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Abstract— This paper introduces the Assistive Kitchen as a
comprehensive demonstration and challenge scenario for tech-
nical cognitive systems. We describe its hardware and software
infrastructure. Within the Assistive Kitchen application, we
select particular domain activities as research subjects and
identify the cognitive capabilities needed for perceiving, inter-
preting, analyzing, and executing these activities as research
foci. We conclude by outlining open research issues that need
to be solved to realize the scenarios successfully.

I. INTRODUCTION

Cognitive technical systems are systems that are equipped
with artificial sensors and actuators, integrated into physical
systems, and act in a physical world. They differ from other
technical systems in that they have cognitive capabilities
including perception, reasoning, learning, and planning that
turn them into systems that “know what they are doing” [7].
The cognitive capabilities will result in systems of higher
reliability, flexibility, adaptivity, and better performance and
systems that are easier to interact and cooperate with.

The cluster of excellence COTESYS (Cognition for Tech-
nical Systems) [8] considers the assistance of elder people to
be a key application where technical cognitive systems could
profoundly impact the well-being of our society. Therefore,
COTESYS investigates the realization of an assistive kitchen
(Fig. 1), a ubiquitous computing, sensing, and actuation
environment with a robotic assistant as one of its primary
demonstration scenarios. The Assistive Kitchen aims at

• supporting and assisting people in their household
chores through physical action;

• enhancing the cognitive capabilities of people doing
household work by reminding them; and

• monitoring health and safety of the people.
To achieve these objectives, the Assistive Kitchen is to

• perceive, interpret, learn, and analyze models of house-
hold chore and activities of daily life (ADLs); and

• represent the acquired models such that the Assistive
Kitchen can use them for activity and safety monitoring,

The research reported in this paper is partly funded by the German
cluster of excellence COTESYS (Cognition for Technical Systems). More
information including videos and publications about the Assistive Kitchen
can be found at http://ias.cs.tum.edu/assistivekitchen.
Due to space limitations this paper does not give a comprehensive discussion
of related work.

health assessment, and for adapting itself to the needs
and preferences of the people.

The Assistive Kitchen includes an autonomous robotic
agent that is to learn and perform complex household chores.
The robot must perform housework together with people
or at least assist them in their activities. This requires safe
operation in the presence of humans and behaving according
to the preferences of the people they serve.

Clearly, assistive kitchens of this sort are important for
several reasons. First, they are of societal importance because
they can enable persons with minor disabilities including
sensory, cognitive, and motor ones to live independently
and to perform their household work. This will increase the
quality of life as well as reduce the cost of home care.

Assistive kitchens and living environments also raise chal-
lenging research problems. One of these problems is that
performing household chores is a form of everyday activity
that requires extensive commonsense knowledge and reason-
ing [3]. Another challenge is the low frequency of daily activ-
ities, which requires embedded systems and robotic agents to
learn from very scarce experience. Besides, household chores
include a large variety of manipulation actions and composed
activities that pose hard research questions for current robot
manipulation research. The management of daily activities
also requires activity management that is very different from
that commonly assumed by AI planning systems.

II. ASSISTIVE KITCHEN INFRASTRUCTURE

We start with the hardware and software infrastructure of
the kitchen — the implementational basis that defines the
possibilities and restrictions of the demonstration scenarios.

A. The Hardware Infrastructure

The hardware infrastructure consists of a mobile robot and
networked sensing and actuation devices that are physically
embedded into the environment.

1) The Autonomous Mobile Robot: Currently, an au-
tonomous mobile robot with two arms with grippers acts as
a robotic assistant in the Assistive Kitchen (see Fig. 1). The
robot is a RWI B21 robot equipped with a stereo CCD system
and laser rangefinders as its primary sensors. One laser range
sensor is integrated into the robot base to allow for estimating
the robot’s position within the environment. Small laser range

http://ias.cs.tum.edu/assistivekitchen


Fig. 1. The Assistive Kitchen containing a robot and a variety of sensors.

sensors are mounted onto the robot’s grippers to provide
sensory feedback for reaching and grasping actions. The
grippers are also equipped with RFID tag readers that support
object detection and identification. Cameras are used for
longer range object recognition and to allow for vision-based
interaction with people. This robot will be complemented by
the Justin robot for sophisticated manipulation tasks.1

2) Room Infrastructure: The sensor-equipped kitchen en-
vironment is depicted in Fig. 1. In this kitchen, a set of
static off-the-shelf cameras is positioned to cover critical
working areas with high resolution. With these cameras,
human activity and robots can be tracked from different
locations to allow for more accurate positioning and pose
estimation (see Section IV-B). In addition, laser range sensors
are mounted at the walls for covering large parts of the
kitchen. They provide accurate and valuable position data for
the people present in the environment and their movements
within the kitchen.

The pieces of furniture in the Assistive Kitchen are also
equipped with various kinds of sensors. RFID tags and
magnetic and capacitive sensors provide information about
the objects in a cupboard or on the table, and whether a
cupboard is open or closed.

Furthermore, small ubiquitous devices offer the possibility
to instrument people acting in the environment with addi-
tional sensors. We have equipped a glove with an RFID
tag reader that enables us to identify the objects that are
manipulated by the person wearing it. In addition, the
person is equipped with tiny inertial measurement units that
provide us with detailed information about the person’s limb
motions. Another body worn sensory device to be used in
the Assistive Kitchen demonstration scenario is the gaze-
aligned head mounted camera which allows the estimation
of the attentional state of people while performing their

1The Justin robot is currently under development at the DLR robotics
institute: http://www.robotic.dlr.de

kitchen work.2 These last two sensors will be presented in
Section IV-B.

Web-enabled kitchen appliances such as the refrigerator,
the oven, the microwave, and the faucet, allow for remote
and wireless monitoring and control.

B. Software Infrastructure

A critical factor for the successful implementation of the
assistive kitchen is the software infrastructure. It has to
provide a simple, reliable, uniform, and flexible interface
for communicating with and controlling different physically
distributed sensors and actuators.

We use and extend the open-source Player/Stage/Gazebo
(P/S/G) software library to satisfy these requirements for the
sensor-equipped environment as well as the robotic agent.
Player provides a simple and flexible interface for robot
control by making available powerful classes of interface
abstractions for interacting with robot hardware, in particular
sensors and effectors. These abstractions enable the program-
mer to use devices with similar functionality with identical
software interfaces, thus increasing the code transferability.
An enhanced client/server model featuring auto-discovery
mechanisms as well as permitting servers and clients to com-
municate between them in a heterogeneous network, enables
programmers to code their clients in different programming
languages. Programmers can also implement sophisticated
algorithms and provide them as Player drivers. By incor-
porating well-understood algorithms into our infrastructure,
we eliminate the need for users to individually re-implement
them [10].

Using the P/S/G infrastructure, a robot can enter a sensor-
equipped environment, auto-discover the sensors and the
services they provide and use these sensors in the same way
as it uses its own sensors.

2The gaze-aligned head mounted camera is currently developed by
Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität
München, which participates in the COTESYS excellence cluster (http:
//www.forbias.de/).

http://www.robotic.dlr.de
http://www.forbias.de/
http://www.forbias.de/


Figure 2 depicts the computational structure of the con-
troller of the household robot. The control system is com-
posed of two layers: the functional and the task-oriented
layer. At the functional layer the system is decomposed into
distributed modules where each module provides a particular
function. A function could be the control over a particular
actuator or effector, access to the data provided by a partic-
ular sensor subsystem, or a specific function of the robot’s
operation, such as guarded motion. The functional layer is
decomposed into the perception and the action subsystem.
The modules of the perception subsystem perceives states of
the environment and the modules of the action subsystem
control the actuators of the robot. All these modules are
provided by our P/S/G infrastructure.
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Fig. 2. The computational structure of the household robot control system.
The figure depicts the two layers of the system. We consider the functional
layer as being decomposed into a perception and an action subsystem. The
task-oriented layer is constituted by the Structured Reactive Controller. The
perception subsystem computes the information for setting the fluents of
the Structured Reactive Controller. The process modules that are activated
and deactivated by the Structured Reactive Plan control the modules of the
action subsystem.

The task-oriented layer is constituted by the Structured
Reactive Controller [2], [3] that specifies how the functions
provided by the functional layer are to be coordinated in
order to perform specific jobs such as the such as setting the
table. The perception subsystem computes the information
for setting the fluents of the Structured Reactive Controller.
The process modules that are activated and deactivated by the
Structured Reactive Plan control the modules of the action
subsystem.

Structured reactive controllers work as follows. When
given a set of requests, the structured reactive controller
retrieves routine plans for individual requests and executes
the plans concurrently. These routine plans are general and
flexible — they work for standard situations and when
executed concurrently with other routine plans. Routine plans
can cope well with partly unknown and changing envi-
ronments, run concurrently, handle interrupts, and control
robots without assistance over extended periods. For standard
situations, the execution of these routine plans causes the
robot to exhibit an appropriate behavior in achieving their
purpose. While it executes routine plans, the robot controller

also tries to determine whether its routines might interfere
with each other and watches out for non-standard situations.
If it encounters a non-standard situation it will try to an-
ticipate and forestall behavior flaws by predicting how its
routine plans might work in the non-standard situation and,
if necessary, revising its routines to make them robust for this
kind of situation. Finally, it integrates the proposed revisions
smoothly into its ongoing course of actions.

C. Simulation and Visualization

We have developed simulation tools for our kitchen and
robot acting as robotic assistant using the Gazebo toolbox for
3D, physics-based robot simulation. The simulator is realistic
along many dimensions. In particular, the simulator will use
sensing and actuation models that are learned from the real
robots. Models of rooms and their furnishing can also be
acquired automatically using the methods for the acquisition
of environment models, described in Section IV-A.

Fig. 3. The Assistive Kitchen and its simulation in Gazebo.

The use of these simulation tools promotes the research
in assistive kitchen technology in various ways. First, the
simulator supports generalization: we can model all kinds
of robots in our simulation framework. We will also have
different kitchen setups, which requires us to develop con-
trol programs that can specialize themselves for different
robots and environments. The simulator allows us to run
experiments fast and with little efforts and under controllable
context settings. This supports the performance of extensive
empirical studies.

III. DEMONSTRATION SCENARIOS

The demonstration scenarios are organized along two
dimensions (see Table I). The first dimension is the domain
tasks and activities under investigation. The second one
is the research themes related to the cognitive aspects of
perception, interpretation, learning, planning, and execution
of these activities.

We start by looking at three scenario tasks in the context of
household chores: setting the table, cooking, and performing
household chores for an extended period. These tasks chal-
lenge cognitive systems along different dimensions, which
we will discuss in the Section IV.

A. Scenario: Table setting

Table setting refers to the arrangement of tableware, cut-
lery, and glasses on the table for eating. Table setting is a



domain task/activity
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perception * * *
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TABLE I
DIMENSIONS OF DEMONSTRATION SCENARIOS.

complex transportation task that can be performed as a single
thread of activity.

There are various aspects of table setting that make it to
a suitable challenge for cognitive systems: (1) the common-
sense knowledge and reasoning needed are to perform the
task competently; (2) the task itself is typically specified
incompletely and in a fuzzy manner; and (3) the task can
be carried out and optimized in many ways.

To account for incomplete task specifications, agents must
use their experience or make an inquiry to determine who sits
where and whether people prefer particular plates, cups, etc.
Other missing information can be found in the world wide
web such as which kinds of plates and cutlery are needed
and where they should be placed.

Aspects to be considered for the optimization of the
activity include the the position where the robot should stand
to place the objects on the table, the decision if objects
should be stacked or carried individually, etc. Also, the task
requires the execution of macro actions such as approaching
the cupboard in order to open it and get out the plates. Agents
also have to consider subtle issues in action selection, such
as whether or not to interrupt the carrying action in order to
close the door immediately or later. Finally, actions require
substantial dexterity. Putting objects on table where people
are seated requires the robot to perform socially acceptable
reaching actions.

B. Scenario: Cooking

Cooking is the activity of preparing food to eat. Unlike
setting the table, cooking requires the selection, measurement
and combination of ingredients in an ordered procedure. The
performance of a cooking activity is measured in terms of
the quality and taste of the meal and its timely provision.

Cooking involves the transformation of food, the control
of physical and chemical processes, the concurrent execution
of different activities, the use of tools and ingredients, and
monitoring actions. Concurrent activities have to be timed
such that all parts of the meal are done at the desired
time. Cooking comprises many different methods, tools and
combinations of ingredients — making it a difficult skill to
acquire.

C. Scenario: Prolonged House Keeping

Prolonged house keeping and household chores are spe-
cific activities related to or used in the running of a

household. The activities include cooking, setting the table,
washing the dishes, cleaning, and many other tasks.

Performing household chores illustrates well the flexibility
and reliability of human everyday activity. An important
reason is the flexible management of multiple, diverse jobs.
Humans as well as intelligent agents usually have several
tasks and activities to perform simultaneously. They clean
the living room while the food sits on the oven. At any time,
interrupts such as telephone calls, new errands and revisions
of old ones might come up. In addition, they have regular
daily and weekly errands, like cleaning the windows.

Since doing the household chores is a daily activity and
done over and over again, agents are confronted with the
same kinds of situations many times, they learn and use
reliable and efficient routines for carrying out their daily jobs.
Performing their daily activities usually does not require a
lot of thought because routines are general. This generality
is necessary since jobs come in many variations and require
agents to cope with whatever situations they encounter. The
regularity of everyday activity also requires agents to handle
interruptions that occur while carrying out their routines.
Routines, like cleaning the kitchen, are often interrupted if a
more urgent task is to be performed, and continued later on.
Therefore, agents have to remember where they put things
in order to find them again later.

A main factor that contributes to the efficiency of everyday
activity is the flexibility with which different routines can be
interleaved. Agents often work on more than one job at a
time. Or, they do jobs together — operating the washing
machine in, and getting stored food from, the basement.

People can accomplish their household chores well —
even in situations they have not encountered yet — for
two reasons: they have general routines that work well in
standard situations and they are, at the same time, able to
recognize non-standard situations and adapt their routines to
the specific situations they encounter. Making the appropriate
adaptations often requires people to predict how their rou-
tines would work in non-standard situations and why they
might fail.

IV. RESEARCH THEMES

The scenarios described in the previous section challenge
cognitive systems along different dimensions. In this section,
we discuss the research themes related to the cognitive
capabilities needed to perform the tasks in the scenarios.

A. Acquisition and Use of Environment Models

Maps or environment models are resources that the As-
sistive Kitchen uses in order to accomplish its tasks more
reliably and efficiently. Acquiring a model of an assistive
kitchen is very different from environment mapping done
by autonomous robots. For mapping the Assistive Kitchen
the robot can make use of the sensors of the environment.
Semantic information is also associated with RFID tags
in the environment and the sensors are services providing
information about themselves and their use. In contrast
to many other robot mapping tasks where the purpose of



mapping is to support navigation tasks, the kitchen map
is a resource for understanding and carrying out household
chores. To this end, the map needs to have a richer structure,
explicitly reference task relevant objects such as appliances,
and know about the concept of containers and doors, such
as cabinets and drawers.

Here, we consider mapping to be the following task: Given
(1) a sensor-equipped kitchen where appliances and other
pieces of furniture might or might not be tagged with RFID
tags that have information associated with them (such as their
size) and (2) a stream of observations of activities in this
kitchen acquired by the various sensors acquire a semantic,
3D object map of the kitchen.

We have developed a system for the acquisition of object
maps (see Fig. 4) based on a set of comprehensive geo-
metrical reasoning techniques that extract semantic object
information from 3D point cloud data [11]. The object map
comprises the static parts of the environment such as the
kitchen furniture, appliances, tables, and walls, saved in
OWL-DL format in our knowledge base, which is shared
between different applications and robots, and can be queried
to retrieve higher level information. To build accurate and
robust robot plans, we make use of the object map by
automatically importing it in our 3D simulation environment.

Fig. 4. An Object Map of the Assistive Kitchen.

The maps also have to contain sensors of the environment
and their locations in order to semantically interpret the
sensor data. For example, the mapper has to estimate the
position and orientation of a laser range sensor using its own
motions and their effects on the sensor data, in order to infer
that the sensor can be used for determining its own position
and how. Or, the robot has to locate an RFID tag reader,
for example using the estimated position of its gripper and
observing which of the sensors reports the RFID identifier
of its gripper. Knowing that its gripper is inside a cabinet
it can infer that the respective sensor can be used to sense
what is inside this cabinet.

Further information can be acquired by observing activ-
ities in the kitchen. By describing objects and places as
action-related concepts, i.e. by their roles in actions, the
system can infer their function and refer to them not based
on the appearance or position but on the purpose they serve
for. Figure 5 shows an example of a place that has been
learned as the one where the robot stands when picking up
cups from the cupboard. Action-related concepts are in many
cases a very natural representation since most objects in a
household are designed for a certain purpose.

Fig. 5. Positions learned as ”pick-up cup place” from observations of
table-setting actions.

Finally, the geometry of the environment and recognized
activities are used to fine-tune the sensors for particular
activity recognition tasks.

B. Acquisition and Use of Activity Models

The first research theme is concerned with the observation
of human activity in the kitchen in order to acquire abstract
models of the activity. The models are then to be used to

• answer queries about the activity,
• monitor activity and assess its execution,
• generate visual summaries of a cooking activity includ-

ing symbolic descriptions, and
• detect exceptional situations and the need for help.
In order to do so, the system is required to answer

questions including the following ones: What are meaningful
sub-activities of “setting the table” and why? Which eating
utensils and plates have to be used for spaghetti and how
should they be arranged? Does John prefer a particular cup?
Where do people prepare meals? How do adults set the table
as opposed to kids? And why? Why does one put down the
plates before bringing them to the table? (To close the door
of the cupboard.) What happens after the table is set? Where
are the forks kept? What is the fork used for?

The models needed for answering these questions are to
be acquired (semi-)automatically from the world wide web,
from observing people, and by asking for advice.

Fig. 6. The model used for human motion capture (left), and the views of
the four cameras in the kitchen (right).

One of the technologies we use to observe and interpret
human activity is the markerless human motion capture
system we have developed [1]. This system enables us to
retrieve accurate 3D human posture of people performing



manipulation tasks in the kitchen, as depicted in Fig. 6.
The algorithm uses an anthropometric human model to track
persons based on an initialization and observation data from
the four ceiling-mounted CCD cameras. The model can be
adapted to accurately capture the appearance of a broad range
of humans. As output we get the articulated joint angles
of the human skeleton, that can further be used for action
classification or interpretation of human intentions. We are
also investigating ways to incorporate complementary sensor
data to ease the computationally expensive task so that we
can improve the motion capture algorithm towards real-time
processing.

Furthermore, we use the gaze-aligned head mounted cam-
era and small inertial measurement units, depicted in Fig. 7,
to record the person’s gaze and arm posture in everyday
manipulation tasks. Fig. 8 depicts an image from the head
mounted camera, and some of the intermediate results in
extracting a 3D hand and object model from them.

Fig. 7. The gaze-aligned head mounted camera (left) and inertial measure-
ment units (right).

C. Action and Motion Primitives

People doing their household activities perform very com-
plex movements smoothly and effortlessly, and improve such
movements with repetition and experience. Such activities
like putting the dishes in the cupboard, or setting the table,
are simple for people but present challenges for robots.

Consider picking up a cup from the table and placing it
in the cupboard. Any person will turn and walk towards the
cup, while simultaneously stretching the arm and opening
the hand. Then the hand will grasp the cup firmly, and lift it.
It will apply just the right amount of force, because through
experience, the person has learned how much a cup should
weigh. If the cup were heavier as expected, this would be
detected and corrected immediately. Then, taking the cup
close the body for a better stability, the person will walk to
the cupboard, open the door with the other hand, and place
the cup inside.

Several noteworthy things take place. First, the motions
used to get the cup are similar to the ones used for reaching
and picking up other objects. Such movements can be formed
by combining one or more basic movements, called motion
primitives. These primitives can be learned by observation

Fig. 8. Processing steps in fitting object and hand models to the images
from the head mounted camera: 1) matched object model; 2) matched 2D
hand model; 3) matched 3D hand model.

and experimentation. Each one of this primitives can be
parameterized to generate different movements. Second, it is
known that noise and lag are present in the nervous system,
which affect both sensing and motor control. But people
manage despite this limitations to have elegant and precise
control of our limbs. A robot with a traditional controller
would have great difficulties carrying out simple movements
in such conditions. Humans deal with this problem by
building forward and inverse models for motor control [12].
Third, during a movement, any abnormal situation is quickly
detected and a corrective action is taken.

This research theme is concerned with endowing a robot
with similar capabilities. The robot will observe the activities
of people, obtain motion primitives from them, and improve
them through own experimentation. Models of activity are
also learned for reaching and grasping movements, and in-
clude information about the effects of the control commands.
This allows the robot make predictions and detect abnormal
situations when the sensory data differs from the expected
values.

D. Planning and Learning Macro Actions

The next higher level of activities in the kitchen are macro
actions. We consider macro actions to be the synchronized
execution of a set of action primitives that taken together
perform a frequent macro activity in the task domain.
These activities are so frequent that the agents learn high-
performance skills from experience for their reliable and
flexible execution. Examples for such macro activities are
opening a tetrapak and filling a cup with milk, opening a
cabinet to take a glass, or buttering a bagel.

Here the challenge is to compose macro actions from
coordinated action primitives such that the resulting behavior



is skillful, flexible, reliable, and fluent without noticeable
transiting between the subactions [14]. Another challenge
is that such macro actions must be learned from very little
experience — compared with other robot learning tasks [6].

The learning of macro actions is an application of action
aware control [13] where the agents learn performance
and predictive models of actions and use these models
for planning, learning, and executing macro actions. The
composition of such macro actions requires the application
of transformational learning and planning methods and the
combination of symbolic and motion planning with learned
dynamic models.

E. Self-adapting High-level Controller

Robotic agents can not be fully programmed for every
application. Thus, in this research theme we realize robot
control programs that specialize to their respective robot
platform, work space, and tasks (see Fig. 9).

set the table
. . .
pick-up-obj
go2pose
grip-obj
. . .

. . .

Fig. 9. Self-adaptation of different robots in different kitchens.

We realize a high-level control program for the specific
task of setting the table. The program learns from experience
where to stand when taking a glass out of the cupboard, how
to best grasp particular kitchen utensils, where to look for
particular cutlery, etc. This requires the control system to
know the parameters of control routines and to have models
of how the parameters change the behavior [4]. Also, the
robots perform their tasks over extended periods of time,
which requires very robust control [5].

F. Learning to Carry out Abstract Instructions

The research theme discussed in this paper is the acquisi-
tion of new high-level skills. Let us consider cooking pasta
as an illustrative example. Upon receiving “cook pasta” the
robot retrieves instructions from webpages such as ehow.com.
These instructions are typically sequences of steps to be
executed in order to carry out the activities successfully. The
challenges of this execution research theme are: (1) translate
the abstract instructions into an executable robot control
program, (2) disambiguate the often incomplete task de-
scriptions given in natural language and supplement miss-
ing information through observations of kitchen activities,
(3) transform the action sequence into an activity structure
that can be carried out more reliably, efficiently, and flexibly.
Instructions typically abstract away from these aspects of
activity specification.

The procedure for transforming natural language task
instructions into executable robot plans comprises the fol-
lowing steps (Fig. 10): A syntax parser analyzes the sentence

structure and labels the parts of speech. The resulting syntax
tree is then transformed to instructions including the action
to be performed, the object(s) to be manipulated, possible
pre- and postconditions as well as parameters like a desired
location. Wordnet and Cyc are used for determining the
meaning of the words. An intermediate plan representation
is created in the knowledge base which can be exported as
an executable robot plan.

How to cook pasta

syntax
parser

Wordnet
lexical

database

Cyc upper
ontology

(isa ?PLAN CookingFood)
(objectActedOn ?PLAN Pasta)

how/ADV
to/TO
cook/VERB
pasta/NOUN

cook
(noun) cook - someone who cooks food
(verb) cook - prepare a hot meal

• domains:cooking, preparation
• hypernym:create from raw stuff
• synset ID:v01617913

CookingFood
• genls:HeatingProcess,

PreparingFoodOrDrink
• specs:BoilingFood,Microwaving
• usesDeviceType:HeatingDevice
• synonymousConcept:v01617913

Fig. 10. Import procedure of natural language task descriptions into
executable robot plans.

We have successfully imported (almost) working plans
from descriptions from ehow.com using the described proce-
dure, but several hard challenges remain in this scenario. A
general, robust solution for translating abstract instructions
into working robot control programs requires answers to the
following research questions.

(1) How can ambiguities in the descriptions be resolved
and which missing parameters have to be inferred? For
example, a description for setting a table does not explicitly
state that the objects have to be placed on the table but only
describes the positions relative to each other.

(2) How can the plan libraries of autonomous household
robots be specified so generally, reliably, transparently, and
modularly that a robot can compose working plans from
abstract instructions? In order for newly composed sequences
of plan steps to work it helps if the individual plan steps
are specified as “universal plans”, that is they achieve –
if necessary – all preconditions needed for producing the
desired effects.

(3) Debugging newly created plans from instructions re-
quires the robot to predict what will happen if it executes the
new plan, to identify the flaws of the plan with respect to its
desired behavior, and to revise the plan in order to avoid the
predicted flaws.

(4) Optimizing tasks like table setting also requires the
technical cognitive system to observe people setting the
table, to infer the structure of the activity and reason about
why people perform the task the way they do instead of
following the abstract instructions. This way the robot would
learn that people stack plates when carrying them in order
to minimize the distance they have to walk. The robot



would then transform its plan analogously and test whether
this change of activity structure would result in improved
performance.

Pdefault

Pstack-1

stack cups

on plates

Preorder
reorder

plan steps

Pstack-plates

stack

plates

Puse-both-arms

use both

arms

Pstack-plates-use-both-arms

use both
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stack

plates

Pstack-2

stack

plates and

one cup

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 11. Plan transformations performed by the TRANER planning system
in order to optimize a table setting activity.

Figure 11 sketches the search for optimized table setting
strategies performed by our planning system. The planning
system called TRANER transforms a default plan for table
setting (in which the robot is asked to carry objects to the
table one by one) into an optimized plan (in which the robot
stacks plates, takes cups in both hands, leaves cupboard
doors open while setting the table and position itself to reach
multiple objects and positions from the same position). The
unique feature of TRANER [9] is that it applies very general
plan transformations such as improve efficiency of transport
tasks by stacking objects, or use both hands to concurrent
reactive plans.

V. CONCLUDING REMARKS

This paper has presented assistive kitchens as demonstra-
tion platforms for cognitive technical systems that include
various research challenges for cognitive systems. In partic-
ular, we expect the investigation of cognitive capabilities in
the context of human everyday activity, which has received
surprisingly little attention in previous research efforts, to
substantially promote the state-of-the-art of cognition for
technical systems.
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