulation Environment. These percepts must be
captured by the perception component of the agent, which
might drastically change depending on the task at hand. To
cope with the variety of perception systems and interfaces,
we integrated ROS in the Simulation Environment to provide
the sensory data to the perception system. Because UE4
is available on the most common platforms, we have used
rosbridge [15] to provide a platform-independent simulation
interface.

The main sensory data of our agent, are the RGBD
percepts of the virtual environment. Because these perception
data streams are demanding a large amount of link band-
width, it is necessary to transfer this binary data in a compact
manner. Rosbridge uses JSON for communcation, which
has no built-in type for binary data and must therefore be
converted to base64, which is computationally expensive. To
optimize the communication performance in our framework,
we extended rosbridge to support BSON serialization[16].
This improvement has been merged into the official rosbridge
codebase to help others with similar performance demands.

The generation of RGBD data is realized by a specialized
virtual camera in the simulated environment that generates
RGB, object mask and depth data. The rendering code of this
camera is based on [6]. It has been extended to support the
BSON encoding of the sensor data, the inclusion of sensor
noise models and the necessary integration to use it within
ROS including the underlying coordinate frames and camera
parameters.

Each perceptual agent can use ROS Topics to get the
percepts and camera parameters from the Simulation En-
vironment. The High-Level Control of the agent must be
instantiated by implementing an interface provided by the
High-Level Agent Control in order to have control over the
lifecycle of the agent running in the simulation.

As an exemplary perception system for mobile robots, we
integrated RoboSherlock[17] into our framework. It is ROS-
compatible and wraps a variety of vision algorithms in order
to classify certain structures in sensor data. When receiving
a percept, RoboSherlock can analyze the data and maintain
an internal belief state of the environment. After analyzing
the data, every percept can be saved in an internal database
alongside with all the hypotheses of the individual perception
algorithms inside RoboSherlock. The logged percepts and
annotations can not only be used for learning problems,
but are also suitable to debug already trained models on a
percept- or scenario-level.

The Critic measures the performance of the current agent
in the selected Scenario. This happens by observing the
current state of the Scenario Runner and the High-Level
Agent Control and gathering the meta data about the cur-
rently executed Scenario. Additionally, the Critic captures
the computed belief state from the perception system and
compares this with the ground truth of the current Scenario.
The resulting feedback of this evaluation will be send back
to the perception system which is able to improve its own
models by incorporating suitable learning techniques.


https://github.com/code-iai/ROSIntegration

Fig. 4: The platform for the experiments. The REFILLS
platform has been developed at the IAI@Uni Bremen.

Even though the proposed system is capable of providing
data for supervised learning problems, it could also be used
to systematically evaluate vision algorithms, like in [6] and
[5]. Different setups of object constellations or orientation
changes can be modeled in our SDL and then systematically
tested with our proposed software system.

IV. EXPERIMENTS

The framework has been created to support the develop-
ment of robust perception routines that can benefit from per-
cepts that are following a task-specific distribution. To fully
evaluate this approach, an extensive amount of annotated real
world data is required that has been acquired by a mobile
robot in long-term tasks. Since it is not feasible yet to create
such a comprehensive data set for different manipulation
tasks, we will evaluate this framework in a different manner
and show the plausibility of the framework first.

In the following section, we will discuss the usage of our
framework to train an object recognition system s; for a real
robot and compare this against s; trained with images from
a Microsoft Kinect 2.0 to provide a baseline. The focus of
the experiments is not to propose a certain object recognition
approach, but rather show that the training data generated by
our framework can be used with a comparable performance
on a real robot.

A. Approach

The experiments have been conducted in a super market
mockup, which features multiple shelves and products of
everyday use. To generate learning inputs for the robot, a
super market environment has been modeled in the Simu-
lation Environment of our framework. The fixtures in the
virtual environment are composed of 3D-Models, while the
products have been created by using a Go!Scan50 Handscan-
ner. To evaluate the approach of learning different product
appearances, we have selected a set of 22 products for the
experiments. A Normative Scenario models the potential
position of these products in the virtual super market. It
also features two uniform distributions d; and ds. d; models
the selection of a product p that is to be trained, while do
models a change in rotation of the product’s vertical axis

0.9 1

Accuracy
o
©

|

o
~
\

0.6

—&— Kinect Training Data
—&— Framework Training Data

o 10% 100%
Percentage of Training Data

Fig. 5: Accuracy results for the example object recognition

system s;. Training samples are a) captured from real world

kinect and b) generated by our framework. The plot shows

that there is only a small gap between real world training

data and data generated by our framework.

in the interval of [0, 27) radian. By sampling the Normative
Scenario 7700 times, we achieve 7700 Concrete Scenarios
which feature different products and changed poses on which
the learning agent can be trained. The High-Level of the
learning agent calculates the viewpoint relative to p and sets
the virtual RGBD camera in the Simulation Environment
accordingly. RGBD percepts are collected by RoboSherlock
to segment p from the sensor data and generate a ROI in the
RGB image that only features p. The percept and segmented
data are stored in the Percept Database.

To generate real world training data a Kinect 2.0 sensor
has been used. Capturing such training data is very labor-
intensive and therefore naturally limited. For each of the 22
products, 72 images have been taken by rotating the sensor
around each product in steps of 3% radian. This results in
a total of 1584 training images. For each of the training
images, the shown product is segmented and stored.

To train the object recognition classifiers ¢frqmework and
Ckinects the framework and kinect training images are fed
seperately into the pre-trained ImageNet [18] in the ILSVRC-
2012 variant and features from the final hidden layer are
extracted. These ,,DeCAF7” features [19] are used to train
k-NN classifiers with the Chi-Square distance:

(D

During classification, a ROI of a product candidate is fed
through the ImageNet and DeCAF7 features are extracted.
After performing a k-NN search with k£ = 3, the predicted
class is equal to the class most common among the k
neighbors. An evaluation dataset has been recorded with the
Intel RealSense 435 camera of the robot. Each product is
recorded in up to 14 different configurations, including par-
tial occlusions, varying distances and views of the generally
less feature-rich backside of products.



B. Results

Both classifiers ciinect and cframewort have been eval-
vated on the described dataset. To study the performance
effect of the number of used training images, both classifiers
have been evaluated multiple times while reducing the set
of training data. The results of the experiments are shown
in Fig. 5. Both classifiers show a similar performance when
presented with high percentages of the training data sets.
While cpinect outperforms ¢framework. it takes the classifier
a considerable amount of training data to achieve this per-
formance. Misclassifications by cfrqmework are mostly due
to a confusion of two objects which are equal in size, shape
and very similar in their texture. We suppose that cpinect
performs better for these objects because the training data of
the kinect data is generally slightly sharper than the texture
of the 3D-Models, which is a result of our 3D Handscanner.

We showed that the accuracy gap between an object
recognition system with training data from a kinect and our
framework is small. We expect that with developments in 3D
scanners in the near future the gap between simulated and
real world training data is even closer. Generating training
data in the real world is usually very labor-intensive and is
therefore naturally limited. By using our framework, we have
the possibility to generate arbitrary amounts of high quality
training data. Having this possibility allows us to generate
useful training samples of many different configurations of
complex scenarios that could not be efficiently reproduced,
captured and annotated in the real world. This may lead to
robust robotic systems, that can generate the necessary train-
ing data for vision systems in complex everyday activities.

V. RELATED WORK

Qiu et al.[6] introduced UnrealCV, which is a framework
to use UE4 for vision tasks. In their work, they generated
a synthetic image dataset with ground truth annotations
and tested a neural network model against images from
varying viewpoints of a scene. Zhong[20] used UnrealCV in
a reinforcement learning setting where moving agents should
learn to avoid collisions. Our approach allows a similar set
of features, but also includes tools to manipulate the virtual
environment during runtime and handle the execution of
batches of scenarios. Skinner et al.[5] studied the usage of
game engines in vision. They showed a relation between
the performance of vision algorithms on real world and
synthetic data in a SLAM experiment. The authors also stated
that ,,Integrating the game engine into the ROS environment
would enable us to run a robotic vision algorithm in a man-
ner analogous to a hardware-in-the-loop simulator, with its
output commanding the camera pose in the simulator and the
rendered image serving as input.”. With our published ROS
communication interface, this integration is made possible.

Shah et al.[21] introduced a UE4-based simulator for
multicopters and associated learning tasks. Our work extends
this approach by utilizing a Scenario Description Language
to bootstrap different learning environments, controlling an
arbitrary complex agent in it and providing a more general-
ized way of accessing the simulator by integrating the well-

known ROS framework instead of a domain-specific RPC
API. Ganoni et al.[22] also created a UE4-based simulation
for multicopters and measured the effect of wind or light
changes on the performance of tracking algorithms in a fixed
natural environment. Related work on scenario descriptions
varies between domains. The Scene Description Format[23]
is often used with the Gazebo Robotic Simulator to describe
virtual environments. However, it does not include the nec-
essary Scenario Meta Data and High-Level Parametrization
to handle a batch of experiments to run from different
scenario descriptions. The STISIM vehicle simulator[24] was
used in research to study the effects of different in-vehicle
scenarios. The subject will face pre-programmed scenarios
which are defined in a ,,Scenario Definition Language”.
Possible definitions in this language are focused on placing
pre-defined traffic-related objects into a scene or changing
the conditions of the road environment. The fidelity of the
renderings are subpar to UE4, which makes it impossible to
use STISIM for real world vision tasks.

VI. CONCLUSION

We presented a novel framework with a specialized sce-
nario description language to automatically create training
data that follows a task-specific distribution. Respecting this
distribution for training data is important, because many
learning algorithms assume that the training data follows the
same distribution as the input data of the target domain. The
gathered data is valuable for robots, because modern game
engines allow us to create training data from a photorealistic
simulation environment. This has the potential to increase
the robustness of future vision algorithms, because they can
be trained on more realistic data while accounting the actual
distribution of the target domain.

In our experiments, we showed the plausibility of the
framework by demonstrating an example object recognition
system on a real robot. The system showed similar perfor-
mance results when trained with real world data versus the
same system trained with data generated by our framework.

In future work, we strive to use this framework in the
context of mobile household robotics. A robot with a basic
perception system will be confronted with multiple house-
hold tasks. It shall then improve its perception performance
by using our framework to benefit from training data that
follows a task-specific distribution.

We will also investigate the usage of Virtual Reality(VR)
in conjunction with our framework. To learn real world dis-
tributions of objects in specific tasks, subjects could be asked
to fulfill this task in a virtual environment with VR devices.
VR allows the subject to almost naturally interact with the
virtual world and therefore to manipulate the environment in
a similar way to how it would have been done in the same
task in the real world, getting more realistic data.

ACKNOWLEDGMENTS

This work is partially funded by Deutsche Forschungsge-
meinschaft (DFG) through the CRC 1320, EASE and by the
EU H2020 project REFILLS (Project ID: 731590).



[1]

[2]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016, pp. 3234-3243.
X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object
detectors from 3d models,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1278-1286.

A. Teichman and S. Thrun, “Tracking-based semi-supervised learn-
ing,” in Robotics: Science and Systems, Los Angeles, CA, USA, 2011.
J. Skinner, S. Garg, N. Siinderhauf, P. Corke, B. Upcroft, and M. Mil-
ford, “High-fidelity simulation for evaluating robotic vision perfor-
mance,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2016, pp. 2737-2744.

W. Qiu and A. Yuille, “Unrealcv: Connecting computer vision to
unreal engine,” arXiv preprint arXiv:1609.01326, 2016.

S. Qiao, W. Shen, W. Qiu, C. Liu, and A. Yuille, “Scalenet: Guid-
ing object proposal generation in supermarkets and beyond,” arXiv
preprint arXiv:1704.06752, 2017.

M. Roberts, D. Dey, A. Truong, S. Sinha, S. Shah, A. Kapoor,
P. Hanrahan, and N. Joshi, “Submodular trajectory optimization for
aerial 3d scanning,” in International Conference on Computer Vision
(ICCV) 2017, 2017.

A. Farhadi, 1. Endres, D. Hoiem, and D. Forsyth, “Describing objects
by their attributes,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. 1EEE, 2009, pp. 1778-1785.

C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classi-
fication for zero-shot visual object categorization,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 453—
465, 2014.

I. D. Horswill, “Specialization of perceptual processes,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 1993.

Epic Games, “What is Unreal Engine 4, http://www.unrealengine.
com, 2018, [Online; accessed 10-09-2018].

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Lerer, S. Gross, and R. Fergus, “Learning physical intuition
of block towers by example,” CoRR, vol. abs/1603.01312, 2016.
[Online]. Available: http://arxiv.org/abs/1603.01312

Open Source Robotics Foundation, “tf2,” http://wiki.ros.org/tf2, 2018,
[Online; accessed 10-09-2018].

C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, “Ros-
bridge: Ros for non-ros users,” in Robotics Research. Springer, 2017,
pp- 493-504.

MongoDB, Inc., “BSON Specification,” http://bsonspec.org, 2018,
[Online; accessed 10-09-2018].

M. Beetz, F. Balint-Benczédi, N. Blodow, D. Nyga, T. Wiedemeyer,
and Z.-C. Mdrton, “Robosherlock: Unstructured information process-
ing for robot perception,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on. 1EEE, 2015, pp. 1549-1556.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition,” in International conference on machine learning,
2014, pp. 647-655.

F. Zhong, “Integrate unreal engine with openai gym for reinforce-
ment learning based on unrealcv,” https://github.com/zfw1226/gym-
unrealcv, 2016, [Online; accessed 10-09-2018].

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-
fidelity visual and physical simulation for autonomous vehicles,”
in Field and Service Robotics, 2017. [Online]. Available: https:
/larxiv.org/abs/1705.05065

O. Ganoni and R. Mukundan, “A framework for visually realis-
tic multi-robot simulation in natural environment,” arXiv preprint
arXiv:1708.01938, 2017, wSCG 2017 proceedings.

Open Source Robotics Foundation, “SDFormat,” http://sdformat.org/,
2018, [Online; accessed 10-09-2018].

Y. I. Noy, T. L. Lemoine, C. Klachan, and P. C. Burns, “Task
interruptability and duration as measures of visual distraction,” Applied
Ergonomics, vol. 35, no. 3, pp. 207-213, 2004.


http://www.unrealengine.com
http://www.unrealengine.com
http://arxiv.org/abs/1603.01312
http://wiki.ros.org/tf2
http://bsonspec.org
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
http://sdformat.org/

	INTRODUCTION
	Motivation
	SYSTEM ARCHITECTURE
	Scenario Description Language
	Simulation Interfacing
	Optimizing Perceptual Agents

	EXPERIMENTS
	Approach
	Results

	RELATED WORK
	CONCLUSION
	References

