
2025 ©IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other uses, in

any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, cre-

ating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of

this work in other works.

RobAuditor — A Methodology for Scalable and Context-Adaptive Task

Execution Verification in Safety-Critical Robotic Processes

Franklin Kenghagho K.1, Jean-Baptiste Weibel2, Saifeddine Aloui4, Miguel Prada3,

Michael Neumann1,Clémence Dubois4, Nirmal Raveendran5, Mathieu Grossard4,

Anthony Remazeilles3, Markus Vincze2, and Michael Beetz1

Abstract— Robots autonomously exhibit more and more
physical as well as mental capabilities in various sectors
of our societies (e.g., healthcare labs, factories, households,
shops). However, safety is essential in such human-centered
environments and failing to address it only hinders the effective
integration of these robots. In response to this observation,
robot execution monitoring has been the problem of continu-
ously checking the outcomes of executed actions and reacting
to failures. Unfortunately, past works have mostly developed
solutions for narrowed contexts, failing therefore to generalize
across contexts given the high variability of contexts and the
sensitivity of verification procedures to underlying contexts,
where a robotic process context essentially comprises the
process structure, the available computing resources and the
participants to the process. This being said, this paper proposes
RobAuditor, a methodology for scalable and context-adaptive
task execution verification in safety-critical robotic processes.
The methodology is demonstrated in the context of TraceBot,
a project that tackles the robotization of sterility testing in
medical laboratories.

I. INTRODUCTION

Imagine human agents (top) and the robot (bottom) per-

forming medical tasks, namely the sterility test of medical

products as illustrated in Figure 2. Performing these tasks

(e.g, handling and perceiving flexible tubes, tiny needles,

transparent container or fluids) are not only computationally

challenging (high uncertainty about motion and perception),

increasing the chance of execution failure, but are also

safety-critical with respect to human life and lost costs.

This suggests and as required by the Quality Management

System (QMS) standards (FDA QSR 820, ISO 13485), which

are foundations of the Safety Management System (SMS)

standards, that the performing agents should at least display

three capabilities namely (1) process verification, (2) audit

trail generation, (3) failure recovery and prevention (CAPA).

While process verification ensures the system output’s reli-

ability, failure recovery and prevention reduces the damage

costs, the generated audit trail systematically keeps track of

everything that happened, why, how, when, which resources,

for later and further inspections and appropriate reaction for

instance. Unfortunately, referred to as execution monitoring

in the literature [18, 19] and in this paper as functional

1 with Institute for Artificial Intelligence, University of Bremen, Germany
fkenghag@uni-bremen.de; 2Automation and Control Institute,
TU Wien, 1040 Vienna, Austria; Tecnalia Research & Innovation, Spain3;
Commissariat à l’énergie atomique (CEA), France4; Astech Projects Lim-
ited, United Kingdom5;

Fig. 1: Overview of functional verification problem. Even

verifying the simple grasping action is not trivial as one

might think. Context-awareness and -adaptation are required.

verification (see Figure 1), actual approaches, on the one

hand, (a) do not model some of these capabilities. There

are approaches performing verification without audit trail

generation or without failure recovery and failure recovery

without failure prevention. On the other hand, past works

address them under strong assumptions and in an inflexible

manner that make them difficult to cope with the complexity

of the real world, such as suggested longtime ago by [8],

namely: (b) The diversity of task execution structures. Most

of these past works assume a static task execution structure

though a task may be executed in infinitely many way. The

robot can open the bottle before fetching the needle or the

other way around. The robot can even proceed redundantly,

picking the needle, placing it picking it, ... (c) The diversity

of task execution contexts. the actual procedure to verify if

a tiny needle or a flat sheet has been grasp would likely and

drastically differ from the one to verify the grasp of a big

bottle. And a particular verification procedure would require

some resources such as sensors to be mounted on the robot.

(d) Availability of computational resources. Verification can

last longer than expected hindering the normal flow of the

task execution. In this regard, the control program should be

given the flexibility to start a verification when it desires,

even when the task execution is terminated. However, most

recent actual works bake the execution monitor into the

plan executive, rigidifying then the latter. In this paper, we

introduce a flexible framework RobAuditor (Robot Auditor)

that models the capabilities (1-3) while addressing the issues

(a-b) in eight majors steps such as illustrated by Figure 2.

This being said, the contributions of this paper are threefold

namely:

• Scalable and context-adaptive automated planning

and execution of action verification tasks: scalable

to (task structure, context, computational resources),

online/offline operational, plugin-like, and human- and

machine-centered. We perform both feasibility and success

verification where feasibility verification act as preventive

measures.

• Generation of rich human- and machine- understand-

able audit trail: for understanding the course of the

ongoing or executed process and eventually reacting ap-

propriately (e.g., failure).

• Proof of Concept of the proposed framework in the

context of TraceBot: a project for automation of medical

lab with focus on sterility test

II. RELATED WORK

Though task execution verification is not an old problem

in industrial robotics, the literature is significantly sparse

as far as autonomonous robotics in uncertain environments

is concerned. Moreover, note that we are neither tackling

the problem of (formal) verification nor validation of robot

programs in this paper as controversial with respect to

uncertainty in physical systems[14]. Now let focus on robot

task execution monitoring.

Process Verification. As mentioned by [18], past works can

be clustered into analytical, data-driven or knowledge-based

method. Analytical verification methods rely on mathemat-

ical models of the system to produce expectations that in

turn will be confronted to observations. Though accurate

and straightforward, this approach becomes irrelevant when

the system complexity grows and difficult to model mathe-

matically. Data-driven approaches such as [10] also known

as model-free operate statistically on observations (sensor

data) to detect and classify failure. However, though they

might rely on multimodal data, they do not only require

huge amount of big data, but both data collection (what is a

failure?) and training (high data entropy). become intractable

as the semantic complexity of the task grow [1]. Moreover,

existing data-driven approaches merely make use of the data

online requiring them to be aligned with the control executive

and changing the sensor setup on the robot appears to make

them useless. Knowledge-based approaches on execution

monitoring attempts to capture the high-level semantics of

the task domain with symbolic formalism such as formal

logic and then make use of low-level sensor data to ground

primitive predicates. Though this approach is fundamentally

flexible, existing works[6, 7] mostly focus on very simple

task (e.g., block worlds) and overrely on situation calculus

which is inefficient in realistic scenarios (complexity and

coarse expressiveness)[13].

Failure Recovery & Prevention. Given that this step follows

verification, only few works tackle it and preferably failure

recovery. Another remarks is that the derivation of the recov-

ery plan usually takes place with the same infrastructure used

for verification. For instance, data-driven markov models for

verification are usually expected to recover as they transit

to a new state after failure[10]. This is also the case for

knowledge-based approaches. Therefore the same limitations

(a-d) apply. However, some works focus on providing natural

explanation of failure to users for the sake of trustworthi-

ness [16]. Failure prevention is revealed in the literature

to be tackled as feasibility verification and is mostly only

addressed by knowledge-based approaches which usually

maintain symbolic preconditions of actions. As mentioned

earlier on the situation calculus, these preconditions are not

only coarse (e.g., grasp does only require object but forces)

but become fuzzy and intractable when the task compleity

grows [6, 7].

Audit Trail Generation. Though this topic is not new

in computer systems, it is hard to find literature on audit

trail generation by autonomous systems. Note that the audit

trail should be understandable by humans and machines.

Therefore, the mere use black-blox systems would be contra-

productive. In this regard, work on failure explanation [16]

can be viewed as preliminary steps to this goal.

III. ROBAUDITOR: WORKFLOW

Once again, the goal in this paper is to model the safety

capabilities (1-3) in a flexible enough manner to address the

challenges (b-d). We propose RobAuditor, whose worflow

Fig. 2: Plug RobAuditor into robotic systems and easily adapt

task execution verification to involved actions’ structures,

contexts and computational resources (1-8).

can be described in 8 steps such as illustrated by Figure

2. 0) For plugging RobAuditor into the target robot, a for-

mal query-based language is provided for their interactions.

(1) As the robot performs, it makes use of the interface

to send execution traces to RobAuditor, (2) RobAuditor

receives the traces, and augment or refine them through

emulation of the actual real execution in a physico-realistic

digital twin of the world (DT), which is grounded in a rich

ontology of traceable activities (SOMTA). Then, the aug-

mented execution traces are then interpreted into a meaninful

story based on SOMTA and persistently stored as narrative-

enabled episodic memories of the robot activities (NEEMs),

consisting of robot experiences (e.g., sensor& motor data)

grounded into activity narratives (i.e., action tree + world

states), grounded themselves into SOMTA, where grounding

enables understanding. (3) Any time (online/offline), the

robot control program or human agent can issue a veri-

fication query (sucess/feasibility) for a given action using

the interface, (4) RobAuditor’s metareasoner will access the

context (NEEMs+SOMTA+DT) of the task, (5) then generate

a distributed verification pipeline, made up of reasoning units

called verifiers, depending on the target task and the context

based on an ensemble approach, (6) which will then be

executed distributedly on various computers or same. (7)

As the pipeline executes, reasoning units can make use of

RobAuditor’s interface to access the context (e.g., what is the

diameter of the canister?). (8) Once, the pipeline has been

executed, RobAuditor’s metareasoner synthesizes the final

verification result from all reasoning units with eventually a

recovery plan in case of failure. This result is then cached

into NEEMs. Note that each reasoning unit as well as

the metareasoner returns for this verification a quadruplet

(Ds,C f ,Ed ,Er), denoting respectively a boolean verification

decision, a decision confidence, a decision explanation and a

recovery plan eventually. Any time(online/offline), the robot

or human can request an audit trail of the process through

the interface, an RobAuditor will generate the audit trail

from the context (NEEMs+ SOMTA + DT). Notice that we

do not make assumptions on the task execution structure,

context and computational resources, but we rather base on

them. Moreover, we decouple RobAuditor from the robot

control program and allow the latter to flexibly issue any

query any time even offline. In the next sections, we discuss

the knowledge representation, reasoning, learning and inter-

face in RobAuditor. Finally, we present the application of

RobAuditor in TraceBot.

IV. KNOWLEDGE REPRESENTATION IN ROBAUDITOR

Fig. 3: SOcio-physical Models of Traceable Activities as grammar for generating and interpreting agents’ activities (SOMTA).

The ontology extends SOMA (gray items) with traceability specificities (blue items).

RobAuditor’s knowledge base consists of ontologies

(SOMTA), digital twins (DT) and episodic memories

(NEEMs).

A. SOMTA: SOcio-physical Models of Traceable Activities

The SOcio-physical Model of Activities (SOMA) [5],

implemented in OWL(Ontology Web Language) and

SWRL(Semantic Web Rule Language) is an established on-

tological modeling approach for autonomous robotic agents

performing everyday manipulation activities. It tries to catch

the social (i.e., meaning of interactions) as well as the

physical context (i.e., interactions) of activities. SOMTA

extends SOMA with more traceability specificities for the

sake of verification, recovery and audit trail generation.

1) Action Specification: In order to avoid imposing a

structure on how actions are executed, the ontology only

capture fundamental truths about them while avoiding as-

sumptions such as inclusion relations among actions at

the T-Box level but rather only at the A-Box level (i.e.,

NEEMs). Fundamentally, an action is performed to execute a

task (e.g., grasping) with some particpants playing specific

roles (e.g., agent) and given parameters (e.g., grasp type,

velocity). Finally, probabilistic distribution of the relevancy

of information sources related to verification of the task is

specified (e.g., tactile is more relevant than acoustic data for

checking grasp). such a distribution is also given for how the

feasibility test of an action influence its success test. Notice

that new actions can be added into the ontology over and

over.

Grasping: Transporting: Inserting:

roles: roles: roles:

- Patient - Agent ...

- Agent - Patient

- Accomodation - Accomodation

parameters: - Source

- Grasp Type - Destination

... parameters:

Verification: - Transport Velocity

- Tactile: 0.4 ...

- Odometry: 0.38

...

- Feasibility: 0.3

- Success: 0.7

2) Information Source Specification: As the robot ex-

ecutes, there exists multiple sources of information with

different modalities such as symbolic knowledge bases (e.g.,

ontologies), sensor data (e.g., visual, acoustic, odometric,

tactile) and mental simulations (e.g., DT) which carry ev-

idences of what is going on and can be used to perform

verification of the target actions as shown by Figure 3.

Given these information modalities, the goal is to specify

information sources in the ontology in such a manner that the

robot can automatically given the context of a task execution

accesses information about the execution (e.g., What was

the robot seeing when performing a certain action?). These

sources can be tracked by checking if for an executed action,

there is a participant which the source is attached to. Note

that sources can flexibly be added over and over. Note also

that sources can have different physical representation such

as owl, excel files, ros topics, databases,... Getters/Setters can

continually be pushed into RobAuditor’s interface.

Tactile-Based: # Tactile-based info source

topics:

- source: Robot@Tracebot.RightRobotArm@UR10.

RightRobotGripper@CEA

value:

thumb_finger: /lh/sr_tactile/touch/th

first_finger: /lh/sr_tactile/touch/ff

middle_finger: /lh/sr_tactile/touch/mf

ring_finger: /lh/sr_tactile/touch/rf

little_finger: /lh/sr_tactile/touch/lf

3) Verifier Specification — Reasoning Units: There is

no single algorithm that can perform all the verification

tasks. By transferring the key philosophy behind UIMA

(Unstructured Information Management Architecture) [17],

we call verifier an algorithm (e.g., data-driven, analytical or

knowledge-based) which is expert at verifying in a specific

domain of activity (also multi-domain). That is, for which

actions (e.g., grasping), which participating entities (e.g.,

canister as patient) and information sources (e.g., odometry

information) as shown by Schema IV-A.3. Beside its domain,

a verifier’s implementation must be also provided as a server

(e.g., ros action servers, RPC servers, ...) taking as input

the identifier of the target action and returning as explained

earlier a quadruplet (Ds,C f ,Ed ,Er). Notice that verifiers can

be added over and over, executed anywhere, anytime, are

decoupled from the other modules (only action id as input).

verifier:

name: KBGrabSuccessCheck

description: "Verify success of grasping action"

mode: Success

domains:

- Grasping:

participants:

- Patient:

- Canister

- Material: [Glass, Steel, Ceramic]

- Bottle

- Shape: Cylindrical

...

- Actor:

- Robot@Tracebot.RightRobotArm@UR10.

RightRobotGripper@Robotiq]

parameters: []

modalities: [Odometry-Based, Visual-Based]

inputs:

action_id: string

outputs:

decision: bool

confidence: float64

decision_explanation: string

recovery_explanation: string

4) Recovery Strategy Specification: Investigation of possi-

ble behaviors in case of failure revealed at least the following

big categories of failure recovery strategies. (GOB) for Go

back to failed action (e.g., reperceive after perception failed),

which requires to just to a task again with just with eventually

updated parameters and participants. (GBB) for Go back

few steps before failed action, applies for instance when

the failed action destroys the outputs of previous actions

(e.g., reperceive before grasping after failed grasp moved

object). (HIC) for Human intervention call (e.g., dead state),

is needed when the robot is in a situation it cannot escape by

itself. (INO) for Introduction of New Objects (e.g., replace

broken bottle). Finally, (INA) for Introduction of New actions

(e.g., fetch a new object, move to see). This investigations

suggests that recovery strategies cannot be merely reduced

to backtracking such as in behavior tree-based approaches or

modifications of existing plan, but the synthesis of recovery

plans as a generic solution. This being said, a recovery

plan is a concatenation of instances of fundamental action

model described earlier together with the strategy codes (see

Figure 13) which are important information for the metar-

easoner on how to combine the suggestions from different

verifiers, but also for the requesting robot or human agent

for understanding the strategy behind the recovery plan. Note

also that, a recovery plan can fail, then a recovery plan

will be generated for the failure. To avoid infinite loop, a

probabilistic sampling of plan is performed when multiple

plans are derived. Dead plans such as HIC or INA for

stopping the robot can be forced into the sampling pool with

low sampling propabilities.

B. Physico-Realistic Digital Twin: Embodying SOMTA

The digital twin extends the symbolic concepts in SOMTA

with physical appearances and dynamics so that fine-grained-

reasoning about interactions can be achieved. For instance,

from the SOMTA, it can might be expressed that the robot

inserted the needle into the bottle cap. But when emulating

the dynamics of both the robot and the objects, one realizes

that the needle is actually broken due to force constraints

at the cap surface. We make use of Unreal Engine 4 to

model virtual worlds. Note that the DT is not compulsory in

RobAuditor but rather an advantage. Moreover, scene models

can be added over and over as you can see at Figure 11.

Note that though Unreal Engine 4 is used for virtualization

Fig. 4: Digital twin (c), real robot (b), grounding digital twin

into SOMTA (a).

engine such as Mujoco or Unity can be used as soon as the

DT interface (see Figure 6) are augmented.

C. Narrative-Enabled Episodic Memories (NEEMs)

NEEMs stands for Narrative-enabled Episodic Memories.

They actually encode, as shown by Figure 5, chronological

traces of activities at a symbolic (i.e., activity story) as well

as at a sub-symbolic level (i.e., robot experience).

Fig. 5: NEEMs as three-step constructions namely experi-

ences grounded into narratives grounded in turn into ontolo-

gies.

Given this ability of NEEMs to systematically gather all

the traces of an execution and glue them into a coherent story,

one can answer powerful reasoning questions such as what

is the robot visual experience after it inserted the canister

into the tray. Such an image would be a strong evidence

that insertion was (un)successful. Technically, NEEMs can

be regarded as a sufficient statistics for the robot execution

which can be used anytime as it was real robot execution.

For this reason, they also constitute the foundation for the

audit trail.

V. (META)REASONING IN ROBAUDITOR

Fig. 6: (a) Augmenting robot execution traces through mental

simulation, parsing the traces into networks of categories,

and building stories as NEEMs out of the traces through

SOMTA as activity grammar.

As far as reasoning is concerned, we extends KnowRob

[4], a knowledge processing system designed for robots, with

the following reasoning modules. In RobAuditor’s reasoning,

we distinguished between task execution interpretation and

task execution verification.

A. Task Execution Interpretation

Task execution interpretation such as described earlier and

by Figure 6 takes place either passively, actively or in dual

mode. In passive mode, the robot makes use of the provided

interface to send information about actions, states, sensor

and motion data to RobAuditor. In active mode, RobAuditor

only observes the robot execution’s motion and sensor data,

augment them through the DT and make use of SOMTA

as activity grammar,based on contact states/events and the

force-dynamics model of Talmy [5], to parse the resulting

traces. Such a parser has been successfully proposed by [9].

Actually, RobAuditor only operates in passive and dual mode

since the parser for pure active mode has not been integrated

yet.

B. Task Execution Verification

We describe the planning of task execution verification

pipelines as well as the execution of the elaborated plans.

Furthermore, we elaborate on how formal recovery sugges-

tions are synthesized from the verification results. Finally, we

describe the audit trail generation which is the core output

to the target robotic system or human agents.

1) Verification & Recovery.: (1) When a success or fea-

sibility query is issued, (2) the verification executive first

retrieves from NEEMs, as illustrated by Figure 7, the target’s

action tree/structure but (3,4) as well as the context namely

the participants and the available information sources of

Fig. 7: (1) planning and execution of task execution veri-

fication, (2) distributed execution of verification plans, (3)

merging of distributed executions).

information of each action node. (6) Then, given the domain

specifications of available verifiers in SOMTA, (5) a set of

domain-satisfied verifiers are loaded for each action node in

the tree, (8) which are then executed distributedly where (9)

verifiers can access (SOMTA + NEEMs + DT) during execu-

tion. After the execution, (10) each verifier return a quadru-

plet (Ds,C f ,Ed ,Er) (11) which is then merged by the metar-

easoner and (11) cached into NEEMs. Algorithms 1 and 2

give details information on how these steps operate. Notice

that for the success verification, the feasibility verification is

automatically performed. However, a feasibility verification

would not trigger a success verification. Other algorithms are

not provided however can be accessed directly from the code

or intuitively understood from above algorithms. Notice that

feasibility verification is an implementation of the prevention

capability.

2) Audit Trail Generation: As you mentioned earlier,

NEEMs contain so much information that it will not be trivial

for a human or robot investigator to get at first glance an idea

of what happens during the robot performance.

Fig. 8: Overview of a pdf-rendered audit trail.

The idea of the audit trail is to summarize in a human- and

machine-understandable manner what the robot has done,

when, who participated, how it went and why it went so.

This interface generates the audit trail from a given NEEM

and saves it as pdf document (see Figure 8) to a specific

given location, but also provides a machine-accessible json

Algorithm 1 SuccessVeri f ication(Aid , Ic,Kw)

Require: Kw, knowledge base, i.e. ontologies and neems

Aid , id of target action instance

Ic, whether cached results should be ignored

Ensure: (Ds,C f ,Ed ,Er), respectively the decision, confidence, decision explanation

and eventually recovery explanation

1: Tv = ”Success”; // set type of verification

2: if Ic = f alse then

3: if IsAlreadyVeri f ied(Aid ,Tv,Kw) then

4: (Ds,C f ,Ed ,Er) ← GetVeri f icationResults(Aid ,Tv,Kw); // cached results

Exit(); //exit the program

5: end if

6: end if

7: (Ds0,C f0,Ed0,Er0)← FeasibilityVeri f ication(Aid , Ic,Kw); // feasibility test

8: R←{}; // init list of results

9: V ←{}; // init list of verifiers

10: for Veri f ier in ListVeri f iers(Kw) do

11: if Veri f ier.mode = ”Success” and Veri f ier.domains ⊆ GetE pisode(Aid ,Kw)
then

12: V ←V ∪{Veri f ier}; // init list of verifiers

13: (Ds1,C f1,Ed1,Er1)← Run(Veri f ier,Aid ,Kw); // call verifier

14: R← R∪{(Ds1,C f1,Ed1,Er1)}; // add result into list of individual results

15: end if

16: end for

17: (Ds2,C f2,Ed2,Er2)←MergeVeri f ierResults(R,Aid ,Kw,V); // merging results

18: R←{(Ds2,C f2,Ed2,Er2)}; // init list of results again for direct subactions

19: for As in GetSubActions(Aid ,Kw) do

20: (Ds3,C f3,Ed3,Er3)← SuccessVeri f ication(As, Ic,Kw); // test of subactions

21: R← R∪{(Ds3,C f3,Ed3,Er3)}; // add result into list of individual results

22: end for

23: (Ds4,C f4,Ed4,Er4)←MergeSubActionResults(R,Aid ,Kw,Tv); //merging results

24: R←{(Ds4,C f4,Ed4,Er4),(Ds0,C f0,Ed0,Er0)}; // feasibility and success

25: (Ds,C f ,Ed ,Er)←MergeFeasibilitySuccess(R,Aid ,Kw,Tv); // merging results

26: SetVeri f icationResults(Aid ,Tv,Kw,(Ds,C f ,Ed ,Er)); // caching results

Algorithm 2 MergeSubActionResults(R,Aid ,Kw,Tv)

Require: R = {(Ds0,C f0,Ed0,Er0), ...,(Dsn,C fn,Edn,Ern)}, list of individual results

Kw, knowledge base, i.e. ontologies and neems

Aid , id of target action instance

Tv, type of verification

Ensure: (Ds,C f ,Ed ,Er), respectively the decision, confidence, decision explanation

and eventually recovery explanation

1: probt rue← 1.0; // for joint true decision

2: for v ∈ R do

3: if v[”Ds”] = true then

4: probtrue = probtrue× v[”C f ”]; // joint true decision

5: else

6: probtrue = probtrue× (1− v[”C f ”]); // joint true decision

7: end if

8: end for

9: if probtrue > 0.5 then

10: Ds← true; // final decision

11: C f ← probtrue; // final confidence

12: else

13: Ds← f alse; // final decision

14: C f ← 1− probtrue; // final confidence

15: end if

16: Ed ←
⊕

i,(Ds=R[i][”Ds”]) R[i][”Ed ”]; //concatening for final decision explanation

17: Er ←
⊕

i,(Ds=R[i][”Ds”]) R[i][”Er”]; // concatening for final recovery explanation

version of the trail to the robot for eventual self-recovery.

VI. LEARNING VERIFICATION EXPECTATIONS FROM

NEEMS

Notice so far that the confidence from verification origi-

nates on the one hand from common sense at the ontology

level and from verifiers. This can pose ethical issues as

this reliability measure is only founded in the subjectivity

of the ontology designer and the verifier designer. In order

to address this problem, a probabilistic expectation of the

success and feasibility of actions is estimated based on past

observations. This expectation constitutes then a prior for

future verification tasks. In this regard, the expressions below

highlight the different distributions one could learn from such

past data.

P(St ,St−1|At ,At−1), influence of neighbohring actions

P(St |At ,Pt), influence of participants

P(S0:t |A0:t ,P0:t), the whole episode

The first point highlights the distributions of success in

a sequence of two actions. This is important to learn how

temporally adjacent actions can influence each other with

respect to success (e.g., manipulating fluids before grasping

increases chances of failure because gripper wet and slip-

pery). The second point indicates the distributions of success

over actions conditioned on participants (e.g., higher chance

of grasping canister than needle) and finally the third point

showing how the general case of learning the success over an

entire episode (e.g., canister insertion, tube insertion, bottle

insertion, sterility testing, etc). In this project, we limited

ourselves to the second case namely P(St |At ,Pt). Figure 9

illustrates the failure that can be encountered.

Fig. 9: Failure to (a) grasp canister, (b) insert needle, (c)

verify grasping action, (d) stretch tube, (e) grasp needle cap,

(f) insert tube.

This being done, it is known that with sufficiently large

amount of data, one can learn any distribution over the data.

However, the data collected in such tracebot processes and

in the development phase are very sparse. For this reason,

a parametric probabilistic model of success over actions

conditioned on participants is carefully designed and the few

model parameters are learned from the sparse data. In this

specific case, the Poisson distribution is chosen to model

the probability of occurrence of failure in actions given

participants. This distribution is well known to model the

probability of an event occurred in a fixed interval of time

independently of other time intervals. Our time interval here

can be an episode or multiple consecutive episodes. The

probability function of a Poisson distribution is defined by:

P(x) = λ x

x!
e−λ

In the probability function of a Poisson distribution,

lambda is the mean and x is the variable. Using this, we

compute the expectation of succeeding with a core tracebot

actions (inserting, grasping, perceiving, simulating, verify-

ing) on core tracebot objects (canister, needle, cap, tube,

bottle) as shown by Figure 10.

This result aligns with observations as it shows on the

Fig. 10: Probability of succeeding actions in specific contexts

(participants)

one hand that the simulation and perception of tube are hard

whereas the grasping is stable. Moreover, it shows that the

insertion of bottle is hard (due to lack of experiments and

by default infinitely hard). But inserting the needle into the

bottle is hard as well. Finally, grasping the needle cap and

the needle is not trivial. On the other hand, it shows that

the execution of all these actions is likely to succeed as the

probability is above 0.90.

VII. INTERFACE: FORMAL QUERY LANGUAGE

We model the interface as formal and complete formal

query language, in the sense that it can also to retrieve any

fact from the knowledge base. Queries are very flexible as

they can be used as three almost any informatio medium.

We also extends KnowRob in terms of queries The lan-

guage supports three type of sentences namely kb call(P),

kb project(P) and kb unproject(P) respectively to retrieve or

construct facts P from, assert facts P in and retract facts P

from knowledge base. P is a list of predicates in prefix form

or triples in infix form from the ontology. To modify a fact,

kb unproject ◦ kb project is applied. We distinguish:

A. Retrieval Queries.

A query for accessing the diameter of the canister will
then be:

kb_call([subclass_of(Canister,A),

has_description(A,exactly(has_size,1,B)),

subclass_of(B,C),

has_description(C,value(has_diameter,D))]).

The value of the canister’s diameter will be stored in

the variable D. The query states that A is a superclass of

Canister and has exactly one size of type B. And C is a

superclass of B and has a diameter of value D.

B. Memorization Queries

An example of query for saving information about ex-

ecuted action and even for recording NEEMs, which are

foundations for audit trails, will then be:

kb_project([

newIri(Episode,soma:’Episode’),

newIri(Action,tracebot:’Grasping’),

newIri(Object,tracebot:’Canister’),

newIri(Agent,tracebot:’LeftUR10Arm’),

newIri(TimeInterval,dul:’TimeInterval’),

holds(Action,dul:’hasTimeInterval’,TimeInterval),

holds(TimeInterval,soma:’hasIntervalBegin’,

StartTime),

isSettingFor(Episode,Action),

isPerformedBy(Action,Agent),

hasParameter(Action,Object)

newIri(Role,soma:’AgentRole’),

hasType(Role,soma:’AgentRole’),hasRole(Agent,Role)

]).

C. Verification Queries

These queries are highly encapsulated and basically con-

sists of a predicate Veri f y taking as parameters the inputs

and outputs of the verifiers presented in IV-A.3, but also

the type of verification since it the verifier specification it is

located in the domain specification.

kb_call([ExecuteVerification(Tv,

soma#Grasping_XZT49,D_s,C_f,E_d,E_r)]).

D. Audit Queries

Like the previous one, these queries are highly encapsu-
lated for the same purpose.

kb_call([GenerateAudit(tracebot#Episode_ZUL13,A)]).

This means that as soon as an episode has been created in the

episodic memory, an audit trail generation can be triggered.

VIII. ON THE HIGH FLEXIBILITY OF ROBAUDITOR

We elaborate on the following core properties of RobAu-

ditor:

Scalability. Again RobAuditor scales well with respect to

computational resources (distributed computing and delayed

verification), to action’s structure and context: reasoning does

not assume a structure, length, context of executed action but

rather infers based on..

Offline/Online Operability. These modes are just conse-

quences of anytime verification querying and the latter is

importantly possible because NEEMs are rich enough to be

viewed as real robot executions)

Plugin-like. RobAuditor acts a plugin to the target robot

system. A formal query-based interface is provided to the

robot to send execution traces to RobAuditor with levels of

flexibility. These traces will then be mapped by RobAuditor

through SOMTA and DT into NEEMs. SOMTA, NEEMs

and DT are enough to operate.

Human- and machine-centered. RobAuditor has been de-

scribed to interact with robots but also with human agents.

The latter should only make use of RobAuditor’s interface.

IX. APPLICATION: TRACEBOT

Use Case Description. The use case we selected, namely

the sterility test of products through the membrane filtration,

comes from the pharmaceutical domain, application field

in which the traceability and the verification of the good

execution of any process is of major importance [15].

System Description. Our complete implementation is

Fig. 11: Proof of concept through three real robot platforms

(1a, 2b, 3c) and respective digital twins (1b, 2b, 3b) with

two different control architectures (4,5).

available in these GitLab’s repositories1, 2 in ROS NOETIC.

As illustrated by Figure 11, we provide a proof of concept

for RobAuditor on three different robot platforms namely

(2) dual UR10-arm + robotiq gripper, (1) dual UR10-arm +

CEA gripper and (3) PR2. We also targeted two different

control program architecture namely CRAM and a skill

framework with SMACH[11].

Verifiers. We illustrate the logic behind some verification

Fig. 12: Demonstration of verifier variability in various

contexts.

modalities. tactile-based and acoustic-based verification

can verify a task execution based on contact events and

force-dynamics (Figure 12.3). The knowledge-based

verification makes use of SWRL rules to formulate coarse

precondition and post-conditions of primitive actions(Figure

12.1) but also combined with vision (e.g., lying bottle

cannot be grasped as in Figure 12.2). Simulation-based

verification can easilily detect collision (Figure 12.8)

or refine the pose of objects based on physics (Figure

12.9). Visual-based verification [3] employs inverse

rendering to detect and eliminate deviations in the pose of

transparent objects for which rgbd camera does not work

(Figure 12.5). Imagistic reasoning-based verification[2]

renders and expected state through the DT/simulation, then

compares the rendering with real images (Figure 12.4)

to detect potential failures or to estimate the state[12].

1See https://tracebot.gitlab.io/tracebot_showcase
2See https://gitlab.com/tracebot

https://tracebot.gitlab.io/tracebot_showcase
https://gitlab.com/tracebot

Fig. 13: Demonstration of RobAuditor in the TraceBot sub-use case ”canister insertion into the drain tray”

Physical reasoning-based verification [12] relies on gener-

ative model of physics to anticipate the effects of causes and

causes of effects such as the grasp parameters (Figure 12.7).

Odometry-based verification leverages the robot joint states

to verify (Figure 12.6). Multi-modal verifier can be devel-

oped such as (Figure 12.2). Integrated Demonstration. We

demonstrate RobAuditor in one of the most completed sub-

use case in the project, namely the insertion of the transparent

canister into the drain train (tight hole). On the left of Figure

13, the grasp failed due to user unexpected move of the

canister The use case is a bottleneck in the process . The

failure is reported in the audit trail and a recovery plan is

generated. On the right, the recovery plan is executed and the

former plan is completed for insertion Note the incorporation

of non verbal explanation in the audit trail such as explained

in the NEEMs section IV-C (See HD-Video attached to this

paper for more details).

X. CONCLUSION

In this paper, we exposed some standard requirements to

meet when designing autonomous robots for safety-critical

processes namely the process verification, audit trail gener-

ation and failure recovery and prevention. Then, we showed

that actual works do not model some of these capabilities

or do it but under strong assumptions and in an inflexible

manner that cannot cope with real world processes namely

the diversity of task execution structures, task execution

contexts and the availability of computational resources. In

response to that we design a flexible solution RobAuditor,

whose proof of concept has been provided in the context of

TraceBot, a project tackling the automation of sterility test

in medical labs.prevention especially for addressing safety

concerns hindering the successful integration of robots in

our societies. As future work, we target the establishment of

the framework as ready to use with more integrated tests.

Another major point of concern is the regulation of verifier

implementation (e.g., force them to observe some policies)

since they can be implemented by any lambda.

ACKNOWLEDGMENT

This scientific work is partially funded by the projects

DFG EASE CRC 1320 and EU TraceBot (grant agreement

No 101017089).

REFERENCES

[1] Pieter Adriaans. “Learning as Data Compression”. In:

2007.

[2] Mania et al. “An Open and Flexible Robot Perception

Framework for Mobile Manipulation Tasks”. In: 2024.

[3] Bauer et al. “VeREFINE: Integrating object pose ver-

ification with physics-guided iterative refinement”. In:

(2020).

[4] Beetz et al. “Know Rob 2.0 — A 2nd Genera-

tion Knowledge Processing Framework for Cognition-

Enabled Robotic Agents”. In: ICRA 2018.

[5] Beßler et al. “Foundations of the Socio-Physical

Model of Activities (SOMA) for Autonomous Robotic

Agents1”. In: 2021.

[6] Bouguerra et al. “Active execution monitoring using

planning and semantic knowledge”. In: 2007.

[7] Coruhlu et al. “Explainable Robotic Plan Execution

Monitoring Under Partial Observability”. In: (2022).

[8] Doyle et al. “Generating Perception Requests and

Expectations to Verify the Execution of Plans.” In:

1986.

[9] Haidu et al. “Automated acquisition of structured, se-

mantic models of manipulation activities from human

VR demonstration”. In: ICRA 2021.

[10] Hegemann et al. “Learning Symbolic Failure Detec-

tion for Grasping and Mobile Manipulation Tasks”.

In: 2022.

[11] Herrero et al. “Skill based robot programming: As-

sembly, vision and Workspace Monitoring skill inter-

action”. In: (2017).

[12] Kenghagho et al. “NaivPhys4RP - Towards Human-

like Robot Perception “Physical Reasoning based on

Embodied Probabilistic Simulation””. In: 2022.

[13] Lin et al. “Chapter 16 Situation Calculus”. In: Hand-

book of Knowledge Representation. 2008.

[14] Luckcuck et al. “Formal Specification and Verification

of Autonomous Robotic Systems”. In: (2018).

[15] Remazeilles et al. “Robotizing the Sterility Testing

Process: Scientific Challenges for Bringing Agile

Robots into the Laboratory”. In: 2023.

[16] Thielstrom et al. “Generating Explanations of Action

Failures in a Cognitive Robotic Architecture”. In:

2020.

[17] Verspoor et al. “Unstructured Information Manage-

ment Architecture (UIMA)”. In: 2013.

[18] “Execution monitoring in robotics: A survey”. In:

(2005).

[19] Christian Fritz. “Execution Monitoring – A Survey”.

2005.

	INTRODUCTION
	RELATED WORK
	RobAuditor: Workflow
	Knowledge Representation in RobAuditor
	SOMTA: SOcio-physical Models of Traceable Activities
	Action Specification
	Information Source Specification
	Verifier Specification — Reasoning Units
	Recovery Strategy Specification

	Physico-Realistic Digital Twin: Embodying SOMTA
	Narrative-Enabled Episodic Memories (NEEMs)

	(Meta)Reasoning in RobAuditor
	Task Execution Interpretation
	Task Execution Verification
	Verification & Recovery.
	Audit Trail Generation

	Learning verification expectations from NEEMs
	Interface: Formal Query Language
	Retrieval Queries.
	Memorization Queries
	Verification Queries
	Audit Queries

	On the High Flexibility of RobAuditor
	APPLICATION: TraceBot
	CONCLUSION

