
Open Robotics Research

Using Web-based Knowledge Services

Michael Beetz*, Daniel Beßler*, Jan Winkler*, Jan-Hendrik Worch*, Ferenc Bálint-Benczédi*, Georg Bartels*,
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Abstract— In this paper we discuss how the combination of
modern technologies in “big data” storage and management,
knowledge representation and processing, cloud-based compu-
tation, and web technology can help the robotics community
to establish and strengthen an open research discipline. We
describe how we made the demonstrator of a EU project review
openly available to the research community. Specifically, we
recorded episodic memories with rich semantic annotations
during a pizza preparation experiment in autonomous robot
manipulation. Afterwards, we released them as an open knowl-
edge base using the cloud- and web-based robot knowledge
service OPENEASE. We discuss several ways on how this open
data can be used to validate our experimental reports and to
tackle novel challenging research problems.

I. INTRODUCTION

One of the main barriers to accelerating the progress

in autonomous robot manipulation is the complexity and

heterogeneous nature of the tasks involved. To perform a

challenging manipulation task such as making a pizza, a

robot needs to combine of several complex capabilities. The

robot has to recognize objects such as a ketchup bottle in the

refrigerator and a spoon in a drawer. It has to monitor how

the pizza deforms while it is rolling it and how the surface of

the pizza is covered with tomato sauce when pouring sauce

onto it. The robot has to be capable of autonomous mobile

manipulation: it has to navigate to the fridge, open the door,

and fetch the ketchup bottle. The robot also has to reason

about how to perform actions. For example, it has to decide

whether to use one or two hands for picking up the objects,

where to grasp them, and how to hold them.

Only very few research groups can implement robot con-

trol systems that have the whole range of capabilities that

are required for such manipulation tasks. Most work on small

and isolated problem fragments, such as recognition or track-

ing of textured objects, generation of a control law for pulling

a refrigerator open, detection of known objects based on

their CAD models, grasp planning for 3D models, etcetera.

Consequently, the solutions proposed are often unrealistic

with respect to the requirements imposed on the control

systems, the benchmarks are not representative for their
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targeted application tasks, and it is unclear how to transfer

the solutions to other tasks, objects, and environments.

Modern technologies in “Big Data” storage and manage-

ment, knowledge representation and processing, cloud-based

computation technologies, and web technology now offer

us the opportunity to improve this situation by realizing

a new generation of software tools for open research in

robotics. We can log the entire body of information that

is relevant for achieving robot manipulation tasks including

pose data, the images interpreted by the robot perception

system, and other sensor and control signal streams, into “Big

Data” databases and annotate them with semantic indexing

structures that are automatically generated by the interpreter

of the robot control system. These episodic memories can

help the robotics systems assess what they were doing. The

“episodic memories” enable the robots to answer queries

about what they did, why they did it, how they did it, what

they saw when they did it, and what happened when they did

it. Providing a web-based graphical query interface to robots

that “know what they were doing” is a powerful enabling

technology for open robotics research.

These efforts of providing researchers with semantic ac-

cess to the experimental and experience data of comprehen-

sive autonomous robot manipulation experiments implements

some aspects of Nielsen’s vision of “Reinventing Discovery”

[1], which suggests new ways of conducting research more

effectively through the cooperation facilities provided by

modern Internet technology. Inspiring blueprints for such

web services that promote open research in other domains

include the Allen Human Brain Atlas [2] and the HapMap

project [3] which enables networked science in human

genome research.

In this paper we explain how we use the cloud-based

knowledge service OPENEASE in order to realize open

robotics research. We report on an effort in which we made

a comprehensive demonstration that was prepared for a

yearly review of a large multi partner project, the EU FP7

project ROBOHOW, available for open research. We will

describe how robot demonstrations are logged into hybrid

symbolic/“Big Data” knowledge bases and how researchers

and reviewers can access the knowledge bases in order to

further analyze the experimental data of the experiments

and build performance models of the respective system

components. The experiment can be accessed and inter-

actively worked with at open-ease.org under the section



experiments (https://data.open-ease.org/).

The ROBOHOW demonstration consists of a collection of

sub-episodes with different types of manipulation actions,

such as autonomous mobile fetch and place and rolling pizza

dough. The manipulation actions were performed through

hybrid symbolic/subsymbolic control systems with three

methods for motion control: constraint- and optimization-

based controllers, motions generated from learned dynamic

systems, and motion trajectories obtained through motion

planning. In addition, there are episodes in which humans

train robots by demonstrating pouring actions in a virtual

reality simulation. The logged episodes are semantically

linked to a common concept ontology and accessible through

knowledge formalized in the logic programming language

Prolog. The common representation framework facilitates the

combination of knowledge from different episodes.

The main contribution of this paper is twofold. First,

we describe how a complex real-world robot demonstration

can be converted into a knowledge base of a web-based

knowledge service in order to facilitate open research in

robotics. Second, we show how researchers can conduct

open research based on the knowledge bases automatically

constructed from the demonstration and the power of the

visual inspection and analysis tools that are provided by

OPENEASE. We believe that a community effort to make

knowledge bases of complex robot experiments available for

open research combined with the software tools provided

by “Big Data” technology will have a substantial impact on

advancing AI-based robotics technology.

The remainder of the paper is structured into three

parts. We start with a description of the OPENEASE robot

knowledge service and how experiments are transferred into

OPENEASE knowledge bases. Then, we give a sketch of

the pizza making experiment conducted at the ROBOHOW

review and describe how the different sub-experiments were

recorded, which information was stored, and which queries

can be answered. We also provide an example of how the

same infrastructure can support data from other sources on

the same actions, in this case human demonstrations in a

simulation-based environment. In the final section we outline

how remote researchers can work with the experiments,

reproduce results, refine the original analysis, and finally

conduct their own research with the open data.

II. OPENEASE — A CLOUD- AND WEB-BASED

KNOWLEDGE SERVICE

The web-based knowledge service OPENEASE [4] serves

as the groundwork for our approach to open robotics

research. OPENEASE is a remotely accessible knowl-

edge processing service for robots and robotic researchers.

OPENEASE can load knowledge bases represented in the

KNOWROB [5] representation language and reason about

them. OPENEASE provides the representational infrastruc-

ture to make inhomogeneous experience data from robots

and human manipulation episodes semantically accessible,

and is complemented by a suite of software tools that enable

researchers to interpret, analyze, visualize, and learn from

the experience data. Using OPENEASE users can retrieve

the memorized experiences of manipulation episodes and ask

queries regarding to what the robot saw, reasoned about, did,

and how actions were performed and which effects occured.

KNOWROB knowledge bases describe relations and are

defined by means of Prolog clauses of two types: facts

and rules. Prolog rules have the form Head :- Body and

are read as “Head is true if Body is true”. The body of

Prolog rules consists of a sequence of calls to predicates

connected by logical conjunctions. The logical conjunctions

are written as “,”. Arguments of predicates can be either

values or variables where each argument that starts with

an uppercase letter denotes a variable. Facts have the form

hasComponent(’robot-Boxy’, ’camera1-left’), which states

that the robot with the name ’robot-Boxy’ has a component

with the name ’camera1-left’. Given this fact, one can ask: ?-

hasComponent(’robot-Boxy’, ’camera1-left’), which results

in the answer yes.

We can also ask more complex queries such as which

components does the robot ’robot-Boxy’ have that are some

kind of sensor. This query would then return all sensors of

the respective robot as shown below:

?- hasComponent(’robot-Boxy’, Comp),

isType(Comp, ’Sensor’).

Comp = ’camera1-left’ ;

Comp = ’camera2-right’ ;

Comp = ’infraredCamera’ ;

Comp = ’swissRangerTOF’ ;

Comp = ’videreStereoOnChip’ ;

Comp = ’hokuyo-shoulder’ ;

Comp = ’hokuyo-rear’ ;

Comp = ’hokuyo-front’.

Clauses with bodies are called rules. An example of a rule

is sensor(Robot,Sensor) :- hasComponent(Robot, Comp),

isType(Comp, ’Sensor’). Given this rule we could get the

same results as above by simply querying ?- sensor(’robot-

Boxy’, Comp).

More complex queries consist of a conjunction of predi-

cate calls. Such a query is shown in Figure 1. The predicate

call task goal(Task, Pattern) binds tasks to the variable Task

where the given pattern matches. In this example, the pattern

matches all grasp actions that acted on objects with the

type cup. task outcome(Task, success) yields all successfully

performed tasks. In conjunction with the previous predicate,

the query yields all robot tasks that successfully grasped a

cup. Each action has an associated start and end time which

can be queried by the predicates task start(Task, Start) and

task end(Task, Start). Furthermore, it is possible to query

for the end effector of the robot that was used for the grasp-

ing action by calling the predicate task used gripper(Task,

Gripper). Finally, the predicate add trajectory(Gripper, Start,

End) is called in order to visualize the trajectory of the

endeffector during the grasp action.

Visualization of trajectories for particular actions that were

performed during the experiment requires that poses of robot

links are logged continuously. Contrary to other knowledge

bases, KNOWROB does not perform the abstraction of this

data into a symbolic representation before the knowledge

https://data.open-ease.org/


Fig. 1: KNOWROB Query interface.

is asserted into the knowledge base [5]. So called virtual

knowledge bases are used to compute a symbolic represen-

tation of this continuous data on demand if required for

answering a query. Those procedural attachments (called

Computable predicates) allow to include external reasoning

sources, such as the perception system, into the reasoning

procedure. For example, this allows the definition of a

predicate graspable(O, R) that yields true if the robot R

is capable of grasping the object O at the most recently

perceived object position. Internally, the predicate can be

implemented based on the capabilities of the robot, the

position, shape and other object properties as well as the

kinematic structure of the robot by computing a solution

to the underlying inverse kinematics problem. The poses

of the robot links and internal data structures of the robot

are logged continuously into an unstructured database that

is indexed by timestamps. Computable predicates are used

in order to read the poses and data structures for points in

time that correspond to symbolically represented semantic

events (such as grasping a cup). By using such external

knowledge sources, the knowledge base is extended beyond

the symbolically represented content.

The KNOWROB ontologies serve as a uniform symbolic

representation for robotic experiments that are published on

OPENEASE. Published experiments comprise different envi-

ronments, everyday activities and robotic as well as human

agents. Those experiments can be represented uniformly in

the knowledge base and can be investigated with the same

set of predefined Prolog predicates.

OPENEASE gives unprecedented access to comprehensive

knowledge about leading-edge robotic experiments such as

long term pick and place experiments performed by au-

tonomous robots. This framework combines robot and human

activity logs in a uniform structure based on the KNOWROB

ontologies. The episodic memories include knowledge about

when and why actions were performed, the outcome of

the actions, the state of the agent during the experiment,

perceived objects and internal states of the robot such as

information about the control program. This comprehensive

data is coupled with an expressive representation and a

powerful query language that allows users to flexibly inspect

Fig. 3: Both robots (Boxy and Raphael) during the RoboHow

pizza demonstration

and process the part of the data of interest. For example, it

is possible to query for trajectories of the right arm of the

robot where the robot was rolling a dough as a preparation

step for making a pizza. In addition, the OPENEASE web

service provides a powerful web visualization that allows

to visualize parts of the experiment for particular timepoints

that correspond to semantic actions such as rolling the dough

(see Figure 2). A more complete introduction to the user

interface of OPENEASE can be found in the paper [6].

III. THE ROBOHOW PIZZA EXPERIMENT

The RoboHow pizza experiment was shown live during

the third-year review meeting of the ROBOHOW project, and

consisted of three subactivities centered around preparing a

pizza: (1) fetching and placing tools, ingredients and the

finished pizza, (2) roll out the dough, and (3) placing the

toppings.

These subactivities were done by two collaborating robots

in our laboratory shown in Figure 3. The first one is Raphael,

an off-the-shelf PR2 mobile manipulation platform from

Willow Garage, extended to have a Microsoft Kinect-2 as

its main perception device. The second one is Boxy, a robot

designed in-house with two KUKA LWR-4+ manipulators, a

holonomic platform using mecanum wheels, a movable torso,

and two parallel-finger grippers.

In the experiment Raphael was in charge of fetching and

bringing tools and ingredients to Boxy, who manipulated

the pizza dough, and added the pizza ingredients. After the

robots were finished, a person came into the scene, and

placed the tray with the pizza into the oven for baking it.

In a second branch of the demonstration we have shown

how skill acquisition for such sophisticated manipulation

actions can be performed using virtual reality games: adding

the ingredients was performed in a simulation-based ex-

periment. Similar tools as used on the physical robots

were used for creating and accessing the logs, illustrating

how OPENEASE can be used to work with heterogeneous

datasets.



Fig. 2: Web interface of OPENEASE.

In the demonstration the subsystems for the different

demonstration components logged episodic memories of the

respective subactivities and stored them in the knowledge

base of OPENEASE in order to make them publicly avail-

able for research usage. The data recorded in the episodic

memories consists of symbolic log data from robot plans

(performed actions, parameters, failures, results), and sub-

symbolic sensor data such as robot joint states and images

taken by the robot’s camera. The images taken during per-

ception actions are semantically labelled by the perception

system ROBOSHERLOCK [7] based on what was detected in

that moment.

The following sections will briefly describe each part

emphasizing the research aspects that should be prepared

for open research.

A. Fetch and Place

The research aspect of the fetch and place subactivity was

to demonstrate that we could design generic plans for fetch

and place that enable robot programmers to program the

plans compactly by incorporating expressions such as: go to

a place where you believe the object to be, position yourself

such that you can see the object well, if needed make the

object visible, for example by opening a drawer [8]. Figure 5

schematically depicts the fetch and place plan used in the

experiment.

In the demonstration most objects required were placed at

typical locations and not in reach of the robot performing the

cooking task. Within the RoboHow pizza experiment, a PR2

robot was tasked with fetching different objects and bringing

them to their appropriate places. These included getting a

spoon from a drawer, a ketchup bottle from a fridge, and in

the end transporting the tray with the pizza to the oven (see

Figure 4).

In all these cases, the same robot plan for fetching and

placing objects was used, only differing in parameterization.

How to open and close drawers and fridges is dynamically

(a) Raphael bringing the spoon
for Boxy.

(b) Boxy pouring tomato sauce.

(c) Boxy bringing cheese to the
tray.

(d) Raphael bringing the tray to
the oven.

Fig. 4: Robots executing parts of the pizza experiment

inferred based on knowledge from the semantic environment

model. For source or destination locations inside the drawer

or the fridge, handling routines for containers are used that

are parameterized by the semantic environment model.

Using the collected episodic memories, remote researchers

conducting research with these data can investigate the robot

operation in more detail by stating queries in the web-based

OPENEASE interface. Possible queries include “What did

the robot see when it has opened the container?”, “Which

object types are perceived during the experiment?”, “Which

path did the robot follow during the pick-and-place task?” or

“What was the arm trajectory during the putdown action?”.

B. Dough Rolling

The second component of the experiment was dough

rolling. The goal of the robot in this experiment is to flatten

out a ball of pizza dough using a wooden roller installed as

an end-effector of Boxy as shown in Figure 6.



Fig. 5: Schematic depiction of the fetch and place task

used in the RoboHow experiment. Environment articulation

is only performed where necessary according to object and

location parameters.

For dough rolling the control system employs a dynamical

system that was learned through imitation learning. The

first step involves automatic task segmentation and primitive

learning. Here we apply a method proposed by Figuerora and

Billard [9] which uses a Bayesian Non-Parametric approach

for segmentation and clustering, namely an extension of the

Beta Process Hidden Markov Model. This method is used to

discover the unique primitive motions in a scale, translation

and rotation invariant manner, without prior knowledge of

the task or the number of primitives involved. For the dough

rolling task this resulted in a sequence of three primitive

motions (atomic actions): reach, roll and reach back.

We follow by extracting soft task constraints from the

discovered primitive motions, as proposed by Pais et al. [10].

These constraints represent low-level knowledge about the

task. They describe the variables of interest, the reference

frame to be used and the proper stiffness modulation for each

action in the given task. Applied to the dough rolling task this

method determined a position controller as suitable for the

reaching/reaching back phases and a hybrid force-position

decomposition for the rolling action. Finally, we learn a set

of action models for each primitive motion.

In addition, we extracted high-level knowledge about the

task in the form of a success metric. The rolling task pre-

sumed multiple iterations of the sequence of atomic actions

of reaching, rolling, reaching back. The goal was to obtain a

round dough, of a given area. Which is correlated to properly

positioning the starting and ending points of the rolling

action. Since each rolling deformed the dough in the desired

direction, at each iteration we positioned the attractors for the

reaching and rolling along the small axis (second principal

component) of a fitted ellipse on the dough.

The high-level executive is again programmed as a generic

plan that automatically logs episodic memories that include

the dynamic system model used, the trajectory that was

followed, and the forces that were applied, compared to the

original models.

Using the episodic memories, we can infer knowledge

such as how the size of the pizza dough is changed after

each movement or how the arm trajectory is while reaching

the pizza dough.

(a) Before the first movement (b) After the first movement

(c) Visualization of pizza rolling in OPENEASE

Fig. 6: Dough rolling experiment

C. Preparing the Pizza

Preparing the pizza consisted of taking tomato sauce out of

a bowl using a spoon, placing it on the flattened dough, then

spreading it. Afterwards shredded cheese should be taken

from the spoon and placed over the dough with the tomato

sauce. Research aspects that are important in this part of the

demonstration are the use of tools that are autonomously

grasped in order to perform the manipulation task, the

spreading action which is first executed with pushing the

spoon into the tomato sauce and then distributing the sauce

over the pizza. For the cheese spreading the robot has to

scoop out cheese from a bowl and select the position over

the pizza from where to drop the cheese. The position of the

spoon, the bowls, and the tray with the pizza dough were

perceived using the ROBOSHERLOCK system.

Raphael then picked up the tray with both hands and

transported it over to the oven lid. It carefully placed the

pizza tray onto the lid and backed off, telling the Boxy robot

that it finished its task.

For the final stage of the experiment, Boxy started per-

ceiving humans in the scene, tracking a human that went to

the oven, put the pizza into the oven, closed the lid, and

switched the oven on. After the human left the scene, Boxy

informed Raphael about the task being fully completed. The

experiment concluded with this action.

D. Preparing Virtual Pizzas

The ROBOHOW experiment also includes episodes where

the robots learn capabilities needed to perform complex

manipulation tasks from humans demonstrating the tasks in

virtual reality environments with an integrated physics sim-

ulation. In particular, using virtual games, we set up a scene

where we asked players to create a pizza using the following

tools and ingredients: a container with tomato sauce, a spoon,

two bowls with toppings, and a prepared pizza dough. The

player had to pour the tomato sauce from the container onto

the dough and spread the sauce as uniformly as possible

using the spoon. Afterwards, using the same spoon, they



scooped toppings from the given topping bowls onto the

dough. The interaction with the virtual environment was done

by tracking the users’ hands movements and mapping it on

a simulated robotic hand, see Fig. 9 (left).

During the gameplay all the simulation data was logged

and post-processed to the OPENEASE system using modules

similar to the logging used in robot control. Fig. 9 (right)

shows an example of querying trajectories from the recorded

data. Here the entire trajectory of pouring sauce onto the

dough is shown using yellow markers. In addition, the end

pose of the hand at the time of releasing the container is

visualized, along with other objects that were part of the

simulation.

IV. CONDUCTING OPEN RESEARCH

Now, that we have described the experiment knowledge

bases that we made available, the knowledge they contain,

and some representative queries that can be answered for

them let us turn to the topic of discussing how researchers

can use the knowledge bases and perform open research.

Fig. 7: Frames of a grasping-a-spatula video (the robot’s

view) generated using the automated video generation tool

in OPENEASE. The descriptions of spatula are denoted as

a speech bubble.

First, let us consider how OPENEASE improves the repro-

ducibility of experimental results. To this end, OPENEASE

provides various tools for experiment summarization. One

of the tools enables researchers to automatically generate

videos of the experiment knowledge base. To generate such

a video, researchers start with the earliest time instance of

an experiment and query the knowledge base for specific

information regarding the situation at this time instance.

Researcher then can visualize the desired information using

speech bubbles and hud texts, advance to the next time

instance, and repeat (Figure 7). To generate the individual

images of the video users can state arbitrary and complex

OPENEASE queries. This functionality is provided by a

special interactive web interface that lets researchers vi-

sualize the video generation process and parameterize the

video generation in various ways such as setting the camera

position or the timestamp step size from one image to the

next one. For example, researchers can place the point of

view to get a good overview of the experiment or one could

ask the video generation tool to automatically place the point

of view to the current pose of the robot’s camera to generate

the robot’s view on the experiment (Figure 7).

Other experiment summarization tools include the gener-

ation of an infographic-like visualization of the experiment,

which summarizes the experiment into a single or a small

Fig. 8: An infographic in which the robotic agent performed

multiple pick-and-place actions (top). The locations where it

performed a PUTDOWN action are highlighted. An error dis-

tribution statistics of a pick-and-place experiment (bottom).

sequence of infographics (Figure 8). These infographics

include a 2D sketch of the environment, the robot trajectory

and highlighted positions of the robot while accomplishing

important tasks. In addition, OPENEASE provides the usual

tools for visualizing statistics using bar charts and pie dia-

grams that allow researchers to visualize failure distributions

in the experiment or metering the resources needed by

different information processing steps (Figure 8 (right)).

Besides experiment summarization OPENEASE also al-

lows to have a more thorough look at the experiment con-

ditions. For example, using the OPENEASE query interface

researchers can ask which objects the robot picked up and

placed somewhere else or could inspect the images that

were used in order to recognize, localize, and reconstruct

the perceived objects for manipulation.

But besides the assessment of the conditions under which

actions were performed researchers can also analyze the

employed methods more carefully in order to understand

their strengths and weaknesses. A simple means is to learn

classifiers that predict whether methods succeed or fail based

on their retrieved results in the respective experiment. For

example, by learning decision trees for predicting the success

of object recognition tasks based on a large variety of context

condition that are recorded by the system. The rules that

are learned could then state findings such as that a object

recognition method can robustly detect and recognize objects

unless they are located in the refrigerator, which would

suggest to further analyze the methods under the respective

lighting conditions and certain characteristic views and types

of occlusions that are typical for refrigerators.

OPENEASE also supports the investigation of perceptual



Fig. 9: Making pizza in Virtual Games. The user interaction with the game (left) and the corresponding pouring trajectory

in OPENEASE (right).

capabilities of robotic agents, in particular when used in

combination with the perception framework ROBOSHER-

LOCK. ROBOSHERLOCK [7] is a knowledge enabled percep-

tion system, that is based on the Unstructured Information

Management (UIM) paradigm [11]. It takes advantage of the

ensembles of experts approach and is equipped with a library

of state-of-the-art perception methods which can be used as

experts. In ROBOSHERLOCK perception tasks are solved by

reasoning about the perception task that is formulated by

the higher level planning and adapting perception pipelines

during run-time based on the results of this. This is made

possible through two defining concepts of the framework:

(1) the use of knowledge available to the robot operating in

environments over long periods of time and the use of this

knowledge for simplifying perception tasks (e.g. localization

in a semantic map), and (2) the perceptual capabilities of the

framework are modeled so that it can autonomously make

decisions about which perception algorithm to run in order

to successfully accomplish the given task.

OPENEASE has been extended so that researchers can

send perception queries to ROBOSHERLOCK which inter-

nally configure the perception routines that are applied to

captured images and run these perception routines through

OPENEASE. Thus, researchers can select images captured

during the experiments and process them again using RO-

BOSHERLOCK. To this end, OPENEASE provides the option

to generate new pipelines or modify the exisiting pipeline,

using Prolog queries. Reasoning about the components of

a pipeline happens internally in ROBOSHERLOCK but users

can see these results by formulating build pipeline queries

where the parameters are either a visual description or the

instance of an object expressed through KNOWROB entities.

This allows for comparing alternative perception algorithms

on image data that was captured during real robotic ex-

periments instead of having image data from static camera

setups. An example of two queries is depicted in Figure 10,

where specialized perception pipelines are internally gener-

ated in order to find drawer handles and the tomato sauce

on the pizza dough.

OPENEASE also allows for creating benchmark sets for

perception tasks. For example, researchers can query for

( d e t e c t

( an i n g r e d i e n t

( t y p e t o m a t o s a u c e )

( on ( an o b j e c t ( t y p e p i z z a )

( on ( an o b j e c t ( t y p e t r a y ) ) ) ) ) ) )

(a) Sauce on Pizza

( d e t e c t

( an o b j e c t

( i n k i t c h e n )

( c o l o r g rey )

( t y p e h a n d l e ) ) )

(b) Detect Handles

Fig. 10: Queries and results of a ROBOSHERLOCK pipeline

images that contain three objects that are at a distance of

at least 3 meters and at most 4 meters to the robot. This

enables researchers to test their algorithms on data which

was not only recorded for a specific purpose.

As mentioned above, OPENEASE can also be used to find

and inspect weaknesses of an algorithm. Consider a robot

that was supposed to pick up a red cup, but mistakenly picked

up a plate. Researchers can query for the situation when the

robot picked up the plate which it thought to be a red cup.

Researchers will get the information related to that scene,

like region of interest of the object and the entire image, and

can re-run the perception pipeline to figure out why the plate

was mistakenly recognized as a cup or try other perception

routines on the same scene in order to find an algorithm

which is more suitable under the given circumstances.

V. RELATED WORK

For interfacing web applications with cutting-edge robotic

soft-/middleware, Alexander et al. offer Robot Web Tools

[12] which make ROS accessible through JavaScript and

HTML5. The Robot Web Tools are used by our OPENEASE

web service. In the context of web-based knowledge pro-

cessing systems, Wielemaker et al. propose a system called

ClioPatria [13]. Using ClioPatria, users can send queries to

a static knowledge base. Instead of allowing users to write

Prolog queries they are using an SQL-like query language

SPARQL that is internally mapped to Prolog queries. Saxena



et al. introduce a knowledge engine called RoboBrain [14].

RoboBrain incorporates multiple data modalities including

symbols, natural language, haptic senses, robot trajectories

and visual features where the knowledge is acquired from

sources such as physical interactions, web knowledge bases

and learned representations. Goldberg et al. reviews ways

that cloud computing in robotics has potential to improve

performance [15]. According to the authors the five ways

are: Providing access to global image, map, and object

data libraries; Parallel computing on demand for demanding

tasks; Sharing of outcomes, trajectories, and dynamic control

policies; Sharing of source code, data, and designs for

programming; On-demand human guidance for exception

handling and error recovery.

VI. CONCLUSION AND FUTURE WORK

Our ROBOHOW Pizza Making Experiment features the

whole chain of robot control: Using high-level action plans,

an autonomous robot gathers necessary ingredients from a

kitchen environment out of drawers and fridges, manipu-

lating its environment and perceiving objects in a semantic

fashion, and brings them to a second robot that prepares

a pizza. Using force-torque based low-level manipulator

control, pizza dough is rolled out while its shape is mon-

itored and compared to a desired size. The same semantic

perception system that monitors the dough shape inspects

where sauce is missing on a flat pizza, and the robot spreads

the sauce accordingly. A human monitoring component then

tracks a human that switches on the oven and completes the

task.

The whole experiment is logged into a “big data”

database using our extensive logging system, and is made

ready for analysis within the OPENEASE system. With

the OPENEASE system researchers can store extensive and

comprehensive episodic memories of robot experiments in

a cloud-based storage system for inspection by humans

and robots alike. Using its open architecture, new experi-

ment types can be added to the database and queried for

information using a flexible logic programming interface.

OPENEASE allows access to logged experiments in a very

detailed manner, opening them up for in-depth analysis for

researchers world-wide without the need to conduct the

experiments themselves.

As shown, OPENEASE comes along with powerful tools

for analyzing, re-running and summarizing experiments per-

formed on real robots and in simulation. Using OPENEASE

researchers have the opportunity to access semantically anno-

tated data from real world scenarios. This is a major advan-

tage compared to making only raw data public. Researchers

can easily compare algorithms at specific situations, learn

decision trees for predicting the success of grasping actions

during pick-and-place experiments or the success of object

recognition tasks based on context conditions, figure out

weaknesses of a system, and reproduce experiments due to

the fully semantically labeled data.

We plan to provide an easy-to-use interface for integrating

new types of experiments and constantly add new analysis

modules to the OPENEASE system. Our growing database

of fundamentally different datasets shares the same logic

programming interface for each type and will be extended

beyond pure robot experiments, covering more demonstra-

tions by humans whose intentions are not inspectable from

the outside.
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