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Abstract— Better sensing is crucial to improve robotic grasp-
ing and manipulation. Most robots currently have very limited
perception in their manipulators, typically only fingertip posi-
tion and velocity. Additional sensors make richer interactions
with the objects possible. In this paper, we present a versatile,
robust and low cost sensor for robot fingertips, that can
improve robotic grasping and manipulation in several ways:
3D reconstruction of the shape of objects, material surface
classification, and object slip detection. We extended TUM-
Rosie, our robot for mobile manipulation, with fingertip sensors
on its humanoid robotic hand, and show the advantages of the
fingertip sensor integrated in our robot system.

I. INTRODUCTION

Our goal is to improve the reliability of robotic grasping

and object manipulation by enhancing the sensing capabili-

ties of robotic manipulators. Adding sensors to robot hands

fills a widespread gap in humanoid and service robotics:

As soon as a robot gets close and grasps an object, the

view from the ’head’ is heavily occluded by the hands and

arms. Meaning that the best sensors available (cameras/range

sensors) will not have a clear view of the object anymore, and

the grasping and manipulation action will take place without

good feedback information. The sensor that we propose in

this paper attacks this problem in several ways.

Robots interact with the world using their manipulators,

and there is a great range of them: from simple parallel-jaw

grippers to complex humanoid hands with many degrees of

freedom. Their basic function is to fixate objects within their

’fingers’ by applying a certain amount of force, and letting

friction do its job. An important limitation is that most of

them only have proprioceptive sensing, usually the position

and velocity of the fingers, so they can only indirectly gather

information about the objects they are manipulating.

In this paper we propose a sensor that can be installed di-

rectly in the fingertips, and extend the perceptual capabilities

of the hand to:

1) Reconstruct the 3D shape of objects, specially the

occluded parts close to the chosen grasping area.

2) Recognize the surface texture of objects (quickly and

accurately).

3) Detect slip of the object while manipulating (lift-

ing/holding).
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Fig. 1. TUM-Rosie, our mobile manipulation platform. Fingertip sensors
installed in its right hand improve autonomous grasping, let it recognize
object surfaces, and detect object slip.

Fig. 2. System components (left image, clockwise): Fingertip sensor, SPI
controller, FLOSS-JTAG. Right: A 3D-printed fingertip for the DLR/HIT
Hand.

In order to realize those capabilities, we have designed a

fingertip sensor (Fig. 2) that has the following basic modes:

• Proximity sensor: It can measure the distance to objects

with a range of 1-10mm. This is the distance necessary

for pre-touch sensing, that can be used for reconstruct-

ing the occluded shape of the object, or for pre-grasp

finger positioning. This is particularly important for

improving autonomous grasping.

• Surface image acquisition: The sensor transmits a

30x30pixel image from an area of the object of around

1 square mm. This data is used for surface recognition.

• Optical-flow measurement: The sensor can measure tan-

gential displacements of the objects held in the fingers,

and be used as a slip sensor.



Fig. 3. Fingertip sensor size comparison, and the sensor on top of a fingertip
of our DLR/HIT 4-Finger robot hand.

We have installed the fingertip sensors in our robot, TUM-

Rosie (Fig. 1). In the following sections we show how they

can be used to improve robotic grasping. Taking a typical

pick and place scenario as an example: The robot will use

the fingertip sensor’s functionality as described above. First,

it can do a 3D shape reconstruction in order to more reliably

grasp the object. As soon as the object is in the hand,

surface images can be acquired to recognize the object’s

surface texture and confirm its identity. Finally, during lifting

and carrying of the object, the slip detection can alert of

undesired movements of the object.

II. RELATED WORK

The idea of adding sensing to the manipulators is not new.

In fact, in the early days of robotics, having sensing on the

robot’s hand was a way to concentrate the limited computing

resources to the place where the contact could happen. It was

a type of data filter: Instead of observing a big area with a

camera and processing a lot of data to find the position of

the hand, it was better to have local sensors on the hand react

to tactile or other input.

There was a lot of interesting work in tactile sensors, and

how they could be used to gather information through contact

and then to reconstruct object shapes[1]. Some years later

there were already interesting overview papers[2], explaining

principles of operation of many different sensors for manip-

ulators: Tactile sensors, force/torque sensors, surface normal

sensors, actuator effort sensors, and others. These ideas are

still valid today. [3] is a recent reference of tactile sensing

technologies for robots.

As computers became faster, it was possible to operate on

bigger data sets, and there was a shift towards environment

sensing. Initially this meant a lot of work in computer vision,

and most recently in 3D sensors. As an example, today we

see a lot of attention to algorithms that work on point clouds

from real-time depth sensors which are even put together to

make detailed maps of the environment. We are starting to

come full circle, and the advantages of manipulator sensing

become clear again. Thanks to miniaturization in electronics,

and to more robust equipment, there are many new sensing

modalities available for robot hands or grippers.

In this paper both approaches come together, as we use

realtime 3D depth sensors to model the shape of an object,

and fingertip sensors to reconstruct the missing information

because of occlusions.

Recent work has shown the usefulness of pre-touch sens-

ing. These systems use proximity sensors, typically based on

Fig. 4. Three fingertip sensors installed in the DLR/HIT hand (thumb,
index and ring fingers).

capacitive[4] or infrared[5] principles, which are installed

in a robot’s gripper. They are used to position the fingers

correctly for grasping, detect interaction with humans, and

to grasp objects that could not be detected precisely through

other means. Also, a grasp controller based on human control

schemes shows the advantages of tactile sensing in [6],

including mechanisms to use grip force estimation and slip

detection using pressure sensors on the PR2 robot.

We have also seen fast development in the field of robotic

skin. Advanced designs[7] include multi-modal sensors, in-

cluding infrared proximity sensors. There is still work being

done on reducing the size of the skin units, and making them

more reliable, but we expect to see a more widespread use.

Designs using capacitive sensors [8] are already being used

to cover fingertips and larger areas.

Also related are systems that include a stereo camera[9], or

a depth sensor on the robot’s gripper. These systems deliver

very rich point clouds from the environment in the close

vicinity of the gripper, which has a very different point of

view than the robot’s head. This is useful for dealing with

occlusions. One disadvantage is that the arms are often not

long enough to capture a view from behind an object.

As early as 2002, optical mouse sensors have been used

for odometry in miniature robots [10], and their use as a

slip sensor is a only natural progression. More recently, they

have been used to measure slip for haptic applications during

contact [11].

There are promising studies of surface texture recognition

done by robots. [12] shows good results obtaining data from

a metal pin stroking a surface. In [13], several machine learn-

ing algorithms are analyzed for surface texture recognition

using data from an advanced biologically inspired finger.

III. SYSTEM OVERVIEW

TUM-Rosie is our mobile manipulation robot for human

indoor environments. The robot has two KUKA LWR-4[14]

lightweight robot arms, with DLR/HIT[15] hands as manip-

ulators. Both arms and hands are state of the art devices,

and have much better proprioceptive sensing capabilities

than most other robots. The hands include 3-DOF torque

sensing in each finger and report the complete state (position,

velocity, torque) of all the joints with a high framerate.

Additionally, in order to improve the capabilities of our

system, we have installed three fingertip sensors (Fig. 4) in

the robot’s right hand.



A. Fingertip sensor

The fingertip sensor is built around the Avago Technolo-

gies ADNS-9500[16], a high-end laser navigation sensor

designed for computer mice. The ADNS-9500 is essentially

a miniature 30x30pixel high-speed camera with an integrated

laser emitter and a microcontroller. The collimated laser light

makes minuscule cracks and surface characteristics visible

to the camera, so that it can detect optical flow (motion)

even on difficult surfaces like glass or porcelain. The internal

registers and the image obtained by the on-board camera

are accessible over a high-speed (2Mbps) SPI bus. This

makes it possible to use the sensor as a simple optical

proximity sensor (by looking at how much laser light is

bouncing off the objects), as a miniature surface camera

(for surface recognition), and as a slip sensor (measuring the

displacement of the surface on the fingertips, like a regular

computer mouse).

We developed the following components of the fingertip

sensor system (Fig. 2):

• A miniature board (15x15mm) with support electronic

components for the Avago ADNS-9500 sensor. Using

this board, the sensor can be installed in small places,

and only has one small connector for the SPI data bus

and power.

• The SPI-controller: A microcontroller board that con-

trols up to four ADNS-9500 sensors (one for each

fingertip in our robot hand). This board is based on

an STM32 72MHz microcontroller, and deals with the

low level control of the Avago sensors.

• A slightly modified version of the FLOSS/JTAG, a high-

speed USB to serial converter and JTAG programmer,

for communication with the computer and easy pro-

gramming of the firmware of the SPI-controller.

The fingertip sensor has been developed as a free

software/free hardware project, so all the information

necessary for building it is available online under

free (as in freedom) licenses at this address:

http://toychest.in.tum.de/wiki/projects:fingertip. This

includes all the schematics, the circuit board designs,

and the software.

The cost of the system is very low: It is possible to get

all the components for a setup with four fingertip sensors,

as needed for installation on humanoid robot hands, for ap-

proximately $200 USD. We also used a 3D-Printing service

to make the new fingertip housings, for a cost of around $20

USD each. This has an excellent cost/benefit ratio, taking

into account the additional capabilities given to the robot

hand.

The size of each fingertip sensor is 15 x 15 x 16mm

(See Fig. 3), small enough to be installed in the jaws of

a parallel-jaw gripper, or the fingertips of many robot hands.

The dimensions of the two other boards put together is 34.5

x 17 x 15mm.

The complete system communicates with the computer

over a USB connection, which also provides the supply

voltage.

Fig. 5. TUM-Rosie’s perception of a iced tea package on the kitchen
counter. On the top left, the point of view of the robot is shown. The other
images show the extension of the occlusion: the robot does not perceive
any 3D points on the left side, right side, or the back of the object. This
is a typical problem when using sensors mounted on the robot’s head: the
perspective is good to see a lot of the environment, but often only the frontal
faces of the objects can be seen.

B. Integration into the robot hand of TUM-Rosie

We use ROS[17] as a communication middleware for

integrating the different components of our robot, and the

ROS nodes used for capabilities described in this paper are

accessible as a part of the official TUM-ROS[18] repository.

The corresponding nodes stream data in a way that is easy

to use for other ROS components. For example, the proximity

sensing is combined with position information obtained from

forward kinematics to generate a standard ROS 3D point

cloud.

IV. 3D SHAPE RECONSTRUCTION: IMPROVING THE

OBJECT SHAPE ESTIMATION FOR ROBOT GRASPING

The laser in the ADNS-9500 sensor emits infrared light

at an angle, so that the maximum amount of light will be

reflected when an object is at a certain distance from the

sensor, and decreases as the object moves further away. It

is possible to estimate the distance to the nearest object by

evaluating the values of the internal registers of the ADNS-

9500 sensor, specially the shutter speed and frame period of

the internal camera. These values are adjusted continuously

by the sensor, so that we can detect the presence of an object

positioned 1-10mm front of the sensor reliably. This is the

functionality required for its use as a proximity sensor. When

such sensors are used in robotic grippers, they are sometimes

known as pre-touch sensors.

We use the proximity information to reconstruct the shape

of an object without touching it. Our robot has a RGB-D

(Xbox KinectTM) sensor on its head that delivers high quality

point clouds from objects, but they are often incomplete

because of occlusions. The fingertip sensors complement

our perception system for grasping by delivering shape



Fig. 6. Left: The point cloud corresponding to the iced tea package has
been segmented and is shown in color. Right: The centroid and covariance
of the points represent the object for use in grasp planning. The centroid is
marked by the frame axes, and the ellipsoid represents the covariance. Note
that the robot underestimates the size of the object considerably.

information from occluded areas, specially the ones around

possible grasping locations.

A. The occlusion problem

Let us observe a rectangular iced tea package using the

RGB-D sensor mounted on the robot’s head. Fig. 5 shows the

point cloud data as it is perceived. The data looks complete

from the point of view of the robot, but after looking at

the points that represent the rectangular box from the side,

the missing information becomes evident. The robot has

basically no information from the sides or back of the box.

We use COP[19], [20], a software developed in our

institute for robotic perception. One of the functions of COP

is to search for point cloud clusters, which are segmented

point clouds that belong to objects on the table. For this, it

identifies the points belonging to a support plane (the table)

in the complete point cloud obtained from the RGB-D sensor,

and removes them. Now the point clouds belonging to objects

on the table are left isolated from each other, and can be

easily segmented. The result of this process can be seen in

Figure 6. The point cloud representing the iced tea package

has been correctly segmented and is shown in color on the

left.

We use the simple-grasp-planning (SGP) library[21] to

plan possible grasping positions for the robot. The SGP uses

a simple description for the position and shape of the object,

namely a 3D Gaussian distribution. This is just a point in

space (x,y,z) describing the centroid of the object and the

3D covariance (6x6 matrix) describing the shape. Both are

estimated from the segmented point cloud of the object. As

can be seen in Figure 6 (right), the shape estimate of the

object is wrong when large parts of the object’s surface are

occluded.

A grasp pose suggested by SGP is shown in Fig. 7. After

underestimating the size of the object (see Fig. 6), the robot

will try to grasp the object from the side, thinking it is smaller

than it really is, and will collide with the fingertips while

doing so. Our robot can detect such collisions using torque

sensors on the finger joints, and use a reactive grasping

approach, so that it might still succeed in grasping, but it

could push the object away and a re-detection would be

Fig. 7. A grasp planned by SGP based only on shape information from
the RGB-D sensor, where the size of the object is underestimated. The
representation of the hand is shown in dark red.

Fig. 8. The robot explores the shape of an object by moving the fingers
close to it.

necessary. It is better to use the proximity sensors to avoid

pushing the object in the first place.

B. Obtaining a point cloud using proximity data

Each time that an object is detected close to a fingertip

sensor, we calculate the position of the detected point in

space using forward kinematics. These points are continu-

ously assembled into a point cloud that describes the shape

of the surface seen by the fingertip.

Correct calibration of the robot’s arms and hands is

necessary to reach a good spatial precision. Also important

are a good time synchronization and high data rates for

position streaming of all the involved joints.

In TUM-Rosie, we use a kinematic description of the robot

that includes all the robot parts including the arms and hands.

The position of the joints of the arms is reported at 1kHz,

and the joints of the hands at 800Hz. The fingertip sensor

streams proximity data at a rate of approximately 50Hz per

sensor.

Our system calculates the forward kinematics of the chain

from the base of the robot to the fingertip in real time, and

publishes a new point cloud for the fingertip sensors at the

same rate of the proximity data. Fig. 8 shows our robot

gathering point cloud data from the back of the object.

C. Reconstructing the object shape (filling in the occluded

faces)

To make a better shape estimate, we can combine the point

cloud detected by the RGB-D sensor with the one from the

fingertip sensors. The original method in SGP for finding

the 3D Gaussian representing the object iterates over all the

points in the point cloud and gives them the same weight.

This does not work well with the combined point cloud



Fig. 9. Shape reconstruction of the object using the fingertips as proximity
sensors. On the top, 3D points are acquired by moving the hand close
to the object, but without touching it. In the bottom, the result of shape
reconstruction using the combined point cloud from the RGB-D sensor and
the fingertip sensors is shown.

because the RGB-D data has many times more points than

the fingertip data, effectively giving a smaller importance to

the last.

To solve this, we now use the following method for finding

the 3D Gaussian representation of the object:

• The segmented object point cloud from the RGB-D

sensor and the point cloud from the fingertip sensors

are joined together.

• The convex hull of the complete point cloud is calcu-

lated.

• The centroid and covariance of the convex hull is calcu-

lated, and this is the 3D Gaussian point representation

needed by SGP.

In order to find the centroid and covariance of a convex

hull, we need to iterate over all the triangles that describe

it, using their areas as a weighting factor. We implemented

the algorithm as described by Ericson[22], which treats the

convex hull’s polyhedron as a hollow body.

The results of this method can be seen in Fig. 9. Here

the robot explores the back of the iced tea package, moving

the fingertips close to the object. As more points in the back

of the object are detected, the estimated shape of the object

keeps improving, until it resembles the real shape of the iced

tea package closely.

The system runs the estimation of the shape continuously

and new shape estimates are available at a rate of 2 Hz.

Another example of the surface reconstruction is shown

in Fig. 10, where the robot perceives a bread toaster on

the kitchen counter. Since the top of the toaster has many

metallic parts that are not detected by the RGB-D sensor,

almost all of the points in the segmented point cloud are in

the frontal face of the toaster. The original shape estimation

is particularly bad. After moving the robot’s hand close to

Fig. 10. Another example of the shape reconstruction. Top: A toaster is only
partially perceived by the RGB-D sensor, and the 3D Gaussian (centroid +
covariance) shape estimation work inadequately because most of the 3D
points are located on the front face of the toaster. Bottom: The hand moved
close to the back face and an additional point cloud was obtained using
the fingertip sensors. The shape reconstruction represents the object much
better.

Fig. 11. Using the point cloud obtained from the fingertip sensors, the
robot can now find better grasp poses.

the back face, the system created a shape estimate using the

described method that was much closer to reality.

Fig. 11 shows a two grasp positions suggested by SGP,

taking into account the improved object shape estimation.

Using this system, the robot is now able to grasp objects

more reliably.

V. SURFACE CLASSIFICATION

When the fingertip sensor is close enough to an object, the

sensor can obtain detailed images of the surface’s texture.

This can be done while holding an object, or sliding the

fingertip over it. These images contain enough information

to differentiate one object from another. The goal here is to

give the robot the ability to learn the texture of objects, and

use this information to recognize them later. When grasping

an object, the robot can quickly decide if the right object

was grasped.

Texture is an important characteristic when recogniz-

ing object surfaces. Gray Level Co-Occurrence Matrices



Fig. 12. Objects used for the surface classification experiment. Samples
were also taken holding the sensor in the air. The pancake mix bottle was
divided into two classes because their surfaces are very different: one for
the label, and the other for the plastic material of the bottle.

ID Class Total frames
taken

Training
frames

Testing
frames

1 acrylic table 200 160 40

2 wood 200 160 40

3 air 200 160 40

4 shampoo 400 320 80

5 lego 200 160 40

6 cup 600 480 120

7 tomato soup 600 480 120

8 bread board 200 160 40

9 pancake label 400 320 80

10 pancake bottle 400 320 80

11 yogurt 600 480 120

12 ketchup 600 480 120

13 iced tea 600 480 120

TABLE I

LIST OF THE DIFFERENT CLASSES USED IN THE CLASSIFICATION

EXPERIMENT AND THE NUMBER OF SURFACE SAMPLES RECORDED FOR

EACH ONE.

(GLCM) also known as Gray-Tone Spatial-Dependence Ma-

trices [23] have proven to be a good method to abstract

texture information from gray tone images. Using them as

input for a support vector machine algorithm (SVM)[24], we

classify surface images from the sensors.

To evaluate the performance of the surface recognition

system, we chose several test objects available in our test

kitchen. Thirteen object surfaces (see Fig. 12) were recorded

by sliding a fingertip sensor over the objects. These surfaces

are the classes to be recognized by the SVM. Objects

with more heterogeneous surfaces require recording for a

longer period of time in order to cover the different regions.

This translates into more image frames. The shutter speed

information from the sensor is also saved for each frame.

Table I shows the list of classes and the amount of frames

taken for each one.

Fig. 13 shows three images of the pancake bottle surface.

The sensor reveals details that are not visible to the human

Fig. 13. Three different surface images from the pancake-mix bottle. The
sensor registers details that are not visible to the human eye.

Fig. 14. Surface images corresponding to: acrylic table, wood and metal.
The system is able to reliably classify the surfaces based on such images.
It is possible to appreciate the texture differences.

eye. Figure 14 shows example surface textures of three

different objects: The acrylic table, wood and a piece of

metal.

Before running the classification experiments we randomly

build a training and a testing set. For each object class, 80%

of the pictures are used to train the SVM and the other 20%

for testing. From each 900 pixel image, a 16x16 normalized

GLCM is computed. GLCM is obtained by first mapping

each pixel’s original intensity value (0 - 255) into a new

intensity value (0 - 15 in our case). This way, a new image

with only 16 tones of gray is obtained. Next, the algorithm

counts how often pixels with intensity value i are “close” to

ones with intensity value j. We use the 8 closest neighbor

pixels of the one that is currently checked. This means, the

algorithm scans the whole image, and for each pixel px it

checks the intensity values of its 8 neighbors pn1, ..., pn8,

incrementing the (i, j) element of the resulting GLCM, given

that the intensity value of px is i and that of the neighbor

being inspected is j. Reviewing all 8 neighbors, makes the

GLCM and thus the classification more independent of image

rotation.

The GLCM is then normalized and reorganized into a 256

element vector. The normalized shutter speed value of that

frame is also added to the feature vector. This value adds

important information, since with it, the sensor compensates

for differences in surface reflectivity. With the feature vectors

ready, the SVM can now be trained and tested. We used

libsvm[24] with the following configuration: RBF kernel,

C_SVC type, gamma = 1.0 and cost = 6.0.

The results of the classification experiment are registered

in Table II. These values can vary slightly, depending on the

randomly selected training and testing sets. The recognition

system performs very well, specially considering that several

surfaces were very similar to each other, like the product

labels.

It is important to note that because of the high percentage



1 2 3 4 5 6 7 8 9 10 11 12 13

1 39 1

2 1 33 3 1 1 1

3 40

4 51 10 2 7 2 8

5 1 36 1 1 1

6 1 7 89 1 2 4 12 2 2

7 2 5 4 1 1 79 7 5 6 6 4

8 1 1 33 1 4

9 3 1 10 66

10 2 1 1 72 2 2

11 1 5 12 4 2 66 23 7

12 2 3 1 1 4 2 1 1 3 15 79 8

13 3 3 1 2 3 6 9 93

TABLE II

CONFUSION MATRIX FOR THE FIRST CLASSIFICATION EXPERIMENT. THE

LEFT COLUMN SHOWS THE REAL CLASS ID AND THE FIRST ROW SHOWS

THE CLASSIFICATION RESULT.

Fig. 15. Macro images of the different material surfaces used in the
second classification experiment. From left to right and from top to bottom:
(1)metal, (2)table melamine surface, (3)paper, (4)wood, (5)plastic, (6)glass,
(7)fabric, (8)napkin paper and (9)cardboard.

of correctly classified vectors, the system can classify the

surface correctly using a small number of samples. The sen-

sor delivers images at approximately 50 Hz, so that a correct

and certain classification can be expected by classifying the

images obtained in under one second.

Several of the objects used for the classification ex-

periment have very similar surfaces, especially the ones

with printed labels. So we also evaluated the classification

performance on surfaces of different raw materials. For each

surface 240 frames were taken, and again, 80% of them were

used to train the SVM and 20% were used for testing. Fig. 15

shows the textures to be classified. The results are registered

in table III.

VI. SLIP DETECTION

The fingertip sensor is capable of detecting the relative

motion of objects located at a short distance from the sensor’s

lens. The sensor is installed in the fingertip so that when the

hand is grasping an object, the distance to the surface is

optimal.

1 2 3 4 5 6 7 8 9

1 48

2 47 1

3 47 1

4 47 1

5 48

6 48

7 47 1

8 46 2

9 2 1 1 44

TABLE III

CONFUSION MATRIX FOR THE SECOND CLASSIFICATION EXPERIMENT.

THE CLASS ID FOR EACH MATERIAL SURFACE IS GIVEN IN FIG. 15.

While doing pick and place tasks, the objects are rigidly

grasped by the robot, and any movement detected by the

fingertip sensors is directly translated to slip of the object.

Good slip estimation is difficult based on data from

the typical sensors available on robotic grippers: Position

sensors, or force/torque. A good example of this problem are

glass bottles: Because of their regular shape and low-friction

surface, they can slide out of the hand without making

significant changes to the position and force signals of the

gripper.

The proposed fingertip sensor excels at this task, and can

deliver reliable slip data at approximately 50Hz per sensor or

up to 200Hz if only one sensor is selected. The robot can use

this information to adjust the grasping force while carrying

an object, or decide to hold the object with a second hand

in order to keep it from falling.

To demonstrate this capability we implemented the auto-

matic adjustment of the grasping force to avoid object slip in

the hand, keeping the force close to the minimum necessary.

The robot grasps an object with an initial default force, and

it reduces the applied force on the fingertips until slip it

detected. Then it immediately holds the object a bit harder to

keep it stable. If more slip is detected, the force is increased

further. Using this simple method, the robot can hold objects

between the fingers stably, but using a low force. A good side

effect of this method is that the hands’ motors stay much

cooler while holding an object, since the torque they have to

apply is now lower.

Fig. 16 shows the relationship between grasping force and

detected slip during a grasping action. The slip is detected

early and quickly enough to avoid any large movement of

the object. Also during dynamic movements of the arm, the

hand can adjust the grasping force before letting the object

slip away more than a few millimeters.
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Fig. 16. Finger torque and slip signals during the automatic adjustment
of grasping force. (a) The fingers moved to grasp the object, and they hold
it. After (b), the torque is slowly reduced until the object moves a small
distance, and slip is detected in (c). At (d), the fingers have now grasped
the object stably again, but with a lower force. If the object is disturbed
externally (e and f), the fingers apply more force.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new sensor for robot finger-

tips, and several ways how it can improve robotic grasping

and manipulation. The sensor is very versatile, and there are

still other possibilities to explore.
Each of the sensor’s three modalities is useful in different

sections of a typical pick and place action: In situations

where only part of the object is visible to range sensors,

it can complete the 3D shape information, and this in turn

makes it possible for the grasp planner to give good grasp

pose suggestions. As a surface texture sensor, the robot can

use it to find objects whose texture it has learned previously,

or to check the identity of an object it has grasped. Finally,

the sensor can make carrying objects safer, as the robot gets

a warning that the grasped object is slipping, and can take

corrective actions.
In a follow-up paper, we plan to discuss methods for the

automatic exploration of occluded sections of objects, and the

functionality as a pre-grasp sensor: To position the fingers

around objects to maximize the grasp success chances.
Finally, one of our long term goals is to have closed-loop

grasping, where the pose of the object is tracked continuously

in real-time, through a combination of proximity sensors in

the fingertips and tracking algorithms for RGB-D sensors in

the head. We believe that this will make possible the reliable

grasping of moving objects.
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