Portable cognition-enabled plan executives

Arthur Niedzwiecki

May 18, 2023

- 1. Setup
- 2. CRAM Architecture
- 3. Motivation
- 4. Workshop Technology
- 5. Hands-On
- 6. Prospect

Overview - Setup Procedure

http://cram-system.org > Installation

Overview - Setup Procedure

http://cram-system.org > Installation

CRAM Architecture

CRAM Architecture - Plan Executive

eu**R 🋞 B**IN

Motivation

Motivation - Platform-Independent Control Program

Motivation - Platform-Independent Control Program

Motivation - Robot Integration

Motivation - Robot Integration

Motivation - Platform-Independent Control Program cont'd

Motivation - Platform-Independent Control Program cont'd

Motivation - Generalized Pick and Place Plans

One plan to accomplish all variations of fetch and place:

different objects, environments, robot platforms, applications.

Motivation - Challenges Tackled by the Plan Executive

- Define which actions to execute to achieve the goal.
- Infer which parameters to use for each action.
- Monitor task execution and react to failures.

Motivation - Primitives: Motions and Percepts

Primitive Tasks for Mobile Pick and Place Robots

Primitive	Description
going	drive or walk or fly to the goal pose
moving-torso	move torso to the goal joint position
moving-neck	move the neck to direct the gaze
moving-arm	execute a trajectory in Cartesian or joint space
grasping/releasing	move the fingers to grasp or release an object
opening-hand/cl.	move the fingers to open or close the hand
monitoring-joints	monitor the positions of robot body parts in space
detecting	perceive the described object in the environment
moving-eye	move the eye in the socket to direct the gaze
	at Artificial -

A Intelligence

eu

ΔN

Motivation - Sampling from Symbolic Description

Motivation - Sampling from Symbolic Description

Workshop Technology

Workshop Technology - Plan Executive through Jupyter

Jupyter combines code with documentation. Each unit is a mix of explanatory text, and executable code.

Workshop Technology - Robot Integration

Workshop Technology - Robot Integration

Workshop Technology - Cognitive Robotics for everyone

Docker is a manager vor virtual machines.

DockerHub hosts the virtual machine, ready to be downloaded

Workshop Technology - UI through X-Forwarding

Visual applications run in the virtual machine (Docker container) using X, which is a visualization technique for Linux systems. Docker can't visualize itself, so we forward the Bullet Physics Simulation to your PC.

Hands-On - Learn Lisp!

Prospect - Online Learning Hub

Prospect - Online Learning Hub

Prospect - Robot Programming Course

JupyterHub

Robot Operating System (ROS) Robot platform

Prospect - Data Analysis

Primitive Tasks for Mobile Pick and Place Robots

Primitive	Description
going	drive or walk or fly to the goal pose
moving-torso	move torso to the goal joint position
moving-neck	move the neck to direct the gaze
moving-arm	execute a trajectory in Cartesian or joint space
grasping/releasing	move the fingers to grasp or release an object
opening-hand/cl.	move the fingers to open or close the hand
monitoring-joints detecting	monitor the positions of robot body parts in space perceive the described object in the environment
moving-eye	move the eye in the socket to direct the gaze

A Intelligence

eu

IN

Prospect - Data Analysis cont'd

Knowledge Representation & Reasoning

Thank you for your attention!

