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Abstract. We propose automated probabilistic models of ev-
eryday activities (AM-EvA) as a novel technical means for
the perception, interpretation, and analysis of everyday ma-
nipulation tasks and activities of daily life. AM-EvAs are de-
tailed, comprehensive models describing human actions at
various levels of abstraction from raw poses and trajecto-
ries to motions, actions and activities. They integrate sev-
eral kinds of action models in a common, knowledge-based
framework to combine observations of human activities with
a-priori knowledge about actions. AM-EvAs enable robots
and technical systems to analyze actions in the complete sit-
uation and activity context. They make the classification and
assessment of actions and situations objective and can justify
the probabilistic interpretation with respect to the activities
the concepts have been learned from. AM-EvAs allow to an-
alyze and compare the way humans perform actions which
can help with autonomy assessment and diagnosis. We de-
scribe in this paper the concept and implementation of the
AM-EVA system and show example results from the obser-
vation and analysis of table-setting episodes.

Keywords: Activity Modeling, Knowledge-based Action
Analysis, Human Motion Tracking

1. Introduction

Our ultimate goal is to develop models of human
everyday manipulation activities and represent these
models as knowledge bases for different kinds of learn-
ing, reasoning, and analysis mechanisms. Having in-
formative models of human activities enables ma-

*Corresponding Author: Michael Beetz Intelligent Autonomous
Systems Group, Department of Informatics, Technische Uni-
versitdt Miinchen. Boltzmannstr. 3, D-85748 Garching. E-mail:
beetz@cs.tum.edu

*Corresponding Author: Michael Beetz Intelligent Autonomous
Systems Group, Department of Informatics, Technische Uni-
versitit Miinchen. Boltzmannstr. 3, D-85748 Garching. E-mail:
beetz@cs.tum.edu

chines to observe, analyze and compare human activ-
ities. Comparing the observations against models of
“normal” behavior can help detect impairments. Com-
paring against previous observations of the same per-
son allows to assess changes in the behavior. Also,
powerful predictive and analytical models of human
everyday activities are an important source of knowl-
edge for assistive environments. We further believe
that a lot of common-sense knowledge can be automat-
ically derived from the respective activity models. For
being able to detect changes both in terms of atypical
motions (e.g. due to physical impairments) and at the
level of activities (e.g. forgotten actions due to demen-
tia), the models should cover a wide range of levels of
descriptions, from very detailed motions to actions and
activities.

We take as our running example table setting activ-
ities recorded in a kitchen environment, which are de-
picted in Figure 1. The upper figure contains the com-
plete trajectory data for the right hand from five ta-
ble setting episodes carried out by two different sub-
jects. The three smaller images below show the sub-
trajectories for reaching for the cupboard handle, for
taking objects from the table, and for reaching into
a cupboard. The stereotypicality of the trajectories is
quite surprising considering how many decisions need
to be taken for carrying out the activities, including
where to stand, how to reach, how to grasp, how to
lift, where to hold the objects, etc, and and also consid-
ering the context-dependence of these decisions. This
stereotypicality indicates that there is indeed a signif-
icant structure in human activities that can be learned
and recognized by probabilistic models.

In this paper we describe a class of sensor-equipped
software systems that we call Automated Models of Ev-
eryday Activities — AM-EvAs. AM-EvAs consist of
automated activity observation systems, interpretation
and abstraction mechanisms for behavior and activity
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Fig. 1. Hand trajectory data recorded in table setting episodes. The
upper picture shows the trajectory of the right hand during five
table-setting episodes performed by two different persons. The lower
pictures show segmented sub-trajectories for certain primitive ac-
tions.

data, a knowledge representation and reasoning system
for symbolically representing the activity data, and a
query system that allows AM-EvAs to answer seman-
tic queries about the observed activities.

AM-EvAs are usually acquired by the following
procedure, illustrated in Figure 2: Researchers in cog-
nitive psychology plan experiments involving every-
day manipulation activities. The activities are observed
using a camera-based full-body motion tracking sys-
tem and a sensor network including RFID (Radio Fre-
quency IDentification) tag readers in cupboards and
underneath the table, and magnetic sensors detecting
whether doors are opened and closed. Figure 3 shows
how the information in AM-EvA, including a sequence
of poses, segmented and classified trajectories, ob-
served events like an object appearing on the table,
and the locations from which and to which objects are
transported, is grounded in observations.

The sensor data stream is segmented and classified
by learned classifiers that can recognize movement
primitives such as reaching for an upper cupboard,
picking up an object, etc. In the next step, these be-
havior data, segmented into movement primitives, are
interpreted in order to compute more abstract macro-
actions from the continuous data stream. These macro-
actions are represented in a first-order temporal logic
language which includes time intervals, events and ac-
tions as its basic concepts. Sets of these episode rep-
resentations can then be used to compute joint prob-
ability distributions over the observed everyday activ-

sensor: RFIDcupboard5

eventT: disappear
object: plate-23
time: 9.865s

startLocation
pos: [0.46,2.30,1.78]

PuttingDown
\— endLocation
pos: [3.95,1.94,0.74]
—

sensor: RFIDtable |

eventT: appear
object: plate-23

time: 12.846s

Fig. 3. Multi-modal observation of human activities. This figure
illustrates which information the system provides and how it is
grounded in the observations, namely the motion capture data, infor-
mation from the sensor network like RFID detections, and inferred
information like the foLocation of an action as the hand pose during
the transition between a PuttingDown and Releasing motion.

ities which serve as a knowledge resource to answer
key queries about these actions.

An important feature of AM-EVA is the knowledge-
based framework that ties together the different mod-
ules. By representing the observations and all derived
action descriptions together with their semantic mean-
ing, AM-EvA can combine different pieces of infor-
mation in an automated way and perform reasoning
on the observed activities. The semantic description
states, for example, that a certain number denotes the
joint angle of a human elbow joint, or that an ac-
tion segment is an instance of the action class Reach-
ing. This information can be used to infer properties
(e.g. that this motion has the goal to grasp an object),
or to relate pieces of information (e.g. relations be-
tween the elbow joint and the shoulder joint) in a com-
pletely automated way. This part of AM-EVA is re-
alized within the KNOWROB knowledge processing
framework [11].

The key contributions of this paper are the follow-
ing ones. We present an integrated system for observ-
ing, analyzing and interpreting complex human activ-
ities at different levels of abstraction. A knowledge-
based framework integrates methods for human mo-
tion tracking, for learning continuous motion models,
for motion segmentation and abstraction, and for prob-
abilistic reasoning. At each level, all information in the
system is represented in combination with its semantic
meaning, which enables automated reasoning on the
observations. The result are models that allow for an
unprecedented depth of the automated analysis of hu-
man activities.
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Fig. 2. Activity observation, interpretation, and analysis using AM-EvAs. Human actions are observed with a marker-less motion tracking
system (lower part) and represented in a knowledge-based framework. Segmentation and abstraction methods generate more abstract action
representations at several levels of abstraction from motions to actions and activities (upper left). The result can be used for learning statistical

relational models of human activities (right part).

The remainder of this paper is organized as follows.
We will first describe the different modules in AM-
EvVA, namely the human motion tracking system (Sec-
tion 2), the techniques for learning continuous motion
models (Section 3), for segmenting the stream of ac-
tions (Section 4), the methods for the symbolic action
description and computation of more abstract repre-
sentations (Section 5), and those for learning proba-
bilistic models of complete activities (Section 6). We
will then show some applications of the system (Sec-
tion 7) and finish with our conclusions.

2. Observing Everyday Manipulation Activities

Observing human activities requires the estimation
of human motions and associated poses at a detailed
level. Often, commercial marker-based tracking sys-
tems are employed to make the estimation reliable.
However, such systems are infeasible in real scenarios,
as they are intrusive, expensive and difficult to set up.

We developed a marker-less motion capture system
tailored towards application in everyday environments
(Fig. 4). Our system comes with several improvements
over both marker-based and state-of-the-art marker-
less motion capture systems:

— Setup is fairly easy, cheap and unintrusive, requir-
ing only the placement of several cameras in the
environment. Three cameras are usually sufficient
for tracking, although more cameras are recom-

mended to account for occlusions from the envi-
ronment.

— We derive a full body pose for each time step that
is defined by an accurate 51 degrees-of-freedom
articulated human model and corresponding esti-
mated joint angles. This also enables us to cal-
culate the trajectories of specific body parts, e.g.
hand trajectories during a pick and place action.

— The system is functional without a preceding
training phase and is unconstrained with respect
to the types of motions that can be tracked.

— By incorporating their appearance, we are able to
track subjects that act and interact in realistic ev-
eryday environments, e.g. by opening cupboards
and performing pick and place tasks on objects.

Technically, our system estimates human poses in a
recursive Bayesian framework using a variant of par-
ticle filtering. Each particle represents a human pose,
given as a vector of joint angles. To account for the
high dimensionality of the tracking problem, we de-
veloped a sampling strategy [2] that is a combination
of partitioning of the parameter space [6] with a multi-
layered search strategy derived from simulated anneal-
ing [4]. While the partitioning strategy enables us to
take advantage of the hierarchical nature of the hu-
man body to reduce tracking complexity, the annealing
strategy makes the system more robust to noisy mea-
surements and allows us to use larger partitions at once
that can be more accurately observed. This efficiently
enables us to overcome local minima of the weight



Fig. 4. Marker-less motion capture (one of four cameras): a) original
image b) inner model c¢) outer model d) virtual 3D view with
appearance model.

function and to gradually move particles towards the
global maximum.

The observation model inside the particle filter
framework is based on a comparison of 2D silhouettes
extracted from multiple cameras (using common back-
ground subtraction techniques) with the correspond-
ing model projections of the particles [1]. The motion
model uses a constant pose assumption with body part
dependent Gaussian noise added to account for the un-
certainty. This makes it possible to track unconstrained
human motions at comparably low frame rates (25 Hz).
Inter-frame as well as intra-frame motion limits have
been estimated using ergonomic expertise.

Our method is able to track subjects performing ev-
eryday manipulation tasks in realistic environments,
e.g. picking up objects from inside a kitchen cupboard
and placing them on a table (Fig. 4). Dynamic parts
in the environment (such as objects being manipulated
or opening doors) are filtered and ignored when evalu-
ating particle weights based on a comparison between
expected background and known foreground (human)
appearance when evaluating particle weights. Occlu-
sions from static objects in the environment (e.g. ta-
bles) are dealt with by providing blocked regions that
will only be evaluated in areas that resemble the learnt
foreground (human). As a rule of thumb for occlusion
handling, every part of the human should be observ-
able by (at least) three cameras to achieve good track-
ing accuracy. Therefore, areas with heavy occlusions
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Fig. 5. Accuracy of marker-less motion capture as estimated using
the HumanEva II benchmark [8].

should be covered by more cameras to gather suffi-
cient information for successful pose estimation. We
have validated our system on the HumanEva II test
suite with available ground truth tracking data, and
the results prove the validity of our approach (Fig. 5).
The mean Euclidean joint position errors in 3D range
around 5-6 cm (which might also be a systematic er-
ror due to differences in the human models used) and
the tracking accuracy stays approximately constant
throughout the two tested sequences. Note that the test
suite provides a relatively simple scenario that does
not contain occlusions, dynamic objects or manipula-
tion tasks by the human subjects. Our system has also
been successfully applied to more complex scenarios
(see http://memoman.cs.tum.edu for videos).
The data we are using here have been released in
the TUM Kitchen Data Set [10] and are publicly avail-
able for download'. The data set currently contains ob-
servations of 20 episodes of different kinds of setting
a table, performed by four different subjects. It pro-
vides video data of four fixed, overhead cameras, mo-
tion capture data, as well as information from sensors
embedded in the environment, e.g. RFID tag readers in
cupboards and underneath the table, or magnetic sen-
sors that detect if a cupboard door is being opened.

3. Continuous Motion Models

At the most detailed level, our models base their
representations directly on the joint motions that are
gathered by the marker-less full-body motion track-
ing system (together with information on object in-
teractions from the sensor network in general). Even
though the data at this level is very high-dimensional,
it is reasonable to assume that it is nevertheless well-
structured, because actions performed during house-
work are in many ways constrained (with respect to the
expected limb motions, which are far from arbitrary)

Thttp://kitchendata.cs.tum.edu
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Fig. 6. GPDM with class constraints: low-dimensional embedding
of an unconstrained pick-and-place task

and they follow clearly discernible patterns. These pat-
terns can be made explicit by suitably embedding the
high-dimensional data into a low-dimensional latent
space.

Preliminary experiments with Gaussian process dy-
namical models (GPDMs) [14] indicate that the struc-
ture of embedded trajectories in the latent space may
even serve as a starting point for the (unsupervised)
segmentation of trajectories into meaningful frag-
ments, whose sequential ordering in turn provides the
input for a further interpretation of the overall action
sequence in a (discrete) time-series model. Such an un-
supervised approach will group motions mainly with
respect to their kinematic or dynamic properties.

Usually, however, we do not want to relinquish con-
trol over the individual atomic actions that we con-
sider, so it is advisable to directly incorporate the se-
mantic labellings of action sequences as a further input
dimension to the learning algorithms of, for example,
GPDMs, and to consequently learn low-dimensional
embeddings that seek to structure the latent space with
respect to the labels. To this end, we extended learning
algorithms for GPDMs with probabilistic constraints
that ensure that points belonging to the same classes
are close together while points belonging to different
classes may be far apart, further structuring the latent
space according to its semantic interpretation (see Fig-
ure 6). (A somewhat similar approach, which, focus-
ing on specific inference tasks, considers a discrimina-
tive model, was proposed in [13].) Given a learnt map-
ping from the high-dimensional data space to the la-
tent space, we can then perform classification of newly
observed sequence data by maximizing the likelihood
of the latent space configuration given the labels.

Since our models are generative, we can flexibly use
them to either predict future motions that are likely to
occur, evaluate the probability of an observed motion
sequence (allowing us to detect peculiar actions/mo-
tions that are, for example, unusual given the overall
actions that are supposed to be performed) or, as previ-
ously stated, infer the labels of a sequence, providing
the discretized information for higher-level modeling.
The labeling constitutes precisely the semantic inter-
pretation that we require to analyze activities at higher
levels of abstraction.

While GPDMs model the complete poses involved
in an action, it is sometimes useful to describe just the
motion of the relevant hand performing an action. This
significantly lower-dimensional representation allows
to distinguish different kinds of reaching trajectories,
or to select trajectories for a robot to imitate. We are
currently investigating the integration of the compact
models for hand trajectories described in [9].

4. Action Segmentation

While the aforementioned approaches target at mod-
eling trajectories and primitive movements, it is of-
ten sufficient to determine when one motion of a kind
starts and ends, especially as input for higher-level pro-
cessing. As a fast method for performing such a seg-
mentation of actions we use linear-chain Conditional
Random Fields (CRF). The CRFs are embedded into
the knowledge processing framework and produce a
sequence of instances of the respective motions, such
as Reaching or TakingSomething, as result of the seg-
mentation process.

The features used as input to the CRF are nominal
and could be split into two groups: Pose-related fea-
tures denote, for instance, if the human is extending
or retracting the hands, or if the hands are expanded
beyond a certain threshold. Information obtained from
the environment model and the sensor network com-
plements the pose-related features and states e.g. if the
human carries an object, if a hand is near the handle of
a cupboard, or if a drawer is being opened. These fea-
tures are combined, and CRFs are learned on a labeled
training set (Figure 7). The CRF-based segmentation
is described in more detail in [10].

5. Hierarchical Symbolic Action Models

The result of the CRF-based segmentation serves as
the input for higher-level action analyses. These are
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Fig. 7. Structure of the CRF used for segmenting human motions.

SpatialThing

[ action
I |
L 1 L 1 [ 1

ActionOnObject
objActedOn: ‘ caimer |
doneBy: Agent [ |
bodyPartsUsed: BodyPart [ obiActedon:Container | [perceivedObject:SpatialThing |

1 |

1

before:PickingUpAnObject
PuttingDown PickingUp subEvent:PickingUpAnObject _ .- -| after:Carrying
~BEventi - subEvent:Carrying r-

subEvent:Releasing | |subEvent:TakingSth

PuttingSomethingSomewhere

ownAnObject
1 b-

SubEvPutSthsw2
before:Carryin
after:PuttingDownAnObject

Fig. 8. Knowledge about classes of actions, events and objects that
is represented in AM-EvA and used in the abstraction process.

performed on symbolic action descriptions, i.e. mo-
tion segments and actions which are formally repre-
sented in a knowledge base. AM-EvA builds upon
the KNOWROB knowledge processing framework. Ac-
tions at all levels of abstraction are represented as in-
stances of the respective action classes; their relations
are abstractly specified at the class level.

Figure 8 shows a small excerpt of the AM-EvA
ontology containing actions, including sub-actions
and potential ordering constraints among these sub-
actions, events, and spatial concepts like objects. The
subAction relation can be used for abstracting from the
observed sequence of motions to higher-level actions
and activities, creating a hierarchical action model like
the one shown in Figure 9.

Technically, the CRF based segmentation yields a

sequence of motions (like Reaching-14, TakingSomething-

14, etc) that are formally represented as instances of
the respective motion classes (Reaching-14 is an in-
stance of the general class of Reaching motions, etc).
Action parameters like the object that is manipulated,
the start time, or the agent performing the action are
abstractly described as first-order relations between the
action and object instances. Which property an action
has is determined automatically based on information
from the sensor network: Observed events like RFID
tag detections or registered door openings are related

to simultaneously performed actions to determine e.g.
the objectActedOn relation.

Starting from the sequence of low-level motions,
the system generates more abstract action descriptions
by applying transformation rules. In Figure 9, for ex-
ample, it used general knowledge that actions of type
PickingUpAnObject have sub-actions of types Reach-
ing and TakingSomething. Whenever it finds such ac-
tions, it generates a new, higher-level action instance.
Thereby, it propagates action properties from the lower
levels of abstraction upwards, so that e.g. the atLoca-
tion of a pick-up event becomes the fromLocation of a
transport action.

Exemplary results of hierarchical action models that
were learned from sequences in the TUM Kitchen
data (left, center) and the CMU MMAC data set [3]
(right) can be found in Figure 10. They show how the
short segments corresponding to low-level motions are
combined to more and more abstract descriptions, e.g.
to the segments of type PuttingSomethingSomewhere
which are drawn in pink in the left picture. The cen-
ter picture shows how the information about object in-
teraction is propagated upwards in the abstraction hi-
erarchy. In this picture, the color denotes which object
is manipulated, and it can be seen how the object of
lower-level actions for picking up and putting down an
object is propagated upwards to the PuttingSomething-
Somewhere action.

External sources of knowledge, e.g. textual descrip-
tions, can easily be included to determine the type of
activity that is being performed, or to compare the
observations to the descriptions and spot differences.
Examples of such external knowledge are step-by-
step instructions from web sites like ehow.com, which
we have successfully translated from natural language
into a formal representation that is compatible to the
knowledge in AM-EVA [12]. These converted instruc-
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Fig. 9. Hierarchical action model constructed from observed human
tracking data.
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Fig. 10. Visualization of the action abstraction on the TUM Kitchen Data set and the CMU MMAC data set. (Left: TUM data, color based on
the action type. Center: TUM data, color based on the manipulated object. Right: CMU data, color based on the action type. In the TUM data,
there are separate stacks of sequences for the left and right hand, in the CMU data only one for both. Higher levels correspond to more abstract

descriptions, the time dimension points towards the back.

tions describe tasks at the class level, while the hi-
erarchical action models described here comprise in-
stances of actions. For matching and comparing these,
one needs to check which classes subsume which ac-
tion instances. We will explore this direction of re-
search in the near future.

6. Probabilistic Activity Models

The symbolic, relational data about actions we ob-
tain through the application of hierarchical action
models may serve as a source of information for the
learning of probabilistic models, in which we seek to
capture the uncertainty that permeates the domain of
everyday activities. Different instances of an activity
will typically feature a different set of actions with
a different ordering and different parameterizations.
Nevertheless, we can usually identify certain regular-
ities and thus extract general principles from a body
of training data and hope that these principles will in-
deed transfer to new instances of an activity that we
may want to reason about. Reasoning tasks will usu-
ally need to consider a variable number of interrelated
entities (such as actions and the objects these actions
are applied to). Hence the relational character of the
representation should be maintained. Statistical rela-
tional models are therefore the most appropriate choice
for the representation of probabilistic action and activ-
ity models.

In particular, the AM-EVA framework supports two
types of statistical relational models: Bayesian logic

networks (BLNs) [5] and Markov logic networks [7].
Both formalisms essentially allow to represent a meta-
model of probability distributions, i.e. a template for
the construction of a concrete probability distribu-
tion that can be represented as a graphical model
(a Bayesian network or Markov network). Though
Markov logic networks are generally more expressive,
applying them is, unfortunately, problematic in prac-
tice, since both learning and inference are typically
harder — even if one restricts oneself to structurally
simple models. We therefore use BLNs whenever pos-
sible.

A BLN is essentially a template for the construction
of a mixed network, i.e. combination of a Bayesian
network with a constraint network that filters out pos-
sible worlds that do not satisfy the constraints being
represented. Formally, a BLN is a tuple (D, F, L),
where D is a set of declarations (of predicates/func-
tions, entity types, entities and functional dependen-
cies), F is a collection of conditional probability frag-
ments, and £ is a set of hard constraints in first-order
logic. Given a concrete set of entities for which a prob-
abilistic model is to be considered (e.g. a set of ac-
tions and objects), the BLN generates, in accordance
with the set D, a Bayesian network from F and a con-
straint network from £. The resulting mixed network
represents a full-joint probability distribution over the
atomic sentences/random variables that apply to the
entities for which the model is instantiated, providing a
highly flexible representation that supports causal, di-
agnostic, inter-causal and mixed queries alike. In the
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Fig. 11. Locations where a place mat is taken from (dark red) and
put to (light green) during a table-setting task.

following section, we will present some concrete ap-
plications of BLNs.

7. Applications

In this section, we will give an overview over the
range of information AM-EvVA provides — both in
terms of logical knowledge and probabilistic knowl-
edge — by presenting a number of queries to the sys-
tem.

7.1. Logical/Relational Knowledge

We start with asking for everything that is known
about the action segment PickingUpAnObject100:

?- owl_has (’PuttingSomethingSomewhere100’, Pred, O).
Pred=type, O=PuttingSomethingSomewhere ;
Pred=subAction, O=PickingUpAnObject150
Pred=subAction, O=CarryingWhileLocomoting53 ;
Pred=subAction , O=PuttingDownAnObject151
Pred=objectActedOn, O=placemat-1 ;

Pred=doneBy, O=florian ;
Pred=bodyPartsUsed, O=rightHand
Pred=fromLocation, O=loc(0.32,1.98,1.08) ;
Pred=toLocation, O=loc(3.2,2,0.74) ;
Pred=startTime, 0=0.722562 ;
Pred=endTime, 0=5.45968

AM-EVA has information about the type of the action,
sub-actions it is composed of, the object that was ma-
nipulated, the agent who performed the action, and the
locations and times where and when the action started
and ended. This abstract information is grounded in the
observed pose sequences, so the poses corresponding
to actions and activities can be queried. For example,
in the image on the left of Figure 12, we asked for the
whole pose sequence of a table setting activity using
the following query:

?- type(?Acty, ’SetTable’),
postureForAction(?Acty, ?Posture),
highlight_postures (? Posture).

i

|

Fig. 12. Human pose sequences for setting a table (left) and taking a
plate out of the cupboard (right).

Though the traces are only drawn for a single joint, the
result includes the full human pose vectors for each
point in time. The query depicted in the right image in
Figurel2 asks for all postures that are part of a Tak-
ingSomething motion, performed on a DinnerPlate in
a TableSetting context:

?- type(?Acty, ’SetTable’),
type (?Actn, ’TakingSomething’),
subAction(?Actn, ?Acty),
objectActedOn(?Actn, ?0bj),
type (?0bj, ’'DinnerPlate’),
postureForAction(?Actn, ?Posture),
highlight_postures (? Posture).

The predicate trajForAction extracts just the hand tra-
jectories, which are a more compact and often more
useful representation than the high-dimensional pose
sequences. The trajectory for a TakingSth motion with
a fromLocation on the table is obtained with the fol-
lowing query and visualized in Figure 1, bottom left:

?- type (A, 'TakingSth’), fromLocation(A,From),
on_Physical (From,T), type(T, Table’),
trajForAction (A, 'rightHand ', Traj).

The models also allow queries for action-related in-
formation, for example from which location to which
location an object is transported (visualized in Fig-
ure 11):

?- type (A, ’'PuttingSomethingSomewhere’),
objectActedOn (A, O), instance_of (O, ’'PlaceMat’),
fromLocation (A, FL), highlight_location (FL),
toLocation (A, FL), highlight_location (TL).

We can also query for habits of a person, e.g. if cup-
boards are always opened with the left hand

?- forall (type(A, 'OpeningACupboard’),
bodyPartsUsed (A, ’leftHand’)).
Yes

The following query asks for objects that are car-
ried with both hands, i.e. whether two simultane-
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Fig. 13. Observed positions of manipulation actions (left), the po-
sitions clustered into places (center), and the result that has been
learned as the “’place for picking up pieces of tableware” (right). The
pictures are visualized results of queries to the knowledge process-
ing system.

ous PuttingSomethingSomewhere actions, performed
by different hands, exist:

?- type (A1, 'PuttingSomethingSomewhere '),
type (A2, 'PuttingSomethingSomewhere ’) ,
not (A1=A2),
bodyPartsUsed (A1, ’leftHand '),
bodyPartsUsed (A2, 'rightHand "),
objectActedOn (A1,0),objectActedOn (A2,0),
timelnterval (A1,11),timelnterval (A2,12),
timeOverlap (I11,12).

O = ’placemat-1’

7.2. Action-Related Concepts

In addition to querying for motion segments, the
models can also be used for more complex reasoning.
One example is to learn action-related features from
the observations, again combining information from
the motion tracking and the sensor network. Action-
related concepts are all kinds of concepts that can be
characterized by their role in actions, like for instance
the place where a human is standing while performing
certain activities, or the trajectories used for perform-
ing certain actions. Knowledge about these concepts
can be used for recognizing intentions and for finding
differences in how people perform the same action.

These concepts are autonomously learned from ob-
servations using the action models described in [11].
In a first step, the system retrieves the training data
like the positions where the human was standing while
performing manipulation actions (Figure 13 left) and
the parameters of these actions. These positions are
clustered with respect to the Euclidean distance, and
the clusters are abstractly represented as places in the
knowledge representation (Figure 13 center).

The system then learns a mapping between the ac-
tions, their parameters and the place where they were
performed by training a classifier on the observed data.
The resulting concepts effectively extend the class tax-
onomy with new classes like a “pick-cups-place” that
are discovered in the observations. Figure 13 (right)
shows the result of a query for a ”place for picking up
pieces of tableware”.

7.3. Probabilistic Knowledge

We used parts of the logical knowledge that we de-
rived from observations for training Bayesian logic
networks. For instance, based on semantically inter-
preted data from the CMU-MMAC dataset [3], we
trained a simple model of cooking activities. The train-
ing set contained 23 sequences of 16 subjects per-
forming two types of activities, BakingBrownies and
CookingAnOmelette. The BLN model, whose set of
fragments is shown in Figure 14, relates cooking ac-
tivities to the actions appearing within these activities,
which are parameterized with a type, an agent and the
object and location involved.

»(toLocation(a)
O

Fig. 14. BLN fragments of a simple model of cooking activities

As a very basic application of this model, we can in-
fer the type of the activity given a number of observed
individual actions,

P(activityT(Act) | inActivity(Al,Act) = True
actionT(Al) = TakingSth N objectActedOn(Al) = Bowl N\
inActivity(A2, Act) N\ actionT(A2) = Cracking N\
objectActedOn(A2) = Egg-Chickens)

~ ( BakingBrownies: 0.83, CookingAnOmelette: 0.17 )

Having observed that a bowl has been taken and that
an egg has been cracked, the model favors Baking-
Brownies, because, even though the actions observed
can appear in either activity, they play a more defining
role in BakingBrownies (since the fraction of Crack-
ing actions in BakingBrownies is, when compared
to CookingAnOmelette, three times as high). Addi-
tional information will change our beliefs. If, for ex-
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EXIST 0 (nextContext(c0,c1))

Fig. 15. Fragments in model of activity sequences. Rectangular
nodes indicate preconditions for fragments to be applicable — used,
for example to differentiate between activities at the beginning and
in the middle of a sequence.

ample, a third action involved a frying pan being
fetched, we could certainly identify the activity as
CookingAnOmelette.

As a second example, consider the more elaborate
fragment structure shown in Figure 15, a sequence
model that considers the effect of activities on the
places and states of objects. For instance, we could
provide as evidence information on the locations or
states of various objects in the environment and ask for
the activities that are likely to have led to such a situ-
ation, and furthermore ask for the higher-level activity
that these activities are all likely to be part of:

P(activityT(A), contextT(C1), contextT(C2), contextT(C3) |
inActivity(C1, A) A inActivity(C2, A) A inActivity(C3, A) \
nextContext(C1, C2) A\ nextContext(C2, C3) N
utensilT(U) = Plate N\ placeOfUtensilln(U, C3) = Table N\
placeOfGoodIn(Omelette, C3) = Table)

~ (( Dinner: 0.59, Lunch: 0.36, Snack: 0.04, ... ),

( CookingAnOmelette: 0.52, CookingNoodes: 0.30, ... ),
( ServeFood: 0.52, SetTable: 0.48, ...),
( SetTable: 0.52, ServeFood: 0.30, Dining: 0.18, ...))

Inversely, we could have provided information on a
sequence of activities and asked for the most likely lo-
cations or states of objects these activities may have in-
volved. With a full-joint probability distribution, either
query is possible.

In the context of assistive technology, it is conceiv-
able to specifically adapt such probabilistic models (or
wrap a monitoring system around them) in order to en-
able a system to infer whether the (sequence of) ac-

tions it observed is typical with respect to the overall
activity being carried out or whether the human subject
has missed steps that were expected.

8. Conclusions

In this paper, we have described the concept and im-
plementation of AM-EvAs, automated models of ev-
eryday activities for the perception, interpretation, and
analysis of everyday manipulation tasks and activi-
ties of daily life. We have outlined the main compo-
nents of AM-EvVA, which are a full-body motion track-
ing system for people performing everyday manipula-
tion tasks, various learning approaches that infer ac-
tivity representations from the tracking data and seg-
ment continuous motions. Other system components
combine these hybrid activity models with encyclope-
dic knowledge about everyday manipulation tasks and
human living environments to provide prior knowl-
edge for making learning and inference more tractable.
AM-EvVA seamlessly combines symbolic knowledge
with observed behavior data structures through the use
of relations and properties that are evaluated directly
on AM-EvA’s data structures and through data min-
ing mechanisms that learn symbolic concepts from ob-
served activity data.

We believe that AM-EvAs can help with the analysis
of human actions to assess their level of independence
and to diagnose potential impairments.
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