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Figure 1: Many robot manipulation tasks (left) are learnt best by observing humans. Human motion can be demonstrated using 

virtual environments (center). Data acquisition with motion-based games makes demonstrating a fun activity (right). 

 

ABSTRACT 
Autonomous manipulation robots can be valuable aids as 
interactive agents in the home, yet it has proven extremely 
difficult to program their behavior. Imitation learning uses 
data on human demonstrations to build behavioral models 
for robots. In order to cover a wide range of action 
strategies, data from many individuals is needed. Acquiring 
such large amounts of data can be a challenge. Tools for 
data capturing in this domain must thus implement a good 
user experience. We propose to use human computation 
games in order to gather data on human manual behavior. 
We demonstrate the idea with a strategy game that is 
operated via a natural user interface. A comparison between 
using the game for action execution and demonstrating 
actions in a virtual environment shows that people interact 
longer and have a better experience when playing the game. 
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INTRODUCTION 
HCI has moved from focusing mainly on desktop 
interaction to ubiquitous interaction and in particular to 
embodied computer artifacts. With the advent of robots in 
our homes, computation is moving beyond the classical 
understanding of human-computer interaction. The future 
of household robots envisions active and intelligent 
companions in our everyday lives with many concepts 
exploring anthropomorphic robots like the NAO robot [24]. 
Researching the humanoid form factor is important, since it 
is likely to be accepted by humans when they are to “live” 
in the same environment [13]. Besides the familiar 
appearance of the robot, human-like robot behavior fosters 
human-robot interaction and cooperation, as it requires less 
adjustment and learning effort by the human. Even though 
the degrees of freedom of the robots’ limbs and joints may 
allow for other non- or even super-human movements, it is 
often a better choice to let robots act in a way that 
corresponds to the mental models of their users. However, 
programming robots to master everyday activities in a 
human-like fashion has proven to be a huge challenge [3]. 
Today, robots can only solve tasks in a narrow range of 
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conditions. Many seemingly mundane everyday tasks are 
only vaguely described and show a high level of variation. 
The artificial intelligence vision of understanding common 
sense knowledge needed for everyday activities has been 
unsolved for decades [19]. 

In recent years, prototypical solutions for household tasks 
have been built, for instance robots making pancakes [3] or 
baking cookies [5]. The necessary knowledge for solving 
such tasks in various environments has to be fed into the 
systems through knowledge acquisition and machine 
learning in labor- and cost-intensive processes. Since most 
humans are experts at such tasks, there is great potential in 
acquiring this knowledge for robots from human sources. If 
people perform the required movements, such as those for 
making a pancake, they can be tracked, analyzed, and then 
used to build models for the motion of the robot’s arms and 
hands [20,23]. In this imitation learning approach to robot 
programming, the challenge lies in collecting large amounts 
of movement data from humans solving some problem 
while conditions vary systematically. Obviously this is 
tedious work. It is difficult to motivate people to move pans 
on a stove over and over again with all sorts of pan sizes 
and stove heights. 

Using virtual environments in which the user interacts with 
simulated task contexts, human motion data can be 
generated by recording user input [16]. The advantage 
being that a virtual world is fully observable and 
demonstration is unconcerned with real world constraints or 
safety issues. Games can increase the motivation for 
performing menial tasks in such environments, potentially 
increasing the number of demonstrations and thus the 
amount of -and variation in- motion data. They also offer 
further benefits for imitation learning: in games, objectives 
can be introduced to influence players’ behavior, such as 
eliciting their best performance. Moreover, well-balanced 
challenge in games increases the players’ resistance to 
frustration. This ability to design for task failure is highly 
important for robot programming, and games are an easy 
and controlled means of eliciting data on failing behavior. 

In this paper we present a human computation games 
approach to knowledge acquisition tools for imitation 
learning. Engaging people as experts of everyday activities 
to perform actions in an embodied game raises the 
motivation of demonstrators and encourages them to deliver 
high quality data. Freedom in game design allows for 
tailoring player behavior to generate desired outcomes and 
allows obtaining varied human motion data from successful 
or, equally important, unsuccessful actions. 

We present a sample application using a tower defense 
game with full-hand motion input. The users were highly 
motivated to play and thus contribute their embodied 
knowledge. With this setup, the data acquisition for 
programming a robot is translated to an HCI problem of 
game interaction and player experience. Our study shows 1) 
that performing tasks in-game provides a better self-

reported experience than demonstrating them in a non-game 
virtual environment and 2) that motion data has the quality 
required for successful use in robot imitation learning 

With this paper we not only contribute a successful design 
of a free-hand motion control serious game but also 
demonstrate a design approach of how to leverage existing 
game design knowledge for increasing the effectiveness of 
motion data acquisition tools. Moreover, this paper is a 
contribution to human-robot interaction for humanoid 
robots in home environments. We propose to use gameful 
interaction [8] as a means for building more realistic and 
acceptable robotic companions. 

RELATED WORK 

Robot Programming 
Imitation is the behavior where an individual observes and 
reproduces another's action. Imitation learning or robot 
Programming by Demonstration (PbD) [4] (also called 
Learning from Demonstration [2]) is a means of learning 
and developing new skills by observing how they are 
performed by others. It is a technique for enabling robots to 
autonomously perform new tasks. When observing either 
success or failure examples one can reduce the complexity 
of search spaces for learning, by either beginning the search 
from the observed successful solution (local optima), or by 
eliminating the failures from the search space. 

The PbD learning problem can be separated into two 
fundamental phases: gathering examples and deriving 
policies [2]. Focusing on the gathering phase there exists a 
large variety of techniques for executing and recording 
demonstrations, ranging from human operators moving 
robots around which then record their own enacted 
movements over recording teleoperation commands to 
observing demonstrators execute behaviors with their own 
body. Furthermore, the control levels may vary from low-
level actions for motion control, over basic high-level 
actions (action primitives) to complex behavioral actions. 

In the work of Haidu et al. [11] the authors learn a failure 
detector model to allow a robot to recognize the point 
where the current action will lead to a failure. The data used 
for learning is collected from a virtual environment by 
running multiple episodes (success and failure cases) of the 
given action. The virtual environment built on a robotic 
simulator with a realistic physics engine, resulting in 
precise, realistic data. Having a virtual scenario gives the 
advantage of a fully observable world; one can completely 
represent the motion and the states of all simulated objects. 
Even if the motion sequences are comparatively simple, 
they can contain valuable information (e.g. for low-level 
motion control). 

Other researchers have also been employing simulation 
environments [25]. While the results in terms of accuracy of 
the gathered data are promising, these simulators have not 
been designed to appeal to the general public, to be 
operated by naïve users, or to support motivation by 



introducing game mechanics beyond the playful appeal of 
an interactive virtual world. In order to gather large 
amounts of varied data that can be used to build large-scale 
behavior models, such simulations must be able to run on 
consumer hardware and feature motivational structures to 
animate players to perform multiple actions. 

Human Computation Games 
Introducing playful and gameful elements [8] to collective 
intelligence applications has been a hot topic in a new 
emerging field over the last years: Human computation 
(HC) games (HCG) are a form of collective intelligence 
where participants are not paid but voluntarily contribute 
data or chunks of knowledge in game-based interaction. HC 
is similar to crowdsourcing, where traditional human 
workers are replaced with members from the public, but 
differs in that in HC human computers (usually also from 
the public) replace digital computers in domains where 
these struggle [21]. The first prominent examples of such 
games with a purpose [27] were used for image labeling 
tasks. It was shown that very simple casual games 
motivated a large number of users and that it was possible 
to aggregate their individual contributions into concerted 
collective intelligence. In recent years, human computation 
games have been developed for further labeling tasks [14], 
computational biology [6], question answering [1], and for 
many other use-cases [28]. 

Human Computation Games for Robot Programming 
In an effort to structure human computation game design 
approaches, Krause and Smeddinck [14] name four 
categories: Identification (of a task that can be turned into a 
HC application), Motivation (design mechanisms for 
motivating members of the public to contribute time and 
effort), Observation (design methods for enacting solutions 
in the application and for observing the approach taken by 
each member of the crowd) and Evaluation (design 
methods for aggregating, analyzing and interpreting the 
potentially large numbers of crowd contributions); or IMOE 
in short. Notably, this structure is akin to the general steps 
of gathering (IMO) and deriving (E) in PbD. Accordingly, 
we argue that PbD is a special case of human computation 
and thus approaches from human computation games are 
likely applicable to PbD. Both communities can profit from 
research that aims at combining their approaches that have 
so far been discussed in almost entirely separate sub-
communities. While crowdsourcing has established itself 
for PbD, it is rarely embedded in game contexts (see [10] 
for a recent overview). 

Looking into the categories of typical HC tasks as part of 
the considerations on identification, Krause and Smeddinck 
describe four categories, each one taking advantage of a 
specific human ability: aesthetic judgment, making intuitive 
decisions, contextual reasoning, and free interaction with 
the physical world (mentioned as embodiment issues). The 
latter offers a matching category for the application domain 
of the study presented in this paper (harnessing hand 

movements and actions). Embodied human knowledge is 
implicitly at hand for humans but hard to be formalized 
explicitly, making this category a strong candidate for 
human computation. So far, however, most human 
computation games do not consider embodied human 
knowledge that is used in physical interactions with the 
environment. Some approaches exist in mapping 
applications [18,26]. However, they require substantial 
physical effort by all human contributors and capture a 
gross measure of human body location instead of intricate 
details of human embodied interaction.  

Approaches from related areas, such as gamification, have 
investigated matching game mechanics to generalized tasks. 
Flatla et al. [9] tackle gamification for calibration tasks such 
as screen calibration or respiration chest strain sensor 
calibration. They developed a design framework for 
identifying calibration types and the basic tasks behind 
them, and how to match these tasks to basic game 
mechanics. Using this framework they designed three 
calibration games, and were able to show increased user 
motivation. They also discuss differences in the data quality 
between standard and gamified calibration. However, their 
approach has not yet been linked to the related area of PbD 
and they did not focus on embodied interaction. 

DESIGN APPROACH: KITCHEN TOWER DEFENSE  
The primary design goal is to motivate people to 
demonstrate manual tasks by transforming the experience 
of performing mundane manual actions (physical or 
simulated) into a more enjoyable activity. We lay out our 
strategy before discussing how target and source domains 
can be mapped. 

Design Strategy 
Our design strategy to reach this goal is situated toward the 
“Gaming” and “Whole” ends of the two dimensions 
Gaming/Playing and Parts/Whole of the design space [8]. 

Gaming vs. Playing 
Playful tools for motion data acquisition based on simulated 
virtual environments have been explored in the robotics 
community [11,16]. They offer the benefits of a fully 
observable world and safety from real world constraints. 
However, embedding this in a rule-based game system as 
opposed to a mere playful environment has two distinct 
advantages. First, task demonstration can be designed into 
the game mechanics in order to pose tasks more implicitly, 
directed via game rules and level design. Second, the 
addition of game aesthetics [12] such as challenge and 
narrative can improve the experience; while the enjoyment 
of baking virtual pancakes will diminish over time, a well-
designed game can captivate for hours. 

Parts vs. Whole 
Designing for the stated goal can involve either (whole) 
HCG or introducing game design elements (parts) into 
motion data acquisition tools. The latter can be achieved 
either by adding game elements to an existing application 
(gamification) or by adding purposeful elements to an 



existing game. This decision can be modeled as a third (if 
not fully orthogonal) dimension in the design space. 

Games vs. Serious Applications 
This axis reaches from one extreme, namely adding 
increasingly more game elements to a “serious” application, 
to an opposite extreme, which begins with full-fledged 
games that are augmented by an increasing number of 
“serious” elements (Figure 2). Our approach is situated 
toward the “games” end of this spectrum, in order to 
capture ordinary people and their sense of what constitutes 
a game. While gamification can be successfully used to 
increase motivation to perform otherwise boring or 
laborious tasks [9], we opted for creating a full game 
experience that uses established game mechanics for the 
following reasons: The approach enabled us to use whole 
game concepts to leverage existing design knowledge on 
working game mechanisms. Moreover, it increases the 
likelihood to create long-term motivation rather than short-
lived engagement common in swiftly designed casual 
games. Furthermore, once a reliable game design is found 
for extracting a certain class of human behavior it can be 
used for a whole range of task domains, e.g. all workbench-
based manipulation tasks. 

Task Domain 
Cooking is a good example of an embodied everyday 
activity. It includes complex and diverse manual activities 
that are easy to perform for (many) people but are hard to 
describe in a formal or algorithmic way. In robotics, 
cooking simulators are being investigated for knowledge 
acquisition [3,5,11,16]. We chose cooking as a 
paradigmatic scenario for an activity in the household and 
demonstrate how human computation games that go beyond 
the playfulness of simulator tools can help to gather data 
from ordinary persons who have no experience in robotics. 

The first step in designing a game around a task domain is 
to identify the characteristic of the domain. We can identify 
four characteristics of cooking: 

Characteristic 1: An enclosed, planar workspace 

Characteristic 2: Well-defined manual actions 

Characteristic 3: Actions operate on objects within the 
workspace 

Characteristic 4: Active management of events 

Note that these are valid for a number of worktop-based 
activities, such as crafts (e.g. sewing) or deskwork. The 
next step is to select an existing game archetype that 
matches these characteristics best. 

Game Domain 
The selection of a suitable game genre has to result in a 
good mapping from actions in the game domain to the 
desired actions in the task domain. Turn-based strategy 
(TBS) games reflect the above-mentioned properties very 
well. The player has a “godlike” position of a commander 
with an overview of a confined terrain or map. This relates 
well to characteristic 1, since players are able to see the 
available objects and the according contextual action space. 
TBS players perform various manipulation actions (relating 
to characteristic 2) that change the events enfolding on this 
map. Such actions can be recorded and their execution 
parameters and the contextual variables can be used for 
imitation learning. When enacted and chained to complex 
behaviors such as building up a base or city, or directing 
units, the manual actions operate on available objects 
(relating to characteristic 3). This results in information 
about workspace organization, object alignments and 
positioning. Lastly, in TBS, the player has control over the 
pace of the events unfolding via turn advancement. Relating 
to characteristic 4, the turns help with the challenging 
problem of chunking action sequences, which is needed for 
interpreting the overall user action sequences. Moreover, 
the game genre is suitable for embodied control with real 
hand gestures, which is important since we are interested in 
the actual trajectories of the player’s arms and hands.  

Other popular game genres, such as action or adventure, are 
focused on steering an avatar through expansive game-
worlds (violating characteristic 1), and interaction with the 
game world occurs via the avatar as a mediator (violating 
characteristic 2) rather than the player manually interacting 
with it. Real-time games that are not turn-based lead to 
higher time pressure (violating characteristic 4), which 
could also have a negative influence on the resulting data. 
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Figure 2: Serious games: increasingly purposeful games versus 
increasingly gamified applications. 

Figure 3: Schematic view of a typical level of a tower defense 
game with respective game elements. 
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In this light we chose tower defense games (TD) as the 
game domain (Figure 3). In TD, players have to create and 
manage defensive structures against hordes of intruders 
invading their territory (also called creeps). These typically 
arrive in waves, whose arrival can be managed by the 
player to a certain degree. Game mechanics involve a 
simple (typically single-currency) economy in which 
construction costs are balanced against “revenue” earned by 
defeating enemies. 

Mapping Actions 
Having established a game genre that matches task domain 
characteristics, it is necessary to define the exact mapping 
from task actions to game actions. In order to arrive at a 
mapping we must consider the asymmetry in requirements: 
from the game domain we only require strict adherence to 
intentions, while a correct rendition of the task domain 
actions is crucial for gaining the right motion data. We thus 
need to map task domain actions to game domain intentions 
(Table 1). Since cooking is an activity for which a vast 
amount of behavior can be identified, we chose pancake 
making as a well-defined example also used in related 
research [3,11,16]. We assume a simplified procedure that 
uses ready-made pancake batter, reducing the task to few 
simple actions (Table 2). As there is no way of further 
operationalizing the mapping procedure, the last step is 
down to creative design. For the example of pancake 
making, we chose a mapping that relates action intentions 
semantically: building is conceptually related to moving 
things, an upgrade adds functionality, and constructions are 
demolished by turning them over (Table 3). 

Control Interface 
The goal is to tap the embodied knowledge on manual 
behavior that humans are not used to describing explicitly, 
but can better recall implicitly given a task context (e.g. 
describing the procedure of operating clutch, gearstick and 

accelerator versus performing the act of driving). This 
requires interfaces with as little mediation and indirection 
as possible. Task simulators for recording human motion 
thus employ virtual hand manipulation techniques using 
full-hand trackers. Since glove interfaces incur 
obtrusiveness, the best solutions for a broad audience are 
outside-in hand tracking systems, i.e. camera-based 
solutions. High-fidelity full-hand trackers have reached 
consumer level of maturity and support the prospects of 
success of outsourcing embodied manipulation knowledge 
acquisition through full-hand interaction games. 

3DFEND: FREE-HAND CONTROL TOWER DEFENSE  
As a result of these design considerations we developed 
3DFEND, the first free-hand 3D TD. The story of the game 
is a micro-narrative in a style found in many casual games 
(Figure 4). Players defend earth against hordes of robot 
aliens by constructing a defense system via hand motions. 
While input is 3D, the game follows the typical planar TD 
logic, i.e. creeps move along two-dimensional paths, along 
which towers can be placed. A large platform provides the 
stage on which towers can be constructed. Players operate 
on objects on the stage through tools, not directly via 
cursor. Creeps advance over the stage from left to right. 

Game Controls 
Free-hand control is implemented as a simplified virtual 
hand metaphor [7]. This takes the form of a 3D cursor to 
which palm translation and orientation are mapped directly. 
Fingers are not used, since robust low-latency tracking is 
not solved in the category of hand trackers under 
consideration. Balloon cords, shadows, and a map overlay 
provide depth cues. Tool selection occurs if the cursor 
collides with the tool before a certain timeout, which is 
animated with a blend to white. Figure 5 gives an overview 
of the interface configuration; please refer to the video 
figure for a more immediate illustration of the controls. 

A 3D toolbar at the bottom of the screen offers three 
construction modules for three different tower types, a nano 
bot container, and a relocation/demolition tool. Tools are 
selected by the above procedure. Each of the four basic 
controls involves compound manual actions (Table 3). 

Build Turret 
The player can choose one of the three construction 
modules and place it on the stage: after a construction time 
of one second, the turret is ready. Constructing a turret costs 
different amounts of energy credits, depending on type. 

intention actions 

build pick type + pick site 

upgrade  pick tower + pick upgrade 

move pick tower + pick site 

demolish pick tower + pick demolition 

intention  actions 

place pick pan + place on stove 

add pick bowl + pour batter 

move pick bowl + place bowl 

turn  pick spatula + lift pancake + flip pancake 

intention actions 
build pick construction tool + place on site 
upgrade  pick upgrade tool + pour nano-bots 
move Pick demolish tool + place on new site 
demolish pick demolish tool + lift turret + flip turret 

Table 1: General tower defense game intentions and actions. 

Table 2: Task intentions and actions in pancake making. 

Table 3: The basic game controls of 3DFEND. 



 
 

Upgrade Turret 
The player can choose the upgrade tool and pour nano bots 
on constructed turrets. Turrets upgrade continuously, 
depending on the amount of nano bots received. Upgrading 
costs energy credits. 

Move Turret 
The player can use the relocation tool to move a tower by 
using it like a spatula on constructed towers, once on the 
spatula they can be placed elsewhere on the stage. 

Demolish Turret 
In the same manner, lifting it with the demolition tool and 
turning it by more than 90° can demolish a turret. The 
player receives a percentage of the tower construction cost 
as energy credits. 

A heads-up overlay provides data on the game state: current 
wave, lives remaining, credit costs, and resources. A 3D 
button on the top center can be used to call for the next 
wave when the player is ready. 

Gameplay 
Apart from the unique free-hand interaction described 
above, 3DFEND has the typical dramaturgy of a tower 
defense game: creeps move over the stage from left to right 
along a highlighted path. Players must build towers along 
the way that automatically fire at the creeps lest these reach 
the portal on the far right end of the stage, in which case the 
player loses life points. Building towers costs energy credits 
that can be replenished through harvesting destroyed 
enemies or demolishing unused towers. With each wave, 
creep health and number increases. Starting with the fifth 
wave, creeps gain a shield that increases in power with each 
wave. Bullet towers are ineffective against shielded 
enemies, while laser turrets diminish shields quickly but are 
ineffective otherwise. Rocket turrets diminish both enemy 
shield and health, but are slow and expensive. With 
increasing enemy numbers and power, players will need to 
upgrade towers to manage the incoming hordes. They will 
need to figure out the ideal configuration of tower count, 
position and level to defeat the incoming enemies. 

Implementation 
3DFEND was implemented using the Unity3D game 
authoring environment. For a hand tracker we used the 
Leap Motion sensor [17], which was integrated into Unity 
using the SDK plug-in. 

Figure 5: Screenshot of the 3DFEND game. 

Figure 6: Screenshot of the virtual manipulation environment. 

EXPERIMENT 
We conducted a formal experiment to evaluate our claim 
that HCG can be used to increase motivation for 
demonstrating manual actions for robot imitation learning. 
Two hypotheses coin this statement: 

H1. Demonstrating manipulation tasks in a game 
environment provides a better experience than following 
instructions in a playful environment. 

H2. The manipulation data recorded in a game environment 
has at least the level of quality as motion data recorded in a 
playful non-game environment. 

Study Design 
The study design compares following explicit instructions 
to perform virtual manipulation tasks with performing the 
same tasks implicitly while playing a game. It uses a 
within-subjects design with an alternating order of 
treatments. The independent variable is activity evocation 
type with the conditions virtual manipulation environment 
with instructions (VE) and game. 

For the VE condition, a virtual environment was created 
(Figure 6). It features the same basic manipulation controls 
but no game elements, namely: enemies, game overlay, or 
animations. Instructions were administered via text overlay. 
Participants were asked to place a cube, move a cube, pour 
on a cube, and flip a cube, and repeat this twice with 
varying locations. On completing these 12 actions the 
treatment was terminated. Attention was paid not to 
introduce any bias by framing (e.g. by using the words 
“game” or “virtual environment”): both conditions were 
introduced neutrally by declaring them as “prototypes”. 

Far in the future, a wormhole opened in proximity to earth. A 
hostile alien race is sending troops through the wormhole. The 
nations of earth have sent you, the player, to construct a 
defense in space. As the enemy is entirely unknown, you must 
quickly match their strategy with specialized defense systems. 
Fortunately, destroyed aliens set free energy that you can 
harness and use to improve your defenses. 

Figure 4: The game background story of 3DFEND. 



The game condition consisted of playing a prototype of 
3DFEND for at least 15 minutes. Pre-tests showed that 
twelve actions is a typical number for 15 min gameplay. 
Players were alerted when this time was over, but were 
allowed to terminate gameplay on their own accord. 

Measures 
To measure the subjective player experience we used the 
competence, autonomy, presence/immersion and intuitive 
controls subscales of the Player Experience of Need 
Satisfaction (PENS) questionnaire [22]. Since the scenario 
at hand focuses on single-player experience we dropped the 
relatedness scale. An interview complemented the 
assessment of the participant experience. 

In PbD, data on demonstrating motions is used to build a 
model for robot behavior. It is hard to quantify what makes 
“good” motion data for PbD. Based on the experience 
gained in previous work [5,11,16], three aspects of motion 
data were identified to operationalize data quality for the 
purposes of assessing H2. 

• A large amount of completed actions is a basic 
requirement for motion data for use in PbD; The VE 
condition as representative of state-of-the-art motion data 
acquisition was designed for a high frequency of 
demonstration samples. 

• Cursor speed, height, and angle can serve as simple 
characteristics for comparing manipulations between this 
baseline and the proposed alternative. 

• Spill in the pour action serves as an indicator for the 
precision of operation (accuracy was less consequential 
in the place and turn actions). 

Participants 
We recruited 16 participants (13 male, 3 female) from the 
academic milieu. Participant ages ranged from 24 to 32 (M 
=26.8, SD=2,32). Out of all participants, 11 considered 
themselves regular gamers (more than 1 hour of playing 
computer games a week) and all but one had experience 
with games and motion input in games. 

Setup and Procedure 
Participants sat at a table with a 24” screen and a Leap 
Motion sensor. First, participants were asked to fill out a 
demographics questionnaire. After introducing participants 
to the experiment procedure, they were trained on the basic 
controls (without instructions or game) until they felt 
competent and comfortable to proceed. Next they were 
exposed to both treatments in turn. After each treatment 
they were asked to fill out the questionnaire. Finally, a short 
interview was conducted. 

Results 
We used two-sided repeated measures Student’s t-test on 
the collected data. Due to logging problems with the move 
action we only report on the three other actions. 

Player Experience 
Figure 7 displays score means and SEM of the four PENS 
scales for player experience. While no significant 
differences in the subjective assessment of competence 
(p=0.27) or intuitive controls (p=0.69) can be made out, 
both autonomy (p<0.01) and presence/immersion scored 
significantly higher for the game condition (p=0.02). 

15 participants voluntarily extended their gameplay, on 
average playing the game for 30 minutes 26 seconds (VE 
instructions took 5 minutes 46 seconds on average). 

Participant’s comments showed a clear subjective 
preference of the game version. Some comments after the 
game condition were: ''I want to finish the round! What was 
the highest high score yet?”, “Where can I buy the game 
and where can I buy the sensor?”, “Can I play again?”, 
“The game is so much fun”. Comments of the users after 
and during the VE condition were along the lines of: “Do I 
have to do all of this?” and “What, again?”. 

Beside these general comments the participants also 
provided feedback on the graphics, the interface and the 
tracking system: The users would like to see more advanced 
and appealing graphics, more accurate hand tracking and 
grasping. Some of these improvements would certainly 
further improve the experience and usability of the system. 
However, the goal of our study was to establish 3DEFEND 
in an initial version with simple methods and tools. 

 

action game VE 

place 14,56 6,13 

pour 16,63 4,94 

turn 2,94 3,00 

Figure 7. Player experience (PENS subscales). Error bars 
indicate the standard error of the mean (SEM). 

 

Table 4. Mean number of completed actions. 
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Motion Data 
Figure 8 shows the action frequency means extrapolated 
from the measured data. Significantly fewer occurrences 
can be measured for all actions under the game condition 
(p<0.01). The small number of turn actions under the game 
condition shows that game mechanics need better balancing 
so that these controls are more frequently used. 

Figure 9 shows movement speed means per action. 
Movement was significantly slower for all actions 
(pplace<0.01, ppour<0.01, pturn=0.01) in the game condition. 
Pour height (p=0.73) and turn height (p=0.15) did not differ 
significantly between the conditions; neither did the 
pouring orientation (px=0.62, py=0.36, pz=0.69). 

There was significantly less content spilled in the pour 
action in the game condition than under instructions in the 
VE (5.4% versus 20.8%, p=0.01).  

ANALYSIS 
Our game provides a better experience regarding autonomy 
and presence. Combined with the observed motivation of 
participants, this supports H1 that demonstrating 
manipulation tasks in a game environment provides a better 
experience than following instructions in a playful 
environment. This has a direct effect on the amount of 
motion data that can be acquired. While games are less 
efficient than instructions (in our example only half as 
many actions per time range), the willingness of players to 
spend more time playing and thus demonstrating more than 
makes up for this: Despite lower frequency our game 
totaled the same amount or more actions (Table 4). The 
motion from both conditions had the same spatial 
characteristics; the same actions can be discerned from the 
data. However, in the game condition, manipulation speed 
was slower and more precise (for the pouring action). A 
likely explanation, corroborated by interview responses, is 
that players care more about the outcome of actions in the 
game. Such effects have been observed in other studies 
comparing user behavior in games with comparable non-
game contexts [9]. The difference in spilling illustrates this 
best. When actions have outcomes that affect players this 
motivates them to act more carefully: Spilling valuable 

nano-bots wastes credits, while the VE did not penalize 
spill. Thus, regarding H2 we can assess that the quality of 
the motion data resulting from the game condition is at least 
the standard of the baseline VE condition. High player 
motivation and thus longer demonstration sessions can 
compensate the lower frequency of actions. Taken together 
with similar observations in related work we can surmise 
that the higher task accuracy is a strong indicator for the 
motivational background increasing task performance and 
thus quality of motion data for PbD. 

DISCUSSION 
We have established a HCG for collecting data on 
embodied knowledge of everyday activities that can be used 
for programming manipulation robots. In the following we 
touch points of discussion regarding controls, game design, 
and experiment design and reflect the chosen approach. 

Free-hand Controls 
As a first exploration of HCG for robot imitation learning 
and for the first 3D TD available, controls were sufficient 
and very usable. As suggested by participants, the free-hand 
controls for virtual action demonstration can be further 
improved. With a more literal virtual hand that includes 
tracked fingers, grab and release gestures could replace 
tool/object activation via timeout, resulting in more fluent 
and efficient interaction that better replicates the real world 
activity. Advances in camera-based low-latency hand 
tracking will also improve the controls. A stereoscopic 
display would provide better depth perception, which was 
an issue for some participants despite depth cues. 

Physics Simulation 
Game engine physics are not optimized for fully realistic 
simulation of physical processes. For practical use, game-
based knowledge acquisition tools such as 3DFEND require 
more realistic simulation engines. Related research 
problems such as enabling interactive simulation at real-
time frame rates are complementary to the problems under 
investigation in this work and are being researched in the 
robotics and computer graphics communities. Actual PbD 
tools will thus integrate insights on HCG for imitation 
learning with state-of-the-art physics simulation. 
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Figure 9. Movement speed in the main control actions (game 
units per second). Error bars indicate SEM. 

 

Figure 8. Action frequency of the main control actions 
(completed actions per hour). Error bars indicate SEM. 



Game Design 
3DFEND is the first free-hand control 3D tower defense 
game and still in prototype stage. Game design was 
minimalist, and game mechanics, assets and story should be 
improved in further iterations. Also, proper balancing is 
essential in order to make sure that no “game-breaking” 
strategies emerge and frequency distribution of the various 
actions is even. However, player feedback confirmed that 
the prototype was sufficient for exploring a HCG approach 
to acquiring motion data for PbD. 

Experiment 
The control condition of our experiment presented 
participants with instructions for basic manipulation 
without motivation or context. We abstracted from the task 
domain cooking in order to provide a generalizable, neutral 
counterpart to the game scenario. This includes two design 
choices that might have affected the aspects of experienced 
presence and autonomy, respectively. The first is that a 
context can give such scenarios intentions: baking virtual 
pancakes is likely more motivating and likely increases 
presence over moving cubes. The second is that purely 
following instructions subdues the creative potential and 
experienced autonomy of playful virtual task exploration—
different players might develop different action strategies to 
reach the same goal. However, without the guiding effect of 
game mechanics and narrative, it is very difficult to control 
action frequency in such free designs. We leave exploring 
the effects of these design nuances for future work. 

Scalability and Extendibility 
We have illustrated that the chosen game design approach 
works for the cooking subtask of making a pancake. This 
can be easily scaled and extended to other task domains 
with similar characteristics. Strategy is a game genre with 
huge variation. For TD, more tower types, different levels, 
varied enemy resistances and tactics are only a few 
examples of how game design can model more diverse and 
complex actions. 

Embodied Human Computation Games 
HCG can incorporate embodied knowledge by capturing 
intricate details of motion behaviors through modern 
natural user interfaces. The mapping of game intentions to 
task domain actions is a flexible design decision. However, 
with embodiment issues, the mapping of user input to 
actions, also discussed for PbD [2], can be very direct, 
requiring less complex methods in the deriving step. Thus 
marrying HGC for embodied task knowledge and imitation 
learning is an especially promising approach. 

Toward a Framework for Manual Behavior HCG 
In order to bring insights gathered in our design process 
into a tentative framework for choosing game archetypes 
for manual action demonstration human computation 
games, we formulate questions for designers to consider. 

Can every part of the game world be reached within a short 
time space? Large-scale locomotion is distinct to strategies 
of manual behavior. To capture the latter, the former should 

be avoided. In most tower defense games, the game world 
can easily fit into 1-4 screens. 

Do game controls require many degrees of freedom 
(DOF)? High-DOF game controls might be more difficult 
to match than low-DOF controls. In the tower defense 
example, the simple click-and-select controls gave us more 
freedom in matching manual actions. 

Can game time constraints be managed (e.g. turns, waves)? 
Full real-time game world simulation can be limiting, as 
manual actions often have a different time scale than the 
game world. Managed time constraints such as in turn-
based gameplay gives more leeway in matching task and 
game domain time scales. 

CONCLUSION 
HCI paradigms will change dramatically in the future when 
the hardware moves from current display-dominated 
interfaces to active agents such as household robots. 
Programming such companions for everyday activities 
requires new methods for acquiring knowledge about 
highly variable environments and the tasks they have to 
perform in them. With 3DFEND we established a human 
computation games approach for harvesting embodied 
knowledge on “workbench” manipulation tasks. Our study 
shows that this embodied human computation game 
motivates users to voluntarily contribute data for imitation 
learning. We mapped a set of typical manual actions to a 
tower defense game that could easily be extended to other 
task domains. Our work shows that gameful human 
computation approaches with consumer hardware motion-
based input can generate motion data for understanding 
human manual behavior. It provides a basis for future work 
on mappings from the task domain to the game domain. 
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