
TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Forschungs- und Lehreinheit VII:

Foundations of Software Reliability and Theoretical Computer Science

Siemens AG, Corporate Research and Technologies:

Information and Automation Technology, Intelligent Systems and Control

Ensemble Learning for Classification of

Imbalanced Data

Ensemblebasierte Lernverfahren zur

Klassifikation unbalancierter Daten

Master’s Thesis in Informatik

Author: Daniel Nyga
Supervisor: Prof. Dr. Javier Esparza (TU München)

Dr. Thomas A. Runkler (Siemens AG)
Advisor: Dr. Clemens Otte (Siemens AG)

Werner Hauptmann (Siemens AG)
Submission Date: 15.11.2010

Ich versichere, dass ich diese Master’s Thesis selbständig verfasst und
nur die angegebenen Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this master’s thesis only sup-

ported by declared resources.

München, den 15.11.2010

Daniel Nyga

Abstract

This thesis investigates boosting algorithms for classifier learning in the presence
of imbalanced classes and uneven misclassification costs. In particular, we address
the well-known AdaBoost procedure and its extensions for coping with class imbal-
ance, which typically has a negative impact on the classification accuracy regarding
the minority class. We give an extensive survey of existing boosting methods for
classification and enhancements for tackling the class imbalance problem, including
cost-sensitive variants. Regularized boosting methods, which are favourable when
dealing with noise and overlapping class distributions, are considered too. We theo-
retically analyze several strategies for introducing costs and their applicability in the
case of imbalance. For one variant (AdaC1) we show that it is instable under certain
conditions. We identify drawbacks of an often-cited cost-sensitive boosting algorithm
(AdaCost), both theoretically and empirically. We also expose that an algorithm for
tackling imbalance without using explicit costs (RareBoost) is a special case of the
RealBoost algorithm, a probabilistic variant of AdaBoost. We approve our findings by
empirical evaluation on several real-world data sets and academic benchmarks.

Zusammenfassung

In dieser Arbeit werden Boostingverfahren für das Lernen von Klassifikationsmodellen
sowie deren Anwendung auf Probleme untersucht, die unbalancierte Klassen und
ungleiche Fehlklassifikationskosten aufweisen. Im Besonderen werden das bekan-
nte AdaBoost-Verfahren sowie dessen Erweiterungen zur Überwindung des Problems
der Unbalanciertheit betrachtet, welches sich typischerweise negativ auf die Klas-
sifikationsgüte bezüglich der unterrepräsentierten Klasse auswirkt. Die Einführung
von Kostenparametern stellt hierfür einen beliebten Ansatz dar. Neben klassischen
Boostingverfahren werden kostensensitive Verfahren ausführlich diskutiert. Regular-
isierte Boostingalgorithmen werden ebenfalls betrachtet, die vorzugsweise in Gegen-
wart von Rauschen und überlappenden Klassenverteilungen zum Einsatz kommen.
Verschiedene Strategien werden theoretisch sowie empirisch in Bezug auf ihre An-
wendbarkeit auf unbalancierte Probleme analysiert. Für ein Verfahren (AdaC1) wird
gezeigt, dass es unter bestimmten Umständen instabil ist. Für einen weiteren vielzi-
tierten kostensensitiven Ansatz (AdaCost) werden sowohl theoretische als auch prak-
tische Nachteile aufgezeigt. Des Weiteren wird der RareBoost-Algorithmus, der auf
explizite Kostenparameter verzichtet, als Spezialfall des RealBoost-Algorithmus iden-
tifiziert, einer probabilistischen Variante von AdaBoost. Die Ergebnisse dieser Arbeit
werden empirisch anhand von Daten mehrerer realer Anwendungen sowie durch
Benchmark-Daten bestätigt.

Contents

1. Introduction 1
1.1. Ensemble Based Systems . 1
1.2. The Class Imbalance Problem . 18
1.3. Related Work . 22
1.4. Thesis Contributions . 23

2. A Survey of Boosting 25
2.1. General Properties . 25
2.2. Boosting Variants . 35
2.3. Cost-sensitive Boosting . 45
2.4. Boosting with Imbalanced Classes . 59
2.5. Regularized Boosting . 64
2.6. Summary . 72

3. Empirical Evaluation 75
3.1. Evaluation Setup and Data . 76
3.2. Experiments . 81
3.3. Results . 81

4. Implementation 95
4.1. Base Classifiers . 95
4.2. Usage . 96

5. Conclusions 99

A. Proofs 103

B. Evaluation Data 107

Bibliography 138

List of Figures

1.1. Bias-Variance-Dilemma . 5
1.2. Generic confusion matrix for a binary classification problem 6
1.3. Example of an ensemble based system . 9
1.4. Schematic representation of an ensemble based classifier 12
1.5. Application of AdaBoost to a toy example 16

2.1. Progress of error rates and margin distributions 30
2.2. Loss functions for classification . 34
2.3. Instability of AdaC1 . 51
2.4. Decision boundaries of hard margin classifiers in different scenarios . . 66

3.1. Visualization of two dimensional data sets 79
3.2. Discrete AdaBoost on crash data . 82
3.3. RealBoost and AdaBoostReg on banana data 84
3.4. AdaBoostReg and WeightBoost on cancer data 86
3.5. AdaC1 on banana and cancer data . 87
3.6. AdaC2 on cancer data . 89
3.7. CSRA on banana data with recall=85% and recall=95% 91
3.8. CSGA on IDS data . 92

4.1. Decision boundary of a code example . 98

B.1. Cost-insensitive algorithms on banana data. 108
B.2. Cost-insensitive algorithms on banana data (ctd.). 109
B.3. WeightBoost on banana data. 110
B.4. AdaBoostReg on banana data . 111
B.5. CSGA on banana data . 112
B.6. Cost-insensitive algorithms on crash data. 114
B.7. Cost-insensitive algorithms on crash data (ctd.) 115
B.8. WeightBoost on crash data. 116
B.9. AdaBoostReg on crash data. 117
B.10.CSGA on crash data . 118
B.11.100% precision on crash data by AdaC2, CSRA, CSGA and CSLB 119
B.12.Cost-insensitive algorithms on fire data. 122

xii List of Figures

B.13.Cost-insensitive algorithms on fire data (ctd.). 123
B.14.WeightBoost on fire data. 124
B.15.AdaBoostReg on fire data. 125
B.16.CSGA on fire data . 126
B.17.Cost-insensitive algorithms on IDS data. 128
B.18.AdaC1 on IDS data . 129
B.19.AdaC2 on IDS data . 130
B.20.AdaC3 on IDS data . 131
B.21.AdaCost on IDS data . 132
B.22.Cost-insensitive Boosting algorithms on cancer data. 134
B.23.AdaBoostReg on cancer data. 135
B.24.WeightBoost on cancer data. 136
B.25.CSGA on cancer data. 137

List of Tables

1.1. Error rates calculated using the confusion matrix. 7

2.1. Overview of boosting algorithms considered in Chapter 2. 74

3.1. Overview of data sets . 80
3.2. Impact of numerical imbalance on the rare class 83
3.3. Impact of numerical imbalance on regularized boosting algorithms . . 85
3.4. Precision, Recall and F1-score achieved by cost-sensitive methods . . . 88
3.5. Precision, Recall and F1-score for cost-sensitive methods achieving dif-

ferent classification goals . 91
3.6. Overview of boosting algorithms considered in Chapter 3. 94

List of Algorithms

1. Bagging . 13
2. General AdaBoost . 15

3. Discrete AdaBoost . 28
4. Forward Stagewise Additive Modeling . 32
5. RealBoost . 40
6. GentleBoost . 42
7. LogitBoost . 44
8. AdaCost . 47
9. AdaC1 . 49
10. AdaC2 . 50
11. AdaC3 . 52
12. CSRA . 54
13. CSGA . 55
14. CSLB . 57
15. RareBoost . 65
16. AdaBoostReg . 69
17. WeightBoost . 71

Notation

Symbol Description

❘ Real numbers
N Number of samples in a data set
Z = (z1, . . . , zN) Labeled data set including N samples
zn = (xn, yn) Sample with label yn and feature vector xn

X Set of features
x Feature vector
p Dimensionality of a feature vector
y Class label of a sample
Y Domain of a class label
X Domain of a feature
fm(x) Base classifier of iteration m

M Number of base classifiers/iterations
m Current iteration
F(x) Combined ensemble output
Fm(x) Combined ensemble output up to iteration m

αm Mixing coefficient of base classifier in iteration m

w(n)
m

Weight of sample n in iteration m

P(·) Probability
P(· | ·) Conditional Probability
Pw(· | ·) Weighted conditional probability
❊(·) Expectation
❊(· | ·) Conditional expectation
❊w(· | ·) Weighted conditional expectation
1π Indicator function taking 1 iff π holds and 0 otherwise.
T P True-Positive
F P False-Positive
T N True-Negative
FN False-Negative

Chapter 1

Introduction

This chapter gives a brief overview of this thesis, introducing the concept of ensemble
based systems and pointing out the challenges that may arise when dealing with
imbalanced classes.

1.1. Ensemble Based Systems

What would you do?

Whenever humans have to make decisions of great importance they like to ask sev-
eral other people for advice before making their final decision, in the hope that being
aware of multiple different positions supports them in drawing a more informed con-
clusion. Before agreeing to a major medical procedure, for instance, we ask several
doctors for their opinion, we read articles and reports of one’s experiences before
purchasing a big-ticket item and we delegate political liability preferably to a council
than to a single person. In each case, the final decision what to do is obtained by a
combination of the individual votes of several experts in order to retrieve the most
promising selection in a set of alternatives, or to minimize the risk of an unfortunate
one that has undesirable consequences.

In doing so, we pursue the primary goal of getting a preferably overall view on a par-
ticular issue without disregarding any important aspect. This requires the compound
expertise of our consultants to indeed cover these aspects as completely as possible.
Referring to the introductory examples above, in a political committee we would pre-
fer to have at least one expert for various political matters instead of having a council
consisting of equally skilled persons. Respectively, we want the doctors we are asking
for advice to have different professional knowledge or experience.

2 1. Introduction

The way how the individual choices are combined to reach a final decision can vary
from case to case. On the political level, for example, the decision of the committee
is often obtained by a unweighted majority vote. If we ask doctors for their opin-
ion, one may have unquestionable confidence whereas in another one we trust only
within limits, such that the former may have wider influence on our decision than
the latter.

Although the strategy of "collecting several opinions" seems to be both quite effective
and natural to humans, researchers in the computational intelligence community suc-
ceeded in adopting the idea of combining models in automated decision making not
before the recent two decades. In this work we investigate ensemble based systems
for classification, which are learning algorithms aspiring to build prediction models
by combining the strengths of a collection of simpler base models [40], and their
application to imbalanced or skewed data that typically have negative impact on a
classifier’s predictive performance.

Ensemble Learning in Automated Decision Making

In this section we briefly revisit the classification problem in general, we give an
introduction to ensemble based classification systems, referring to two popular and
well-known ensemble approaches, namely bagging and boosting. We motivate our
investigations in boosting by discussing some of the most outstanding properties of
each technique.

Classification Problems

Classification tasks are one of the central issues in the science of artificial intelligence
and for a lot of industrial applications. In a typical classification scenario we wish to
predict the class membership of a particular entity based on a set of observed prop-
erties, which are called features. Consider, for example, an OCR (Optical Character
Recognition) application, which is given an optical representation of a distinct letter,
and the system is supposed to infer which letter the person was intended to write
down when she produced the document under consideration.

Typically, in such a scenario, we are given a training set Z = {z1 = (x1, y1), . . . , zN =

(xN , yN)} of data, for which we know the outcomes or class labels yn and the cor-
responding feature measurements xn. Based on these data, we generate a predic-

tion model, which enables us to assign a new feature vector x = (x (1), . . . , x (p)) ∈

X1 × . . .×Xp to one of k classes Y ∈ {Y1, . . . ,Yk}, where Xi denotes the domain

1. Introduction 3

of the corresponding variable x i. There are many other common terms, a prediction
model for classification is referred to in literature, such as classifier, hypothesis or
learner, which we use equivalently in this work. Furthermore, we will concentrate
on binary classification problems (i.e. k = 2), where y ∈ {−1,+1}. Hence, more
formally, we seek a function F that returns the corresponding class label y given an
observation x ,

F(x) : X1× . . .×Xn −→ {−1,+1}, (1.1)

which we want to learn from the set of examples in the training set.

Since the learning process is guided by an outcome variable y and we can assess
the predictive performance of the learned model by inspecting the value yi of each
training sample x i, a learning problem of that kind is referred to as a supervised

learning task. By contrast, in an unsupervised learning task, we only deal with feature
measurements and have no outcome variable y . In unsupervised learning, the goal
is rather to learn how the input data are organized or clustered [40]. In this work,
we will concentrate on supervised learning problems only.

Generalization, Overfitting and Regularization

Learning with the goal of making predictions differs from simple techniques such as
memorization in the sense that the learned classifier is not only supposed to perform
well on the training set of data, but also to achieve high classification accuracy when
being faced with new, unseen data points.

A classifier’s performance on data that have not been part of the model learning
process is called the generalization or test performance. Thus, if we use all the data
we have available for constructing a classifier, it is possible that the learning algorithm
builds a classifier that perfectly predicts each point in the training set correctly, but
fails on unseen data. In this case, the model is said to be overtrained or overfitted.
Therefore, it is reasonable to split the data into two partitions, a training set which
is used to build the classifier, and a test set for measuring how well the constructed
model predicts unseen data.

There are a number of strategies how to split the data into test and training set, and
how to use these for learning and evaluation. The technique that has been most
approved by the machine learning community is K-fold cross validation.

In K-fold cross validation, we randomly divide the data into a partition of K subsets
of equal size and use the union of (K−1) of them for training the model and evaluate

4 1. Introduction

its performance on the remaining one. This procedure is repeated K times, each time
selecting a different subset to be the test set, such that we obtain K estimates of
the predictive performance of our model, which are averaged to get a single final
value.

Assessing a classifier’s performance is only one purpose cross validation is widely used
for. In recent years, it has become a common practice to partition the data into three
subsets, one training and one test set, and an additional validation set, which serves
for pseudo testing [42]. Using a validation set, we continue training the classifier on
the training set until we stop detecting an improvement in the predictive performance
of the model applied to the validation set. When the improvement languishes, we
stop the training process to prevent the model from overfitting. The same procedure
can be employed for tweaking the parameters of a learning algorithm.

In order to illustrate the problem of overfitting, consider a problem where we have a
target variable y and we are given a training data set X from which we want to learn
the underlying distribution. Then, the expected generalization error err(F) over all
data sets can be decomposed into [41]

err(F) = ❊Z

��
F(x)−❊Z (F(x))

�2�

︸ ︷︷ ︸

Variance

(1.2)

+
�
❊Z (F(x))−❊Z(y)

�2

︸ ︷︷ ︸

Bias2

, (1.3)

where (1.2) and (1.3) are called variance and bias, respectively. Bias and variance
are model-specific measures for the generalization error, where bias represents the
deviation of the expected classifier output from the true class labels, and variance is
defined as the expected deviation of a classifier’s output from its expectation, both
averaged over all data sets. In these terms, high bias means that the learned model
does not pay enough heed to the data, i.e. the model is not sufficiently complex,
whereas high variance indicates that there is the risk of overfitting. As an example,
consider a simple regression problem as depicted in Figure 1.1. There are two sets of
training data (drawn in red and green) which have been sampled from a cosine with
additive gaussian noise. In Figure 1.1(a) we trained a linear model on each of the
two training sets, whereas in Figure 1.1(b), we fitted two higher-order polynomials.
As can be easily seen, the two linear models closely resemble, but their expected
outputs are far from the true data, such they exhibit large bias. The polynomials fit
their respective training sets perfectly, but their outputs highly depend on the data
that have been used for training, such that they are characterized by high variance.
None of the models is able to accurately fit the underlying cosine, plotted in dashed
gray.

1. Introduction 5

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) Linear Regression exhibiting large

bias.

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) Polynomial Regression exhibiting

large variance.

Figure 1.1.: Example of prediction models with (a) high bias and (b) high variance.

Ideally, we are seeking a model with both low bias and low variance, but in practice
no model will perform equally well on all data sets, so there is the problem of find-
ing a reasonable tradeoff between bias and variance. This procedure of optimizing
the generalization behavior of a prediction model and mediating between these two
extremes is called regularization.

Classifier Evaluation

It is important to know how well a classification system performs. Therefore, em-
ploying an appropriate evaluation measure is crucial for both assessing a classifier’s
performance and guiding classifier design. There are a number of characteristics, the
compound of which give an impression of the classifier’s performance. In this section
we introduce a selection of the most important measures reported in literature.

Assume that we have a labeled data set Z available for testing, consisting of N tuples
(x i, yi), specifying the input data and their corresponding class labels. The most
natural way to conceive the error a classifier produces is to find the proportion of the
number of misclassified samples

ǫ =
1

N

N∑

i=1

1F(x i) 6=yi
, (1.4)

where F(x) denotes the classifier output and 1π is the indicator function which eval-
uates to 1, if and only if the predicate π is true, and takes 0, otherwise.

6 1. Introduction

F(x i)

−1 +1

yi

−1 T N F P

+1 FN T P

Figure 1.2.: Generic confusion matrix for a binary classification problem: The outcomes
of the predictions are spread out over the columns, the true class labels over
the rows.

Often it is desirable to know how the misclassification error is distributed among the
classes. Hence, in order to get a more sophisticated view on the performance of a
classifier, it is a common method to employ a confusion matrix, which is a N×N table
holding the class-specific errors. In a confusion matrix, the value of each cell (i, j) is
defined as

Mi, j =

N∑

k=1

1F(xk)=Y j∧yk=Yi
, (1.5)

such that the main diagonal holds the numbers of correctly classified instances. For
a two class problem with y ∈ {−1,+1}, the four possible outcomes of a classification
are named as the true-positive (T P), true-negative (T N), false-positive (F P) and false-

negative (FN) cases, correspondingly to whether the prediction F(x) is positive or
negative, and its coincidence with the actual class label is true or false. Figure 1.2
shows a generic confusion matrix with the above definitions.

Based on the confusion matrix, there exist a number of measures revealing some
more interesting properties of a classifier than (1.4) does, some of the most important
shall be depicted in the following.

Traditionally, accuracy is the most commonly used measure in classifier design, which
is nothing more than the residual of the error we defined in (1.4), in notation of the
confusion matrix values,

a =
T P + T N

T P + T N + F P + FN
. (1.6)

However, there are some shortcomings of this measure that may yield misleading
results. Consider, for example, a two class problem where one class Y1 is represented
by only 1% of the data. Then, the trivial classifier F(x) ≡ Y2, which constantly

1. Introduction 7

True-Positive-Rate: T PR= T P

T P+FN

True-Negative-Rate: T NR= T N

T N+F P

False-Positive-Rate: F PR= F P

F P+T N

False-Negative-Rate: FNR= FN

FN+T P

Positive-Predictive-Value: PPV = T P

T P+F P

Negative-Predictive-Value: N PV = T N

T N+FN

Table 1.1.: Error rates calculated using the confusion matrix.

predicts the other class, may achieve accuracy of 99%, which seems to be very high,
but is completely meaningless (this problem is discussed in detail in Section 1.2).

Instead of considering the overall misclassification error, it is more appropriate to
differentiate between class labels. Table 1.1 shows a selection of error measures
that give insight into a classifier’s performance regarding the positive and negative
predictions.

The positive predictive value, also called precision, denotes the proportion of all cor-
rectly predicted positive instances (with class label y = +1) and all instances that
have been predicted to be positive:

p =
T P

T P + F P
. (1.7)

In information retrieval, for instance, precision of classifier is the percentage of rel-
evant documents that are identified for retrieval. Thus, precision can also be inter-
preted as a measure for the correctness of a classifier.

The true positive rate, defined as

r =
T P

T P + FN
, (1.8)

is also known as recall and represents the percentage of all positive instances that
actually could be identified by the learner, or, the percentage of retrieved documents
that are relevant, in the information retrieval example. Hence, we can think of recall
as a measure for the completeness of a classifier.

8 1. Introduction

A more appropriate measure for the overall classification performance is given by the
F1-score [43, 44], which takes the performance with reference to only one class into
account and is defined as the harmonic mean of precision and recall,

F1 =
2 · p · r

p+ r
=

2
1/r + 1/p

. (1.9)

Both precision, recall and F-score reach their best valuation when they take 1 and
their worst at 0. Since the harmonic mean of two numbers, in contrast to the arith-
metic mean, tends to be closer to the smaller of the two, a high F-score indicates that
both precision and recall are reasonably high.

Many kinds of classifiers, such as probabilistic models or neural networks, do not
only return a binary outcome, but they assign a confidence score to their decision,
e.g. F(x) ∈ [−1,+1]. Consider, for example, a model, where the sign of its output
sgn(F(x)) specifies the predicted class label and the absolute value |F(x)| can be re-
garded as the confidence in the prediction. Dealing with such models, the sensitivity
of a trained model can be manipulated by varying the position of the decision thresh-
old. Each threshold yields a pair of values (F PR, T PR) as defined above, which can
be plotted in a graph. The result is a receiver-operating-characteristics (ROC) curve
[74]. A model just making random guesses we would expect to reside along the di-
agonal connecting (F PR = 0, T PR = 0) and (F PR = 1, T PR = 1), whereas the ideal
model achieves an F PR of 0 and a T PR of 1. ROC curves are a quite popular eval-
uation measure since they give a good overall picture of a classifier’s performance.
By computing the area under the ROC curve (AUC) we can transform the points of a
ROC curve into a single value. However, as He and Garcia [5] point out, it is also
possible for a high AUC classifier to perform worse in a specific region in ROC space
[15, 74].

It has been shown by Davis and Goadrich [14] that there is a deep connection be-
tween the F-score measures and ROC analysis, and their expressiveness closely re-
sembles. Since the former is used in most of the work we refer to in this thesis,
we therefore pick up on this convention and employ precision, recall and F-score
measures in our experiments.

Ensembles of Classifiers

As pointed out in the beginning of this chapter, humans often improve the quality
of their decisions by taking several different opinions into account. In 1990, Hansen
and Salamon [45] showed that the performance of neural networks can be improved
by combining several similarly set up networks. Since then, huge efforts have been
made by researchers in the computational intelligence community towards multiple

1. Introduction 9

(a) M = 1 (b) M = 2 (c) M = 40

Figure 1.3.: Example of an ensemble based system using linear discriminant functions
as base classifiers: The individual classifiers perform only poorly as in (a)
and (b), the ensemble of 40 base learners is able to separate the two classes
with high accuracy (c). (Pictures taken from [75])

classifier systems. In this section we give a brief overview on ensemble based tech-
niques, outlining the cornerstones and most outstanding developments of the past.

In the machine learning literature an ensemble based system is referred to as a learn-
ing algorithm that strategically builds a set of models and makes predictions on a
new, unseen data point by combining the individual decision of each of these models
to one single decision by some combination rule [22].

An example of an ensemble of linear discriminant classifiers applied to a binary two-
dimensional problem is given in Figure 1.3. Since the two classes are not linearly
separable, the poor performance of the single classifier in Figure 1.3(a) is not sur-
prising, but the classification accuracy can be improved by combining it with another
similar (but not equal) base learner as shown in 1.3(b). Having trained 40 of them,
the combined decision boundary separates the two classes quite well.

Dietterich [22], Kuncheva [42] and Polikar [23] give several views that motivate the
use of an ensemble of classifiers instead of relying on a single one.

One reason why it is a good idea to employ an ensemble is statistical. Suppose we
have a set of different classifiers that perform well on a given training set of data. If we
are using classifiers having sufficient model complexity, it is even possible that all of
them have a training error of zero, such that they are indistinguishable (with regard
to the training error). However, they might have different generalization behavior.
For classifying a new data point we are now supposed to pick one out of the set such
that we are running into risk of selecting just an inadequate one that fails on the

10 1. Introduction

new point. A safer option would be to, instead of picking one single classifier, charge
all of them and somehow "average" the individual votes. The resulting model is not
guaranteed to perform better than a single one, but this way we are able to diminish
the risk of picking the wrong classifier.

A second reason given in [22, 42, 45] is computational. A lot of learning algorithms
rely on numerical optimization techniques for optimizing a particular objective func-
tion, such as gradient descent, random search or genetic algorithms. As long as the
objective function is a non-convex function, there is always the risk that optimization
runs into a local optimum. Assuming that the learning algorithm of each classifier
starts at different positions in the space of classifiers, we expect the learners to con-
verge to different local optima. Training multiple classifiers there is a better chance
to overcome these local optima, and combining the individual classifiers may lead to
a more accurate decision.

A third argument is representational. It is often difficult to choose an appropriate
space of classifiers to achieve good generalization performance. If the space is chosen
too huge, there is the risk that the classifier overfits. If it is restricted too much, then
the optimal classifier we are seeking will not belong to this space. Consider again the
example shown in Figure 1.3, where the optimal classifier is not in the set of linear
discriminant functions, but the ensemble yields a good approximation.

Summarizing, as Hansen and Salamon [45] point out, traditional standard practice
in machine learning dictates to perform some trial tunings to a model, e.g. by means
of cross validation as described above, to find an acceptable model and then to trust
all future classifications to the best model found. However, as ensemble techniques
suggest, it is more preferable to keep the complete set of models and run them all
with an appropriate collective strategy. Following Polikar [23] and Friedman et al.

[40], we define an ensemble of classifiers as follows:

Definition: Ensemble Based Classifier

An ensemble of classifiers consists of a strategy for generating a diverse set of

classifiers and a strategy for combining them to reach a final decision. The

individual classifiers are called base classifiers.

As this definition and our introductory real-world examples of committees make ap-
parent, there are two key questions that need to be answered when designing an
ensemble system:

1. Introduction 11

1. How will individual classifiers be generated?

2. How will the classifiers be combined to get the final decision?

In the following two sections we will briefly go into some essential aspects of each of
these two components.

Creating an Ensemble

The strategy for creating a set of base learners ultimately affects the overall perfor-
mance of the ensemble. The key idea of ensemble based systems is to build many
classifiers, such that the committee of base learners is able to compensate for wrong
decisions of individual ones, and that the combination results in improved gener-
alization performance. However, this requires that the single base learners fail on
different instances and thus we want the single classifiers to be as unique as possible.
Such a set of classifiers is said to be diverse [23].

There are several ways of how to obtain an ensemble of diverse classifiers. Figure 1.4
shows a schematic representation of how an ensemble works and highlights different
levels of where to approach for ensuring diversity among base learners [42]. Level
A, Combination Level, will be the topic of the subsequent section.

The ensemble learning algorithms considered in this work are adaptive in the sense
that they can be applied to any classification model. Many ensemble learning ap-
proaches assume the same classification model for the base classifiers fm, (1 ≤ m ≤

M), but there is no evidence that this performs better than using different ones
[42].

At Feature Level (Level C), diversity of base classifiers can be achieved by varying
the features the individual classifiers are trained with. Breiman [12], for instance,
generates a set of uncorrelated decision trees, so-called random forests, by randomly
selecting a subset of features for training each tree.

The most commonly used approach for ensuring diversity among base classifiers is
manipulating the data set (Level D), e.g. by randomly resampling data subsets. This
approach has been proven as being very successful and is used by bagging and boost-

ing algorithms considered in this work.

12 1. Introduction

Combination Level A

Classifier Level B

Feature Level C

Data Level D

f
1
(x) f

2
(x) f

M
(x)f

1
(x)

+

...

x(1) x(2) x(p)
...

z
1

z
2

z
N

F(x)

...

Figure 1.4.: Schematic representation of an ensemble based classification system on dif-
ferent levels: M "weak" classifiers f1 to fM are combined by some combina-
tion rule ⊕ to get the final decision F(x).

Combining Classifiers

Having generated a diverse set of classifiers any ensemble system must have a strat-
egy for coming to a final decision by combining the individual votes of the base
learners.

There are two main paradigms, namely fusion and selection, that can be further subdi-
vided along particular aspects. In classifier fusion, each base classifier is supposed to
perform well over the whole input/feature space. By contrast, in classifier selection,
the members of an ensemble are supposed to be experts in a particular subspace of
the input space and responsible only for instances that belong to this subspace. One
might say, in the latter case, we select one or more of the base learners dependently
on the data point to classify, whilst in the former case, the final decision is obtained
by somehow "averaging" over all ensemble members. In practice, there are schemes
that lie between these two paradigms, whilst so far, there is no evidence that either
performs better in general [26].

Another criterion of a combination rule is trainability. Some combiners need no fur-
ther training after the base classifiers have been learned. A simple majority vote is an
example. Others, such as weighted majority voting, need to be trained to determine
the weight of each voter.

Some authors [25, 27] make an additional distinction between data dependent and
data independent ensembles. Trainable combiners, in general, are data dependent,

1. Introduction 13

but the dependence can either be implicit or explicit. Implicitly data dependent com-
biners include methods that train the combiner on the global performance of the
data, or, in other words, train the combiner before any unseen data point is labeled.
Explicit data dependence is observed with combiners that choose the weight of ma-
jority voting, for example, dynamically at runtime, dependent on the vicinity of a
particular point.

Bagging

Bagging (acronym for bootstrap aggregating) is a simple and easy to implement en-
semble method, introduced by Breiman [18]. In bagging, the ensemble is generated
by learning base classifiers from bootstrap [46] replicates of the training set and the
individual decisions are combined by majority vote to get the final ensemble out-
put.

Algorithm 1 Bagging
for m= 1 to M do

Take a bootstrap sample Sm of the training set Z= {(x1, y1), . . . , (xN , yN)}

Fit the classifier fm(x) ∈ {−1,+1} using Sm

end for

Output the final classifier sgn(
∑M

m=1 fm(x))

Algorithm 1 shows the learning and operating procedure of bagging. The diversity of
base classifiers fm necessary to make the ensemble work is achieved by randomly re-
sampling subsets with replacement [46]. Therefore, the base classifiers should have
large variance in the sense that they should be sensitive to variations in the data,
i.e. small changes in the training set imply large changes in the prediction model. If
the base learners are robust against these variations the ensemble consists of many
classifiers that are almost identical and the diversity postulate for ensembles is vi-
olated, such that an improvement by the committee is quite unlikely. Classification

and Regression Trees (CART) [47] are examples for learning algorithms with high
variance.

It is recommended [23] to use relatively large portions of the entire training set
for the replicates to ensure that there are sufficient training samples in each subset.
Breiman [18] reports on good performance of bagging, which he explains by showing
that the mean-squared error of the aggregated predictor is upper-bounded by the
mean-squared error averaged over all replicates, and depends on the instability of the
weak learner. Therefore, bagging can also be seen as a variance reduction technique
on the base classifiers. Domingos [48] gives an explanation in terms of Bayesian

14 1. Introduction

learning theory, by showing that bagging manages to approximate the posterior class
probabilities P(yk | x) and shifts the prior distribution of classifier models towards
models that have higher complexity.

Since in bagging all base classifiers are generated independently, bagging is a parallel
algorithm in the learning as well as in the operating phase, such that the M ensemble
members can be distributed on multiple processors.

There are several variants of bagging approaches, the most prominent ones of which
are random forests and pasting small votes.

In [18], Breiman proposes a generalized framework of ensemble models, which he
called random forests. A random forest consists of an ensemble of decision trees that
have been generated by i.i.d. (independent identically distributed) random vectors
Θk, (1 ≤ k ≤ M) in a certain strategy. The usage of the vectors Θk for ensuring
diversity is not further constrained, such that it can be used for sampling from the
feature set, the data set, or just randomly varying some parameters of the tree, for
example. One of the most successful strategies with random forests has been proven
to be random feature selection at each node of the tree [42]. The final decision of
the ensemble is obtained by majority voting.

Pasting small votes [49] was designed to be used with large data sets that are divided
into smaller subsets, called bites, which are used to train the base learners. There
are two derivations of pasting small votes, namely Rvotes and Ivotes, the former of
which generates the base learners in parallel, whereas the latter creates consecutive
datasets based on their importance, similarly to boosting, which we address in the
next section. In the Ivotes variant, the training set for the base classifier in the next
iteration m+1 is generated by evaluating the current ensemble Fm(x) on any instance
x that has not yet been used for training. If the current ensemble fails in predicting
its class label, it is definitely placed in the training set for the next classifier. If it
succeeds, it is put into the training set only with probability ǫm/1−ǫm, where ǫm is the
error of the m-th classifier. This way, the training set in the next iteration consists of
a balanced distribution of "hard" and "easy" training patterns. Pasting small votes is
similar to boosting in the manner that the samples that are "harder to classify" are
passed to the next iteration.

Boosting

Unlike bagging, which generates the base classifiers in parallel, the AdaBoost (acronym
for Adaptive Boosting) algorithm by Freund and Schapire [6, 7] incrementally fits
classifiers, one at a time. The classifier, which is added to the ensemble at iteration

1. Introduction 15

Algorithm 2 General AdaBoost

Start with weights w
(n)

1 ←
1/N, n= 1, . . . , N

for m= 1 to M do

Fit the classifier fm(x) : X 7→R using weights wm

Choose αm ∈R

Update the weights:

w
(n)

m+1← w(n)
m
· e−αm yn fm(xn)/Zm (1.10)

with normalization factor Zm, such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final classifier sgn (F(x))
with

F(x) =

M∑

m=1

αm fm(x) (1.11)

m is trained on a strategically resampled subset of the original training data. The
selection strategy is incorporated in a weight vector w = (w(1), . . . , w(N)) of length N ,
which is normalized such that all weights sum to 1, i.e. each pattern in the train-
ing data is associated to a weight w(n), which are all initialized uniformly (initially
w
(n)

1 = 1/N, 1 ≤ n ≤ N). Resampling in each iteration is done by randomly drawing
samples proportionally to the weight distribution.

The key idea of AdaBoost is to increase the weights of samples that have been mis-
classified by classifier fm in the current iteration m and to decrease the weights of
correctly classified samples, such that the samples that are "hard" to classify are over-
represented in the training data of the next iteration and the subsequent base learner
is forced to concentrate more on these patterns.

Additionally, each weak learner is associated to a weight αm itself, which controls the
influence of the m-th classifier on the ensemble decision. The final classifier output
is obtained by a weighted majority vote of all base learners.

There are two possible implementations of AdaBoost regarding the generation of the
training set in each iteration. The above description refers to weight proportional
resampling. However, if the base learning algorithm is able to cope with weights in a
direct way, the resampling step can be dropped. The implementation of reweighting

can be seen as a way of "smooth resampling" and makes the algorithm completely

16 1. Introduction

(a) ε1 = 0.30,α1 = 0.42 (b) ε2 = 0.21,α2 = 0.65 (c) ε3 = 0.14,α3 = 0.92 (d) F(x)

Figure 1.5.: 2-dimensional toy example; (a)-(c) the decision stumps learned via AdaBoost
over 3 iterations. The sizes of the data points correspond to the sizes of their
weights (d) the combined ensemble output.

deterministic. In the listing of Algorithm 2 we assume the latter case and we do so in
the rest of this work as well.

Typically, the α coefficients of each base learner are computed by a logarithmic trans-
form of its weighted error ratio. In particular, it is defined as

αm =
1

2
ln

1− εm

εm

, where εm =

N∑

n=1

w(n)
m

1yn 6= fm(x)
, (1.12)

such that a base classifier fm(x) which produces only small weighted error (i.e. εm→

0) receives a large weight αm. In contrast, if it does not better than random guessing
(i.e. εm→ 0.5) its associated weight becomes 0.

In order to illustrate how AdaBoost works in practice, consider the toy example in
Figure 1.5. As can be clearly seen, the two-dimensional binary classification problem
is not linearly separable. We will show how it still can be solved by AdaBoost, even
if only a linear classifier is available. In this example, we use decision stumps as base
classifiers, which are linear discriminants, parallel to one axis of the coordinate sys-
tem. The decision boundary (in this case a simple threshold) of each stump is chosen
such that its weighted misclassification error is minimized. Figure 1.5(a) shows the
stump that has been learned in the first iteration. It fails in predicting three of the
five green samples, so its weighted error is ε1 = 0.3, and, according to (1.12), its
corresponding α1 = 0.42 (note that in the first iteration, all weights are equal). Com-
plying the weight update scheme in (1.10), the weights of correctly classified samples
are scaled down for the next iteration, whereas the weights of misclassified ones in-
crease. We indicate this by means of the size of data points shown in Figure 1.5,
where large-sized data points represent large weight assignments. Since the weight
distribution among the samples has been modified, the stump learned in iteration 2
differs from the first one. Figures 1.5(a)−1.5(c) show the decision stumps and the
development of sample weights for three iterations as well as corresponding error

1. Introduction 17

rates and α values. According to (1.11) in Algorithm 2, the single hypotheses fm(x),
given by the decision stumps, are combined by a weighted majority vote in order to
obtain the final ensemble decision:

F(x) = sgn

0.42 ·

f1(x)
︷ ︸︸ ︷

+0.65 ·

f2(x)
︷ ︸︸ ︷

+0.92 ·

f3(x)
︷ ︸︸ ︷

=

The resulting decision boundary is shown in Figure 1.5(d). Although not stuck to a
particular family of learning algorithms, the base classifiers often are considered to
implement coarse rules of thumb [9], i.e. only rough estimates supposed to have only
poor individual predictive performance, just slightly better than random guessing.
Hence, one often comes across the terms weak learners and weak hypotheses. In this
work these terms are used interchangeably.

Which one is better?

Since with bagging and boosting two ensemble methods have emerged that attract a
great deal of attention in the machine learning community, the question arises, which
of the two finally performs better. Although there is no "best" method for all problems
and we can always construct an instance of a problem on which one of the algorithms
performs poorly, the general consensus is that boosting achieves lower generalization
error [42]. Indeed, boosting is often regarded as one of "the most powerful learning
ideas introduced in the recent 20 years" [40], and Breiman (NIPS Workshop, 1996)
even refers to the AdaBoost algorithm with trees as the "best off-the-shelf classifier
in the world". Since its introduction in 1996 elaborate research has been done in
order to understand and refine the performance of AdaBoost, such that boosting has
emerged to the probably most growing subarea of classifier composition [42].

One reason, which definitely is accountable for the magnificent success of AdaBoost is
its simplicity and ease of implementation. But additionally, some interesting phenom-
ena like its apparent tenacity against overfitting and the ongoing test error reduction,
though errorless training performance, undoubtedly contribute to the popularity of
boosting. On these grounds, and due to the fact that numerous boosting variants
exist, such as cost-sensitive and regularized extensions that put themselves forward
to be studied in presence of imbalanced classes, the focus of this work is on the
AdaBoost algorithm and its derivatives.

18 1. Introduction

1.2. The Class Imbalance Problem

The pervasive majority of existing classification algorithms are designed for maxi-
mizing the overall classification accuracy or minimizing the overall misclassification
error in (1.4), respectively. The class imbalance problem is one of the problems that
have emerged in recent years, as more and more researchers realized that most of
the real-world data sets they have been working with exhibit an imbalance in class
distributions leading to suboptimal classification performance [19]. In such cases,
almost all patterns are labeled as one class, while far fewer instances are labeled as
the other class, which usually is the more important one. Learning from such imbal-
anced or skewed data sets typically results in a classifier that is biased towards the
prevalent class, which directly affects the recognition rate of the minority class and
yields misleading statements on classification performance [24].

In this section, we characterize the problems one may encounter in dealing with
imbalanced classes and describe techniques for handling these, which are reported
in literature.

Nature of the Problem

We can differentiate between two major kinds of imbalance. On the one hand, imbal-
ance may arise as an intrinsic property of the problem. In many applications, such as
fraud and intrusion detection or medical diagnosis, the problem of skewed classes is
prevalent and due to the rareness of the respective (positive) cases or elaborate elic-
itation of data and associated high costs, as for crash and fire detection, for instance.
In these cases we think of the imbalance problem in terms of uneven a-priori class
distributions resulting from the numerical dominance of one of the classes’ training
instances. In practical applications, the ratio of the small to the large class can be
drastic, such as 1:100 or even more, such as the intrusion detection (IDS) data set
considered in this work (among others). This subcase of imbalance is often referred
to as class rarity [20].

However, class imbalances also may occur in domains which are not necessarily in-
trinsically imbalanced. We can also think of class imbalance as there are uneven costs
of making different errors, which can vary per case. In this case, the imbalance re-
sults in a specific goal to be accomplished with the classification, reflecting the users’
preference for a particular class.

1. Introduction 19

Both kinds of imbalance are not mutually exclusive, but may also occur in parallel,
such as in medical diagnosis applications, for example. Here, the benign samples typ-
ically overwhelm the malignant cases numerically, such that we expect a classification
model to be biased towards the benign class. However, classifying a benign case as
malignant is much more desirable than not discovering a disease at all. Hence, in this
case, both kinds of imbalance are present. As another example, consider an airbag
control system, which has to decide whether or not to trigger the airbag in case of
a collision. In this case, undesirably deploying the airbag is off-limits. Equivalently,
industrial state-of-the-art fire detection systems have to decide whether to raise the
alarm or not, based on the sensory inputs. In such a system, raising a false alarm
goes with considerable costs and therefore must be avoided by all means.

There are several terms found in literature class imbalance is referred to. In most
of the other work on the topic of imbalance, it is assumed that the positive class
(y = +1) is always the minority class, or the more important one, respectively. In
this work, we pick up on this convention and therefore the terms minority class,
positive class and small class are used equivalently.

Difficulties with Imbalance

Weiss [20] gives a survey of the problems arising in dealing with imbalanced classes.

As pointed out earlier in this chapter, evaluation metrics play a crucial role in ma-
chine learning. Metrics are used to guide in design of learning algorithms and to
evaluate results. Empirical studies [53] have shown that traditional evaluation met-
rics, such as accuracy, lead to poor minority-class performance because the minority-
class examples are much less likely to be predicted than the majority-class examples.
Although classification accuracy is close to 100%, precision and recall of the minority
class may be far lower, often even close to 0. So, in order to adequately assess a clas-
sifier’s performance, measures such as F-score or AUC, which are not biased towards
the prevalent class, are a more appropriate choice.

Absolute rarity is another fundamental problem associated with imbalanced classes.
Here, a lack of data in absolute numbers causes rarity, and rare cases have a much
higher misclassification rate than common cases. This problem is often referred to as
the problem of small disjuncts [20]. Small disjuncts may arise from cases that indeed
represent rare or exceptional cases, but also by something else, such as noise, for
instance. Most learning algorithms are equipped with some regularization means for
preventing the learner from overfitting by removing patterns that are not believed to
be "meaningful". In presence of absolute rarity, meaningful patterns are likely to be

20 1. Introduction

identified as noise, which makes separation between noise and meaningful patterns
much more difficult than in dealing with large disjuncts.

Relative rarity mainly affects unsupervised learning and describes the problem of rare
entities that are hard to find. Weiss [20] illustrates this kind of problem by the phrase
"like a needle in a haystack", which is hard to find due to the large number of strands
of hay in the haystack. One reason, why relative rarity causes problems, is that rare
entities often depend on the conjunction of many conditions, and examining only
one condition at a time may not provide sufficient information.

Learning algorithms often employ a divide-and-conquer approach, which decomposes
the original problem into smaller subproblems that are easier to solve. The CART [47]
algorithm is one example, which recursively partitions the input space into smaller
cuboid subregions. This process causes data fragmentation, which leads to problems
since small disjuncts, as they provide little data, may be further fragmented and
regularities can only be found within a particular subregion. So divide-and-conquer
algorithms may particularly suffer from rare cases.

Solutions

A number of solutions to the class imbalance problem have been previously proposed
both at the data level as well as the algorithmic level. At the data level, the objective
is to rebalance the class distributions by resampling the training data. At the algo-
rithmic level, the goal is to make existing learning algorithms sensitive with respect
to the minority class.

Data-level Approaches

The main idea in countering the imbalance problem from data level is to make the
data set balanced by a certain resampling technique. Approaches at the data level
include many different forms of resampling, such as randomly oversampling the mi-
nority class or randomly undersampling the majority class. The resampling can be
purely random or informative. In informative resampling, the selection of particular
samples is targeted. For example, in informatively undersampling the majority class,
instances may be dropped that are easily separable from the minority class [24].

Although resampling is relatively easy to implement and therefore a widely used
method in dealing with imbalanced classes, there remain some difficulties that may
lead to suboptimal results. Weiss et al. [54] empirically showed that, regarding

1. Introduction 21

the classification performance on the minority class, a prior distribution of 50:50
is preferable and often yields good results, but is not necessarily optimal.

There are other difficulties with resampling. If we choose to undersample the preva-
lent class, for example, we run onto risk that we omit meaningful patterns that could
be important in the learning phase. If we oversample the rare class, it has been re-
ported by several authors [55, 56] that the likelihood of overtraining the classifier
increases, since exact replicates of the rare cases are made. Additionally, by oversam-
pling, the computational expense may increase if we are dealing with already large,
but imbalanced data sets [24].

Algorithmic Approaches

A common strategy for approaching the imbalance problem at the algorithmic level is
based on choosing an appropriate inductive bias towards the minority class [21].

For confidence-rated classifiers, i.e. models returning a real-valued score representing
the degree to which a pattern is believed to be a member of a particular class, such
a bias can be induced after the learning process has finished by varying the decision
threshold separating the classes [20].

Another way is to introduce class-specific misclassification costs and to make a learn-
ing algorithm cost-sensitive. The goal is to minimize misclassification costs during
the learning phase, based on a predefined cost matrix. The main shortcoming of
cost-sensitive approaches is, as we will discuss more detailed in Chapter 2, that costs
are not always available.

One-class learning can be very useful being applied to extremely imbalanced data sets
composed of a high-dimensional, noisy feature spaces [57]. A one-class learning task
is characterized by the fact that there are only training data available belonging to
one class. A one-class classifier is then to predict whether or not a given example
belongs to that class. An example from information retrieval, for instance, is the task
of classifying web sites that are of interest to a web user only based on the history in
his browser.

22 1. Introduction

1.3. Related Work

A lot of work has been published in the recent decade on the topic of learning from
imbalanced data sets. Indeed, becoming aware of the importance of this topic caused
a rapid increase in interest, which gave rise to two workshops in 2000 [1] and 2003
[2] at the AAAI1 and ICML2 conferences, as well as a Special Issue on Class Imbal-
ances in the ACM SIGKDD3 Explorations Newsletter in 2004 [4]. A wide survey of
strategies for handling imbalance is given by Kotsiantis et al. [24] and He and Garcia
[5].

As mentioned above, a widely used approach for countering class imbalances is in-
ducing a bias towards the minority class into the prediction model. Japkowicz [13]
discusses two strategies for rebalancing class distributions, i.e. over-sampling the
minority class and under-sampling the majority class. Maloof [16] shows that under-
sampling one class before learning takes place is equivalent to varying the ROC deci-
sion threshold afterwards. Both authors agree that under-sampling the majority class
works better than over-sampling the minority class. These results are confirmed by
Drummond and Holte [17], who empirically study sampling techniques in presence
of class imbalance and uneven misclassification costs in context of the C4.5 algorithm
by Quinlan [78].

In context of boosting, resampling techniques have been proposed by several au-
thors. Chawla et al. [35] present their SMOTEBoost (Synthetic Minority Oversampling

TEchnique) algorithm which generates new synthetic samples along the line segment
connecting a sample of the minority class and its nearest neighbor. A different resam-
pling technique is proposed by Guo and Viktor [29], which creates synthetic samples
from patterns that are difficult to classify, which they call seed examples. Both ap-
proaches differ in the strategy for generating new samples, the underlying AdaBoost
procedure, however, is unaffected.

In this thesis, instead of resampling procedures, we limit our scope to algorithmic
approaches for countering imbalance in boosting. As a common technique, several
authors discuss introducing cost items for uneven misclassification costs. Sun et al.

[21] introduce their AdaC1, AdaC2 and AdaC3 algorithms by inserting cost factors
at different positions in the boosting weight update scheme, and several other cost-
sensitive extensions of boosting have been proposed by Ting et al. [36], Li et al.

[28] and Fan et al. [30]. In Chapter 2 we study each of these algorithms in detail.

1Association for the Advancement of Artificial Intelligence
2International Conference on Machine Learning
3Association for Computing Machinery, Special Interest Group on Knowledge Discovery and Data

Mining

1. Introduction 23

RareBoost by Joshi et al. [32] is a variant of the AdaBoost algorithm that differenti-
ates between class-specific misclassifications, which, in presence of skewed classes,
has been proven to significantly outperform original AdaBoost. A slightly modified
version of RareBoost has been proposed by Song et al. [33].

Rätsch [37] points out several similarities of boosting and Support-Vector-Machines
[51]. He adapts the concept of soft-margins for regularization used in SVMs to
AdaBoost, giving raise to the AdaBoostReg algorithm. Another regularized boosting
method has been proposed by Liu et al. [38].

For a thorough analysis of the algorithms just mentioned we refer to Chapter 2 of this
thesis.

1.4. Thesis Contributions

As pointed out in the previous section, there has been a lot of research in the field of
boosting in general and particularly in the field of cost-sensitive boosting variants for
coping with imbalanced classes. A further line of research are regularized boosting
approaches for dealing with noise and overlapping class distributions. However, the
combination of both, i.e. the effects of regularized boosting in case of class imbalance
and the impact of employing cost-sensitive boosting techniques in noisy settings, is
rarely addressed in literature.

In particular, in our work we address the following issues:

1. In Chapter 2 we give a detailed survey of current boosting techniques.
2. We theoretically and empirically analyze AdaBoost’s sensitivity to noise and

validate recent studies that refute the presumption that AdaBoost seems to be
immune against overfitting.

3. We show that the only boosting algorithm tackling the imbalance problem with-
out using explicit costs, namely RareBoost, does not solve the problem, but is
indeed a special case of the well known RealBoost algorithm, a probabilistic
variant of AdaBoost.

4. We show that particularly regularized learning algorithms suffer from the im-
balance problem and present some novel insights on the topic of cost-sensitive
variants, which tend to overfit.

The remainder of this thesis is organized as follows: In Chapter 2 we give a de-
tailed survey of the current state-of-the-art in boosting, studying some of the most

24 1. Introduction

outstanding properties of the AdaBoost algorithm and reviewing some of its modifi-
cations, such as extensions to cost-sensitivity and regularization.

In Chapter 3, we empirically substantiate our findings by presenting the results ob-
tained by experiments that have been conducted with several real-world data sets
from an industrial environment as well as academic benchmarks. We assess the algo-
rithms’ performance in practice and identify methods that we cannot recommend.

Chapter 4 briefly presents the Matlab toolbox, which has been implemented in con-
text of this thesis and comprises 14 of the boosting approaches considered in this
work.

Chapter 5 concludes this work and gives an outlook of remaining issues and future
investigations.

Chapter 2

A Survey of Boosting

In this chapter we give an overview of the current state-of-the-art in boosting. We
start with discussing some of the most important properties of the AdaBoost algo-
rithm, and then review several boosting modifications that have been proposed in
literature. We additionally present novel insights concerning some of the algorithms,
in particular regarding cost-sensitive variants and approaches countering the imbal-
ance problem.

2.1. General Properties

In the AdaBoost algorithm, the final classifier F(x) is given by a weighted majority
vote of all single weak hypotheses,

F(x) =

M∑

m=1

αm fm(x), (2.1)

where fm is the weak hypothesis learned in the m-th iteration and αm is its associated
weight. We denote the number of iterations or the number of base classifiers in the
ensemble as M . In this section, we concentrate on the original AdaBoost algorithm
as introduced in Chapter 1 and derive some of its interesting theoretical properties,
which are able to explain why AdaBoost works.

Training Error

One of the most basic theoretical properties of AdaBoost is its ability to scale down
the training error, i.e. the rate of misclassified samples in the training set. In [31],

26 2. A Survey of Boosting

Schapire and Singer show that the training error rate of the final classifier, given by
(1.4), is bounded above by an exponential error rate. What easily can be seen in
Figure 2.2 on page 34 by comparing the exponential and the misclassification loss
functions, can be shown theoretically by first noting that, if a given sample xn in the
training set is misclassified, i.e. F(xn) 6= yn, where yn ∈ {−1,+1}, then the product
of classifier output and class label is non-positive:

ynF(xn) = yn

M∑

m=1

αm fm(xn)≤ 0,

implying that

e−ynF(xn) ≥ 1, hence 1F(xn) 6=yn
≤ e−ynF(xn). (2.2)

So we can assess the error rate over the whole training set as

training_error(F) =
1

N

N∑

n=1

1F(xn) 6=yn
≤

1

N

N∑

n=1

e−ynF(xn). (2.3)

Furthermore, we can show how this upper bound on the training error is related to
the sample weights. From (1.10) in Algorithm 2 we know that the sample weights in
each iteration are updated by w

(n)

m+1 =
1

Zm

w(n)
m

e−ynαm fm(xn), where Zm is a normalization
factor, such that the weights sum up to one. By unraveling the update rule over all of
the M iterations, the final weights wM+1 at the end of the training process are given
by

w
(n)

M+1 =
1

∏M

m=1 Zm

e−
∑M

m=1 αm yn fm(xn) =
1

∏M

m=1 Zm

e−ynF(xn), (2.4)

and plugging (2.4) into (2.3) yields

training_error(F) ≤
1

N

N∑

n=1

e−ynF(xn) (2.5)

=

N∑

n=1

M∏

m=1

Zm

!

w
(n)

M+1

=

M∏

m=1

Zm.

Eq. (2.5) shows that the overall misclassification error of (1.4) in an arbitrary iter-
ation M is upper bounded by the product of all normalization factors Zm of previ-
ous iterations (1 ≤ m ≤ M). This suggests that the training error of the ensemble
classifier can be reduced in each iteration by minimizing the normalization factors

2. A Survey of Boosting 27

most rapidly by choosing the weak hypothesis fm(x) and its corresponding weight
αm in a neat way. Suppose we have a weak learner providing binary output, i.e.
fm(x) ∈ {−1,+1}. Further splitting Zm (which is given by the sum of all weights in
the current iteration) into correct and incorrect predictions yields

Zm =

N∑

n=1

w(n)
m

e−ynαm fm(xn) =

M∑

m=1

w(n)
m

�
1+ yn fm(xn)

2
e−αm +

1− yn fm(xn)

2
eαm

�

(2.6)

The transformation is valid since for each case yn fm(xn) = ±1, either of the terms in
brackets vanishes. In a next step we analytically minimize the righthand side of (2.6)
with respect to αm and get

αm =
1

2
ln

1− εm

εm

, with εm =

N∑

n=1

w(n)
m

1yn 6= fm(xn)
. (2.7)

as the optimal choice for αm regarding the base learner. For a proof we refer to
Lemma 4 in Appendix A. The resulting algorithm, which afterwards was given the
name "Discrete AdaBoost", is listed in Algorithm 3. There are variants using real-
valued base classifiers instead of binary ones, which have been proposed two years
after AdaBoost’s inception [31, 11]. We will introduce them later in this chapter.

So far, we have only discussed how to choose αm in an appropriate way. However,
there is another model parameter that is to be determined in each iteration for reduc-
ing the training error, namely the weak learner. In order to understand the conditions
to be met by a weak hypothesis to be efficiently boosted, we note that the following
bound holds on Zm:

1

N

N∑

n=1

1F(xn) 6=yn
≤

M∏

m=1

Zm ≤ exp

−2
M∑

m=1

(1/2− εm)
2

!

, (2.8)

where εm is the misclassification error produced by the base learner. A proof for
this bound was first provided by Freund and Schapire [7]. The central property we
can derive from (2.8) is that, as long as the base learner fm(x) we use can do just
slightly better than random guessing, i.e. ε 6= 0.5, then the training error in (2.8) will
drop down exponentially fast over the M iterations. It is reasonable to demand the
weighted error rate to be ε 6= 0.5 instead of ε < 0.5 since a classifier with error > 0.5
can be converted into one with error < 0.5 by inverting its output. The authors of
[7] regard this as the proof that AdaBoost is indeed a "true" boosting algorithm in
the sense that it is able to efficiently convert a weak learning algorithm into a strong
one with an arbitrarily low error rate.

28 2. A Survey of Boosting

Algorithm 3 Discrete AdaBoost

Start with weights w
(n)

1 ←
1/N, n= 1, . . . , N

for m= 1 to M do

Fit the classifier fm(x) ∈ {−1,+1} using weights wm

Compute

εm =

N∑

n=1

1yn 6= fm(xn)
w(n)

m
(2.9)

αm =
1

2
ln

1− εm

εm

(2.10)

Update weights

w
(n)

m+1←
w(n)

m
e−ynαm fm(xn)

Zm

(2.11)

where Zm is a normalization factor, such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final classifier sgn(F(x)), where

F(x) =

M∑

m=1

αm fm(x) (2.12)

2. A Survey of Boosting 29

Generalization Error

Of course, optimizing the progress of the training error a classifier produces during
its learning phase is only a secondary goal in classifier design. As pointed out in
Chapter 1, the main concern in machine learning is the generalization performance
of models, i.e. how they behave when being faced with unknown data points.

In literature, two main approaches for analyzing the generalization performance of
AdaBoost have been proposed. The first, provided by Freund and Schapire [7] in
1997, is based on theory of the Vapnik-Chervonenkis (VC) dimension [59, 60]. The
authors show that, assuming that test and training set consist of randomly, i.i.d.
drawn samples from some unknown joint distribution of features X and labels y , the
generalization error, i.e. the probability of misclassifying a new sample, is at most

P̂(F(x)y < 0) + Õ

 r

Md

N

!

, (2.13)

where P̂(·) denotes the empirical probability on the training set, d the VC dimension
of the base classifier and ˜O(·) the "Soft-O"-notation (which is identical to the classical
O-notation, except that logarithmic and constant factors are hidden).

However, in practice, the bound in (2.13) has been empirically proven as being too
loose to be of practical value by several authors [61, 65, 66]. Eq. (2.13) suggests
that, once the training error probability of the ensemble has reached its minimum, i.e.
P̂(F(x)y < 0) = 0, the generalization error increases with each additional iteration,
indicating a tendency to overfitting. Indeed, in empirical evaluations, it is often
observed that AdaBoost keeps scaling down the generalization error even after the
training error has reached zero. This is a remarkable property since it contradicts
the Occam’s Razor principle, which suggests that, whenever we can choose between
multiple hypotheses which are equal in all other aspects, we do best when selecting
the simplest one. An example of such behavior is given in Figure 2.1, where we run
AdaBoost on the Wisconsin breast cancer benchmark data set over 100 rounds, using
decision stumps as weak learners. As can be seen in Figure 2.1(a), the training error
reaches zero after 4 iterations, but from then, the test error keeps decreasing half as
much.

Hence, since the above upper bound appears quite inaccurate, we omit discussing it in
further detail and move on to the second way of analyzing AdaBoost’s generalization
performance that has been proposed in literature.

30 2. A Survey of Boosting

10
0

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

Iterations

E
rr

o
r

R
a
te

Training Error Rate

Test Error Rate

(a) Training error vs. test error

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

margin

m=10

m=50

m=100

(b) Cumulative margin distribution

Figure 2.1.: AdaBoost on Wisconsin Breast Cancer Benchmark: 2-fold cross validation
over 100 runs with decision stumps. (a) training and test error (b) cumula-
tive margin distribution at m ∈ {10, 50, 100} iterations.

Boosting the Margin

In 1998, Schapire et al. [10] came up with an alternative explanation for the effec-
tiveness of the AdaBoost algorithm, employing the concept of margins known from
support vector classifiers. In the boosting context, the margin of a sample (x , y) is
defined as

margin(x , y) =
yF(x)

∑M

m=1 |αm|
=

y
∑M

m=1αm fm(x)
∑M

m=1 |αm|
∈ [−1,+1] (2.14)

and can be interpreted as a measure of the "confidence" of the prediction. For cor-
rectly classified instances the margin is positive and negative for incorrectly predicted
ones, respectively. Schapire et al. show that larger margins guarantee lower general-
ization error and give a new upper bound

P̂(margin(x , y)≤ θ) + Õ

 r

d

Nθ 2

!

, (2.15)

for the probability that the ensemble will misclassify a new example for θ > 0, with
all variables as defined above. A notable property of (2.15) is that it is entirely
independent of M , the number of iterations, which, given the empirical data in Figure
2.1(a), seems to be a more reasonable bound than (2.13). Additionally, as can be
seen in the weight update scheme of AdaBoost (Eq. (2.11)), the algorithm pursues
a particularly aggressive strategy for increasing the margin, since in each round of

2. A Survey of Boosting 31

boosting, it concentrates on the training patterns with smallest (i.e. negative) margin
and increases their weights exponentially fast. Figure 2.1(b) shows the progress of
the cumulative margin distribution of training patterns at different iterations. It can
be seen that, with increasing number of iterations, the margins increase as well.

Robustness

Due to its aggressiveness towards misclassified samples the question arises how Ad-
aBoost behaves in presence of outliers, noise or overlapping class distributions. In
this section we discuss the robustness of AdaBoost against such extreme data and its
influence on the training process.

In the previous section we derived the original AdaBoost algorithm by minimizing a
differentiable upper bound on the training misclassification error, as AdaBoost was
originally motivated by Freund and Schapire [7]. However, as already pointed out,
in practice, these bounds turn out to be too loose to have practical value. In order to
better understand its performance, Friedman et al. [40] give a more intuitive view on
boosting, showing that AdaBoost fits an additive model by stagewise minimization of
an exponential loss function.

Additive Models

An additive model takes the form

F(x) =

M∑

m=1

αm f (x;γm), (2.16)

where f (x;γ) are a set of elementary basis functions that take a multivariate argu-
ment x , and are characterized by some parameters γ. The αm, m = 1, . . . , M are
mixing coefficients determining a weight for each basis function. Typically, a model
F(x) is learned from a data set by minimizing some loss function L, such that

min
{αm,γm}

M
1

N∑

n=1

L

yn,
M∑

m=1

αm f (xn;γm)

!

. (2.17)

For many loss and basis functions, optimizing (2.17) globally, i.e. finding the joint
of all (αm,γm) pairs that minimizes the loss function at once is computationally in-
tractable. However, often a reasonable approximation can be found by sequentially
optimizing only one single basis function without adjusting any of the model pa-
rameters and coefficients that have already been learned. This leads to the "greedy"

32 2. A Survey of Boosting

Algorithm 4 Forward Stagewise Additive Modeling
Initialize F0(x) = 0
for m= 1 to M do

Compute

(αm,γm) = argmin
α,γ

N∑

n=1

L(yn, Fm−1(xn) +α f (xn;γ)). (2.18)

Set Fm(x) = Fm−1(x) +αm f (x;γm).
end for

forward stagewise additive modeling procedure shown in Algorithm 4. In each itera-
tion m, there is only one basis function f (x;γm) to be learned for optimizing the loss
function regarding all previously learned terms, which are not modified.

It can be shown that AdaBoost fits an additive model of the form given in (2.16) by
forward stagewise additive modeling, where the loss function L is defined as

L(y, F(x)) = e−yF(x), (2.19)

i.e. an exponential loss. Since we are dealing with binary problems, i.e. y ∈ {−1,+1},
the exponent of the loss function in (2.19) turns positive if the model fails in classify-
ing an example correctly, and becomes negative otherwise. Therefore, and due to the
monotonicity of the reciprocal exponential function, incorrectly predicted samples
are assigned a much larger loss than correctly predicted ones. Hence, by minimiz-
ing (2.17) with L defined in (2.19), we are urging the model to predict the class
memberships as correctly as possible.

Plugging (2.19) into (2.18) of Algorithm 4, in each iteration one must solve for

(αm, fm) = arg min
α, f

N∑

n=1

e−yn(Fm−1(x)+α f (xn)), (2.20)

where we have defined fm(x) = f (x;γm), and Fm−1(x) =
∑m−1

i=1 αi fi(x) denotes the
model up to the current iteration. Since for all data points xn, Fm−1(xn) is assumed to
be fixed and neither depends on α nor on f in the m-th iteration, it can be subsumed
in a weight w(n)

m
, such that (2.20) can be rewritten as

(αm, fm) = argmin
α, f

N∑

n=1

e−ynFm−1(xn)e−ynα f (xn)

= argmin
α, f

N∑

n=1

w(n)
m

e−ynα f (xn), (2.21)

2. A Survey of Boosting 33

having defined w(n)
m
= e−ynFm−1(xn). Splitting the criterion in (2.21) with respect to

correctly and incorrectly predicted patterns yields

(αm, fm) = argmin
α, f

eα
N∑

n=1

1yn 6= f (xn)
w(n)

m
+ e−α

N∑

n=1

1yn= f (xn)
w(n)

m

!

= argmin
α, f

(eα− e−α)

N∑

n=1

1yn 6= f (xn)
w(n)

m
+ e−α

N∑

n=1

w(n)
m

!

. (2.22)

It is traceable that, for any given α, (2.22) is minimized, when

fm(x) = arg min
f (x)

N∑

n=1

1yn 6= f (xn)
w(n)

m
(2.23)

is minimized with respect to f , since all other terms are constant, which corresponds
to the classifier that minimizes the misclassification error taking into account the
sample weights of the current iteration w(n)

m
. Having found the optimal fm(x), there

remains the issue of choosing the corresponding mixing coefficient αm. Setting the
derivative of (2.22) with respect to α to zero yields

eα
N∑

n=1

1yn 6= f (xn)
w(n)

m
= e−α

N∑

n=1

1yn= f (xn)
w(n)

m

α+ ln
N∑

n=1

1yn 6= f (xn)
w(n)

m
= −α+ ln

N∑

n=1

1yn= f (xn)
w(n)

m

αm =
1

2
ln

1− εm

εm

, (2.24)

with εm being the weighted misclassification error produced by fm. Corresponding to
Algorithm 4, the approximation and weights are then updated by

Fm(x) = Fm−1(x) +αm fm(x), w
(n)

m+1 = w(n)
m

e−ynαm fm(xn),

which is exactly the AdaBoost update scheme in Algorithm 3.

Loss Functions

Up to now, the choice of an exponential loss function seems somehow arbitrary. We
have seen that (2.19) is a monotonically decreasing function of the "margin" yF(x),
which is positive for correctly classified instances (yF(x) > 0), and negative for
incorrectly classified ones (yF(x) < 0), such that the training process will concen-
trate on samples with large negative margins. In fact, the principal attraction of us-
ing exponential criteria for boosting is computational, because it leads to the simple
reweighting update scheme in (2.11) [11].

34 2. A Survey of Boosting

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

8

9

10

yF(x)

L
o
s
s

Exponential Loss

Squared Loss

log−Likelihood

Misclassification

Figure 2.2.: Loss functions for binary classification, with response y = ±1 and classifier
output F(x): Misclassification 1sgn(F(x)) 6=y ; squared loss: (F(x)−y)2; expo-

nential loss: e−yF(x); binomial log likelihood: ln(1+ e−2yF(x)). The functions
have been scaled, such that they pass through the point (0, 1)

Consider, for example, the situation where we are given data from a noisy environ-
ment, where we have overlapping class distributions, such that the Bayesian error
is not close to zero, or mislabeled training instances. These phenomena make the
classification task difficult and harm a classifier’s performance [71]. Typically, in
the AdaBoost context, such instances have a negative margin since a base learner,
especially one exhibiting large bias, will not pay much attention to such scattered
occurrences. However, the exponential loss continuously penalizes large negative
margins by increasing their weights exponentially fast, much more than rewarding
positive ones by decreasing their weights. As a consequence, at each iteration, noisy
data will exponentially gain influence on the training process. It has been empirically
observed, as we will confirm in Chapter 3, that the AdaBoost algorithm is indeed
sensitive to noise and suffers dramatically from such situations.

So, in order to relax the problem of AdaBoost’s sensitivity to noisy data the question of
choosing an alternative error loss arises. In Figure 2.2 we plot a selection of possible
loss functions of the margin, including the misclassification or 0/1 loss,

L(y, F(x)) = 1yF(x)<0, (2.25)

the actual misclassification error.

2. A Survey of Boosting 35

One loss function, which is commonly employed for regression problems, is the
squared error loss,

L(y, F(x)) = (y − F(x))2. (2.26)

The goal of classifier learning is to produce positive margins, i.e. yF(x) > 0, as
frequently as possible, or, in other terms, to minimize the number of misclassified
patterns. Therefore, any loss criterion should penalize errors, i.e. negative margins,
much harder than correct predictions, i.e. positive margins, which postulates mono-
tone degression of the loss function with respect to an increasing margin. However,
as can be seen in Figure 2.2, the squared error loss is not a monotone decreasing func-
tion of the margin, but it rather puts more emphasis on correctly classified patterns
(starting from margin yF(x) > 1), reducing the (relative) influence on misclassified
ones. Hence, we can conclude that squared error is an inappropriate substitute for
the exponential loss [11, 40].

The fourth loss function depicted in Figure 2.2 is given by the cross-entropy func-
tion,

L(y, F(x)) = − ln(1+ e−2yF(x)), (2.27)

which is also known as deviance or binomial log-likelihood. Like the exponential loss,
cross-entropy is monotone decreasing in increasing margins, hence penalizes mis-
classified observations and rewards correct predictions. But, in contrast, penalty for
large negative margins grows linearly in yF(x), instead of exponentially, and there-
fore cross-entropy tends to distribute importance more uniformly over all samples.
So, boosting by means of minimizing cross-entropy loss is expected to be far more
robust to noisy settings than the classical AdaBoost algorithm. In the next section,
we will introduce LogitBoost, a boosting algorithm striving to accomplish that.

2.2. Boosting Variants

So far, we presented two common interpretations of boosting which are frequently
referred to in literature. In doing so, we approached the boosting task from data level,
i.e. we concentrated on the available training data and gauged the prediction model
by assigning an error loss to each pattern zn ∈ Z and by minimizing the cumulative
error loss over the whole data set. Friedman et al. [11, 40] give a third interpretation
of boosting from a more statistical point of view, tackling the problem at population

level, i.e. instead of explicitly taking into account each particular pattern in a data
set, only one arbitrary pattern is considered, treated as a random variable.

36 2. A Survey of Boosting

The statistical view of boosting presented in this chapter provides quite an elegant
way of deriving the AdaBoost algorithm on the one hand and, on the other hand,
it reveals some very interesting properties of boosting as, for example, its similarity
to the logistic regression model. Additionally, it gives rise to a number of modified
versions and improvements of the original AdaBoost algorithm.

Logistic Regression

In this section we briefly revisit the logistic regression model for classification. From
a probabilistic point of view, the binary classification task can be reformulated to

y = arg max
yk

P(yk | x), k ∈ {1, 2}, (2.28)

which returns the class with highest probability given an observation x , such that, for
performing classification, the conditional class probability distribution p(y | x) has to
be modeled. The logistic regression model takes the form

P(y = +1 | x) =
eF(x)

eF(x)+ e−F(x)
, (2.29)

where F(x) is a function of the input vector x = (x (1), . . . , x (p)). In classical logis-
tic regression, the features x (i) are supposed to be binary, and F(x) implements a
linear combination of all features. The final model (i.e. the weights of the linear
combination) is usually obtained by employing a maximum likelihood estimate.

Of course, the probability estimates of (2.29) lie in [0, 1], but inverting (2.29), we
get the log odd or logit transform

F(x) = ln
P(y = +1 | x)

P(y = −1 | x)
, (2.30)

which lies in ❘. It can be shown [11] that the logistic regression model of (2.29) is
a population minimizer of the expected exponential loss conditioned on x ,

❊(e−yF(x) | x). (2.31)

Unraveling the expectation we get

❊(e−yF(x) | x) = e−F(x)P(y = +1 | x) + eF(x)P(y = −1 | x),

and setting the derivative to zero yields

∂❊(e−yF(x) | x)

∂ F(x)
= −e−F(x)P(y = +1 | x) + eF(x)P(y = −1 | x) = 0

eF(x)P(y = −1 | x) = e−F(x)P(y = +1 | x)

F(x) =
1

2
ln

P(y = +1 | x)

P(y = −1 | x)
. (2.32)

2. A Survey of Boosting 37

So, as can be seen, the logistic regression model (2.29) and the minimizer of the con-
ditional exponential loss (2.32) (at population level) are equivalent up to a factor 2.
From this equivalence we can conclude that the AdaBoost algorithm, which approx-
imately minimizes the exponential loss, also approximately fits an additive logistic
regression model [11].

Discrete AdaBoost

In order to substantiate the argument that AdaBoost additively fits a logistic regres-
sion model we can derive the Discrete AdaBoost algorithm by minimizing the ex-
pected exponential loss via Newton-like update steps. For this, suppose we are cur-
rently in iteration m, having trained a model Fm−1(x) =

∑m−1
i=1 αi fi(x) and we are

seeking an improved estimate Fm−1(x) +αm fm(x).

The objective function then becomes

J(Fm−1(x) +αm fm(x)) = ❊

�

e−y(Fm−1(x)+αm fm(x)) | x
�

which is minimized at

fm(x) =

+1 if Pw(y = +1 | x)≥ Pw(y = −1 | x)

−1 if Pw(y = +1 | x)< Pw(y = −1 | x)

, (2.33)

where Pw(· | x) refers to a weighted probability estimate with weights defined as
w(x) = e−yFm−1(x). A proof for (2.33) can be found in Lemma 5 in Appendix A. For
obtaining αm, the objective function J(Fm−1+αm fm(x)) can be minimized by setting
the derivative of ❊

�

e−y(Fm−1(x)+αm fm(x)) | x
�

with respect to αm to zero, which yields

αm = argmin
α

❊

�

e−yFm−1(x)+α fm(x))
�
� x
�

=
1

2
ln

1− εm

εm

, εm =❊w(1y 6= fm(x)
| x), (2.34)

where the notation ❊w(· | x) refers to the weighted conditional expectation, which is
defined as

❊w(g(x , y) | x) =
❊(w(x , y)g(x , y) | x)

❊(w(x , y) | x)
. (2.35)

So, applied to a finite data set, εm has to be replaced by the weighted error propor-
tions at iteration m. We will discuss the meaning of the weighted expectation in the

38 2. A Survey of Boosting

next section in more detail. Hence, the update in iteration m (at population level)
becomes

Fm(x) = Fm−1(x) + fm(x) ·
1

2
ln

1− εm

εm

, wm+1(x , y) = wm(x , y)e−yαm fm(x)

Note that the equations in (2.33) and (2.34) refer to the population of a data set,
rather than to concrete data points as we did in the previous sections. Therefore, this
population version of AdaBoost has to be applied to data by replacing conditional
expectations by weighted class proportions, as given in a terminal node of a decision
tree, for example.

The population version of AdaBoost reveals another interesting property of boosting.
By noting that α is chosen to minimize the objective function J(Fm−1(x)+αm fm(x)),
the following condition holds:

∂ J(F +α f)

∂ α
= −❊

e−y(Fm−1(x)+αm fm(x))

︸ ︷︷ ︸

wm+1(x ,y)

y fm(x) | x

 = 0

Since the margin y fm(x) is always+1 for a correct prediction and−1 for an incorrect
one, the most recent weak learner fm(x) has a weighted error rate of 50% after the
weights have been updated for the next iteration. An interpretation of this is, that,
by reweighting the samples, the classification problem is made maximally difficult for
the next weak learner [31].

RealBoost

In the previous section we have seen that the classical "Discrete" AdaBoost algorithm
can be derived by minimizing the conditional expectation of the exponential error by
demanding the update αm fm(x) on the ensemble Fm−1(x) to perform a Newton-like
step towards the minimum of the objective function. In this section we choose fm(x)

to be the exact minimum of the expected error, leading to the RealBoost algorithm by
Friedman et al. [11], which uses weighted probability estimates instead of "discrete"
class assignments.

As before, we start from the expected exponential error conditioned on an arbitrary
but fixed data point x . Suppose we currently are in iteration m and we are look-
ing for an fm(x) that constitutes an improvement on the existing ensemble Fm−1(x),

2. A Survey of Boosting 39

where we have dropped the hypothesis weight αm. Again, the objective function
J
�

Fm−1(x) + fm(x)
�

is given by

J
�

Fm−1(x) + fm(x)
�
= ❊

�

e−y(Fm−1(x)+ fm(x)) | x
�

= ❊

�

e−yFm−1(x)e−y fm(x) | x
�

= ❊

�

e−yFm−1(x)1y=1e− fm(x)+ e−yFm−1(x)1y=−1e fm(x) | x
�

= e− fm(x)❊

�

e−yFm−1(x)1y=1 | x
�

+ e fm(x)❊

�

e−yFm−1(x)1y=−1 | x
�

= e− fm(x)❊w

�

1y=1 | x
�

+ e fm(x)❊w

�

1y=−1 | x
�

,

where we have defined w = w(x , y) = e−yFm−1(x), and ❊w(· | x) again refers to the
weighted conditional expectation defined in (2.35). Setting the derivative with re-
spect to fm(x) to zero yields

fm(x) =
1

2
ln
❊w

�

1y=1 | x
�

❊w

�

1y=−1 | x
� (2.36)

=
1

2
ln

Pw(y = +1 | x)

Pw(y = −1 | x)
(2.37)

We provide a proof for (2.37) in Lemma 6. In the next iteration, the ensemble be-
comes Fm(x) = Fm−1(x) + fm(x), hence the weights get updated accordingly

w(x , y)← w(x , y)e−y fm(x).

The entire algorithm is listed in Algorithm 5.

At a first glance, the effect of the weighted expectation and the weighted probability
estimate❊w and Pw on the learning process and the relation between them may seem
a bit vague. Before going ahead, let us stop for a second and study the population
version of the RealBoost algorithm in more detail, especially its application to data.
In order to get a deeper look inside the weighted probability Pw(y = 1 | x), which a
weak learner has to estimate, we revisit its original form

❊

�

e−yFm−1(x)1y=1

�
� x
�

.

Defining w(x , y) = e−yFm−1(x) and dividing by ❊(w(x , y) | x) is valid since this is
equivalent to expanding the fraction in (2.36). Then, writing out the expectation
yields

❊w(1y=1 | x) =
❊

�

e−yFm−1(x)1y=1

�
� x
�

❊

�

e−yFm−1(x)
�
� x
�

=
e−Fm−1(x)P(y = 1 | x) + 0 · P(y = −1 | x)

e−Fm−1(x)P(y = 1 | x) + eFm−1(x)P(y = −1 | x)

=
P(y = 1 | x)

P(y = 1 | x) + e2Fm−1(x)P(y = −1 | x)
, (2.38)

40 2. A Survey of Boosting

Algorithm 5 RealBoost

Start with weights w
(n)

1 ←
1/N, n= 1, . . . , N

for m= 1 to M do

Fit the conditional distribution Pw(y = +1 | x) by training a weak learner using
weights wm

Compute fm(x) =
1

2
ln

Pw(y = +1 | x)

1− Pw(y = +1 | x)

Update the weights: wm+1 =
1

Zm

w(n)
m

e−yn· fm(xn)

where Zm is a normalization factor, such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final classifier sgn(F(x)), where

F(x) =

M∑

m=1

fm(x)

which can be interpreted as the population version of a weighted probability estimate
Pw(y = 1 | x): each base classifier has to fit the function in (2.38), which has the pur-
pose of estimating the true probability that a given sample has the label y = 1, given
an input x . However, if we look at any region x in the input space where the true
probability P(y = −1 | x) is non-zero, this estimate shall be biased by the decisions
of the previous classifiers. If they agree that x is dominated by the positive class (i.e.
Fm−1(x)> 0), then the estimate of P(y = 1 | x)will be mitigated exponentially fast by
the negative class. In contrast, when the ensemble output is negative, the estimate is
pushed towards the positive class since the influence of P(y = −1 | x) is scaled down
to 0. This effect of mediating between the true class probabilities depending on the
output of previous classifiers is incorporated by the weight updating scheme of the
RealBoost algorithm.

Gentle AdaBoost

In some situations, the weights w(n) of samples that can be predicted with large
confidence may become very small. That is, the probability estimate of a weak learner
P(y = 1 | x) gets close to 1 or close to 0. In such extreme cases, that may occur when
the training error gets zero, for instance, the log odd ratio update

fm(x) =
1

2
ln

Pw(y = 1 | x)

1− Pw(y = 1 | x)
(2.39)

2. A Survey of Boosting 41

to the ensemble may cause numerical problems since

lim
Pw→0

�
1

2
ln

Pw

1− Pw

�

= −∞, and

lim
Pw→1

�
1

2
ln

Pw

1− Pw

�

= ∞,

which can result in very large updates. To overcome these problems, one solution
would be to shape the update more conservatively, i.e. instead of jumping to the
exact minimum of the expected exponential loss, to do just a smaller step in its direc-
tion. For this Newton stepping can be applied. Supposing an initial guess x0 of the
minimum of an objective function J(x), the sequence (x t) of Newton steps is given
by

x t+1 = x t −
J ′(x t)

J ′′(x t)
, t = 0, . . . (2.40)

Applied to the exponential objective function the first and second derivative with
respect to fm(x) around fm(x) = 0 are given by

∂ J(Fm−1+ fm(x))

∂ fm(x)

�
�
�
�

fm(x)=0

= −❊
�

ye−yFm−1(x) | x
�

(2.41)

∂ 2J(Fm−1+ fm(x))

∂ fm(x)
2

�
�
�
�

fm(x)=0

= ❊

�

e−yFm−1(x) | x
�

. (2.42)

Plugging (2.41) and (2.42) into (2.40) yields

Fm(x) = Fm−1+
❊

�

ye−yFm−1(x) | x
�

❊
�
e−yFm−1(x) | x

� ,

which coincides with the definition of the weighted conditional expectation (2.35).
Hence, by defining w(x , y) = e−yFm−1(x), the update results in

fm(x) =
❊

�

ye−yFm−1(x) | x
�

❊
�
e−yFm−1(x) | x

�

= ❊w(y | x)

= 1 · Pw(y = 1 | x) + (−1) · Pw(y = −1 | x)

= 2 · Pw(y = 1 | x)− 1.

The resulting algorithm is known as GentleBoost and was first proposed by Friedman
et al. [11]. Pseudo code for GentleBoost can be found in Algorithm 6.

The update to the ensemble now falls into [−1, 1] and the numerical problem de-
scribed above is obsolete. Since the output of each fm(x) is bounded, either the en-
semble output is. Dividing F(x) by M , the number of iterations, we get an ensemble
output that lies in [−1, 1].

42 2. A Survey of Boosting

Algorithm 6 GentleBoost

Start with weights w
(n)

1 ←
1/N, n= 1, . . . , N and F(x) = 0

for m= 1 to M do

Fit the conditional distribution Pw(y = 1 | x) by training a weak learner using
weights wm

Compute: fm(x) = 2 · Pw(y = 1 | x)− 1
Update the weights: w

(n)

m+1 =
1

Zm

w(n)
m

e−yn fm(xn)

where Zm is a normalization factor, such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final classifier sgn(F(x)), where

F(x) =

M∑

m=1

fm(x)

In Chapter 3 we present evidence that GentleBoost performs almost equally to Re-
alBoost, although the more "conservative" update would suggest far slower conver-
gence, if at all convergence to the same stationary point. We can theoretically assess
this phenomenon by comparing the GentleBoost update to the update we get if we
choose the expected squared error loss,

❊

�

(y − F(x))2 | x
�

. (2.43)

Setting the derivative to zero yields

∂❊
�
(y − F(x))2 | x

�

∂ F(x)
= ❊

�
2(y − F(x)) | x

�

= 2 ·❊(y | x)− 2 ·❊(F(x) | x)

F(x) = ❊(y | x)

= 2 · P(y = 1 | x)− 1. (2.44)

Hence we see that performing Newton steps on an exponential loss is equivalent
to employing the population minimizer of the squared error loss, which is more
robust in noisy settings since misclassified patterns are not penalized as much as
the exponential loss does. However, since we still use the exponential for updating
the weights, patterns with large positive margin will not be penalized, as the "pure"
squared loss would. So the GentleBoost algorithm can be interpreted as combining
two pleasant features of both approaches.

2. A Survey of Boosting 43

LogitBoost

As we have shown in the previous sections, by applying the AdaBoost algorithm or
one of its modifications, we get to an approximate logistic regression model. How-
ever, as we have studied the effects of using different loss functions, charging an
exponential loss may result in high sensitivity to noise and overlapping class distribu-
tions. As already pointed out, the major reason why boosting prefers an exponential
error, despite its shortcomings, is computational, since it leads to the simple reweight-
ing update scheme. Its similarity to logistic regression was first discovered five years
after AdaBoost’s inception.

Another way of obtaining an approximate logistic regression model is, instead of
minimizing the exponential loss, directly maximizing the log-likelihood of the logis-
tic regression model in (2.29). We have seen that these two losses have the same
population minimizers since the log-likelihood is maximized at the true probabilities
P(y = 1 | x), which define the logit F(x) in (2.30).

Assuming the logistic regression model

P(y = 1 | x) =
1

1+ e−2F(x)
, (2.45)

which we define as p(x), the binomial log-likelihood is

l
�

y∗, p(x)
�
= ln

�

p(x)y∗
�
1− p(x)

�1−y∗
�

= y∗ ln p(x) + (1− y∗) ln
�
1− p(x)

�

= − ln
�

1+ e−2yF(x)
�

.

We additionally write y∗ =
y+1

2
to keep the notation uncluttered. In an arbitrary

iteration m we are seeking an improved estimate of Fm−1(x):

J
�

Fm−1(x) + fm(x)
�
=❊

�

− ln
�

1+ e−2y(Fm−1(x)+ fm(x))
��
�
� x

�

(2.46)

Since we have no closed form solution for maximizing (2.46), we again have to
employ approximate optimization techniques such as Newton stepping. The first and
second derivatives at fm(x) = 0 are

∂ J
�

Fm−1(x) + fm(x)
�

∂ fm(x)

�
�
�
�

fm(x)=0

= 2❊
�

y∗− p(x)
�
� x
�

∂ 2J
�

Fm−1(x) + fm(x)
�

∂ fm(x)
2

�
�
�
�

fm(x)=0

= 4❊
�

p(x)
�
1− p(x)

��
� x
�

.

44 2. A Survey of Boosting

Algorithm 7 LogitBoost

Start with F(x) = 0 and probability estimates p
(n)

1 =
1/2.

for m= 1 to M do

Compute:

z(n) =
y∗

n
− p(n)

m

p(n)
m
(1− p(n)

m
)
, where y∗ =

y + 1

2

w(n)
m
= p(n)

m
(1− p(n)

m
).

Fit the function fm(x) 7→ z using weights wm.
Update:

Fm(x) = Fm−1(x) +
1

2
fm(x), p

(n)

m+1 =
eFm(xn)

eFm(xn)+ e−Fm(xn)

end for

Output the final classifier sgn(F(x)), where

F(x) =

M∑

m=1

fm(x)

Hence the Newton update results in

Fm(x) = Fm−1(x) +
1

2

❊

�

y∗− p(x)
�
� x
�

❊

�

p(x)
�
1− p(x)

��
� x
�

= Fm−1(x) +
1

2
❊w

�

y∗− p(x)

p(x)
�
1− p(x)

�

�
�
�
�
x

�

,

where we have defined the weights w(x) = p(x)
�
1− p(x)

�
. In an implementation

on data the weighted conditional expectation ❊w(· | x) has to be replaced by some
regression method. For this, regression trees [47] or neural networks can be applied.
If we rely on simple classification methods, such as decision stumps, the regression
step reduces to a weighted average over samples in each of the terminal nodes. A
complete listing of LogitBoost which has been proposed by Friedman et al. [11] is
shown in Algorithm 7.

2. A Survey of Boosting 45

2.3. Cost-sensitive Boosting

The reweighting strategy of AdaBoost intends to increase the weight of misclassi-
fied samples and to decrease the weight of correctly classified ones, such that the
weak learner of the next iteration is forced to concentrate more on the samples that
are "harder" to predict. However, the weight updates of different classes are treated
equally, i.e. the weights of different class samples are increased/decreased by the
same update ratio. In presence of class imbalance, as pointed out in Chapter 1,
the minority class often perishes due to the fact that classifier learning pursues min-
imization of the overall misclassification error. To overcome this undesired effect
one wishes to endow the boosting strategy with means for distinguishing between
classes, such that it is able to compensate for the bias towards the prevalent class.
A natural way for accomplishing this is to associate misclassification costs to classes
(or individual samples), that represent the importance of correctly classifying this
particular class (or sample). In this section, we review some of the most important
developments in cost-sensitive boosting strategies.

CSB0, CSB1 and CSB2

The earliest attempts to make the original AdaBoost procedure sensitive to costs as-
signed to single patterns or classes go back to Ting and Zheng [36, 34], who propose
their CSB (short for Cost-Sensitive Boosting) algorithms in 1998. They introduce
three variations of AdaBoost, which directly affect its weight update step in (2.11)
and leave the rest of the procedure unsolicited. They name their modifications CSB0,
CSB1 and CSB2.

The principle idea of cost-sensitive boosting is to asymmetrically penalize misclas-
sifications of one class by increasing the weights of the patterns belonging to this
class stronger than the weights of the patterns belonging to the other class and less
decreasing the weights of correct predictions of this class. The CSB0 modification is
obtained by replacing the weight update formula in (2.11) of Algorithm 3 by

w
(n)

m+1 =
c1yn=1 w(n)

m

Zm

, (2.47)

where c is a parameter specifying the costs of predicting a sample of the positive class
to be negative and Zm is a normalization factor chosen such that the weights sum up
to 1. The significant difference to the original weight update is that (2.47) does
not take into account the classification result of the weak learner, which results in
monotonically increasing weights of the positive class, and monotonically decreasing

46 2. A Survey of Boosting

weights of the negative class, respectively. Especially, when large biased base learners
are used, such as decision stumps, this results in a trivial classifier that always predicts
the positive class.

The second variant, CSB1, takes the classification result of the weak learner into
account but abstains from the α coefficients, such that the weight update becomes

w
(n)

m+1 =
1

Zm

c1yn=1 w(n)
m

e−yn fm(xn). (2.48)

Finally, CSB2 uses the αm, which are computed as in eq. (2.10), and its weight
updates are defined as

w
(n)

m+1 =
1

Zm

c1yn=1 w(n)
m

e−ynαm fm(xn). (2.49)

Note that (2.49) reduces to the original AdaBoost when costs are defined uniformly,
i.e. c = 1.

The authors of [36, 34] do not motivate or theoretically derive their choices for the
weight update formulas but they only provide an empirical study of the performances
of their modifications in comparison to original AdaBoost. Considering that one way
of deriving the AdaBoost algorithm is strongly driven by the weight updates as upper
error bounds, we think that this heuristic approach to cost-sensitive boosting does
not lead to optimal solutions. We expect modifications in the weight updates to lead
to modified formulas for the α coefficients, which has been shown by Sun et al. [21].
We therefore discard the CSB modifications without further consideration.

AdaCost

Another approach towards cost-sensitive boosting algorithms has been published in
1999 by Fan et al. [30]. The principal idea of AdaCost is to include a cost factor in
the exponent of the weight update instead of a constant factor outside the exponent,
as the CSB algorithms do. In AdaCost, the weight update formula is replaced by

w
(n)

m+1 =
1

Zm

w(n)
m

e−αm fm(xn)β(n), (2.50)

where β(n) ∈ [−1, 1] is called a cost adjustment function. The authors recommend
their definition of β to be

β(n) =

0.5cn+ 0.5 if yn fm(xn)< 0

−0.5cn+ 0.5 if yn fm(xn)> 0

, (2.51)

2. A Survey of Boosting 47

Algorithm 8 AdaCost
Initalize costs cn ∈ [0, 1], n= 1, . . . , N

Start with weights w
(n)

1 ← cn/
∑N

n=1 cn

for m= 1 to M do

Fit the classifier fm(x) : X 7→ [−1,+1] using weights wm

Compute

αm =
1

2
ln

1+ r

1− r
, r =

N∑

n=1

w(n)
m

yn fm(xn)β(n) (2.53)

β(n) =

0.5cn+ 0.5 if yn fm(xn)< 0

−0.5cn+ 0.5 if yn fm(xn)> 0

(2.54)

Update weights:

w
(n)

m+1← w(n)
m
· exp

�
−αm yn fm(xn)β(n)

�
/Zm (2.55)

with normalization factor Zm, such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final classifier sgn (F(x))
with

F(x) =

M∑

m=1

αm fm(x)

where cn ∈ [0, 1] denotes the cost of misclassifying the n-th example. The authors
motivate their setting of β as follows. For an instance with higher misclassification
cost, the cost adjustment should increase its weight more heavily in case of misclas-
sification than it should decrease it in case of correct classification. Following the
approach of minimizing the normalization factor Zm in each boosting round, Fan et

al. [30] provide a choice for αm as

αm =
1

2
ln

1+ rm

1− rm

, where rm =

N∑

n=1

w(n)
m

yn fm(xn)β(n), (2.52)

which leads to Algorithm 8.

Although the AdaCost algorithm is often referred to in literature the choice of the
cost adjustment function β of the AdaCost algorithm seems somehow arbitrary and
empirical studies [21, 34] have shown, as we will confirm in Chapter 3, that AdaCost

48 2. A Survey of Boosting

only achieves poor performance improvements. We think one reason for this is that if
costs cn are set close to 1 for one class correct predictions of this class are not further
rewarded since β gets close to zero, and hence the training process gets stuck at a
margin of yF(x) = 0, which implies indifference of the classifier F(x). Furthermore,
at yF(x) = 0, for any choice of cn, the weights will be updated uniformly for both
classes, which neutralizes the effect of costs. Additionally, as Sun et al. [21] remark,
there is no setting of costs cn for which AdaCost reduces to the original AdaBoost
algorithm.

AdaC1, AdaC2 and AdaC3

Sun et al. [21] discuss several strategies for feeding cost items into the weight update
formula of AdaBoost in order to bias its reweighting update scheme towards the mi-
nority class. They consider three ways of how to modify the weight updates: inside
the exponent, outside the exponent and both inside and outside the exponent. The
resulting boosting modifications are known as AdaC1, AdaC2 and AdaC3 and their
corresponding mixing coefficients αm can be induced by minimizing the normaliza-
tion factor Zm in each boosting round, as the original AdaBoost algorithm has been
derived in Section 2.1.

For AdaC1, the weight update rule is modified as follows:

w
(n)

m+1 =
1

Zm

w(n)
m

e−cn ynαm fm(xn), (2.56)

i.e. a constant cost factor cn is inserted into the exponent of the weight updates for
each pattern class. Usually, in the class imbalance case, cn is set to c1yn=1 for all n. As
before, the weights after the M -th boosting round are given by

w
(n)

M+1 =
e−cn yn

∑M

m=1 αm fm(xn)

∏M

m=1 Zm

=
e−cn ynFM (xn)

∏M

m=1 Zm

, (2.57)

and for c ≥ 1, the overall training error is bounded by

N∑

n=1

1yn 6=FM (xn)
≤

N∑

n=1

e−cn ynFM (xn)

=

N∑

n=1

M∏

m=1

Zm

!

w
(n)

M+1

=

M∏

m=1

Zm.

2. A Survey of Boosting 49

Splitting Zm into positive and negative predictions yields

Zm =

N∑

n=1

w(n)
m

e−cn yn fm(xn) ≤

N∑

n=1

w(n)
m

�
1

2

�
cn+ cn yn fm(xn)

�
e−αm

+
1

2

�
cn− cn yn fm(xn)

�
eαm

�

,

which, by setting the derivative with respect to αm to zero, results in

αm =
1

2
ln

∑N

n=1 w(n)
m

cn+
∑N

n=1 w(n)
m

cn fm(xn)yn
∑N

n=1 w(n)
m

cn−
∑N

n=1 w(n)
m

cn fm(xn)yn

.

Algorithm 9 AdaC1

Start with weights w(n)
m
← 1/N, n= 1, . . . , N

for m= 1 to M do

Fit the classifier fm(x) ∈ {−1,+1} using weights wm

Compute

αm =
1

2
ln

∑N

n=1 w(n)
m

cn+
∑N

n=1 wncn fm(xn)yn
∑N

n=1 w(n)
m

cn−
∑N

n=1 w(n)
m

cn fm(xn)yn

. (2.58)

Update the weights w
(n)

m+1 =
1

Zm

w(n)
m

e−cn ynαm fm(xn)

where Zm is a normalization factor, such that
∑N

n=1 w
(n)

m+1 = 1.
end for

Output the final classifier sgn (F(x)) where

F(x) =

M∑

m=1

αm fm(x)

Algorithm 9 summarizes the whole description of AdaC1. The AdaC2 and AdaC3
modifications can be obtained the same way. The weight updates are

• AdaC2: w
(n)

m+1 =
1

Zm

cnw(n)
m

e−αm fm(xn)yn

• AdaC3: w
(n)

m+1 =
1

Zm

cnw(n)
m

e−cnαm fm(xn)yn .

Since the line of proof is exactly the same for AdaC2 and AdaC3 we waive the deriva-
tion of the corresponding α-values and leave it at referring to Algorithms 10 and 11.

50 2. A Survey of Boosting

Algorithm 10 AdaC2

Start with weights w(n)
m
← 1/N, n= 1, . . . , N

for m= 1 to M do

Fit the classifier fm(x) ∈ {−1,+1} using weights wm

αm =
1

2
ln

∑N

n=1 1yn= fm(xn)
w(n)

m
cn

∑N

n=1 1yn 6= fm(xn)
w(n)

m
cn

Update the weights: w
(n)

m+1 =
1

Zm

w(n)
m

cne−ynαm fm(xn)

where Zm is a normalization factor, such that
∑N

n
w
(n)

m+1 = 1.
end for

Output the final classifier sgn (F(x)) where

F(x) =

M∑

m=1

αm fm(x)

The AdaC1-3 algorithms have been empirically evaluated by several authors [21, 76,
39]. Masnadi-Shirazi and Vasconcelos [39] report on AdaC1 being unstable in some
situations but they do not particularize or analyze their findings. In Chapter 3 we
empirically confirm the instability of AdaC1. Indeed, we observe that AdaC1 starts
oscillating when costs are chosen adversely.

Let us try to explain this behavior by means of a trivial toy example. Consider a
1-dimensional classification problem consisting of 3 data points, Z = {(x1, y1 =

−1), (x2, y2 = +1), (x3, y3 = −1)}, with x1 < x2 < x3 and cost assignments c1 =

c3 = 1 and c2 = c≫ 1. Suppose we have decision stumps available as base classifiers
(i.e. a threshold for x in each iteration). Discrete AdaBoost is able to solve the prob-
lem after 4 iterations. Let us qualitatively study what happens in AdaC1 during the
first iterations.

1. Suppose the threshold found in the first iteration lies between x1 and x2, so
x1 and x2 are classified correctly and x3 is misclassified. According to (2.58),
α1 > 0 and the weights get updated

w
(1)
2 =

1/3 e−α1 , w
(2)
2 =

1/3 e−cα1 and w
(3)
2 =

1/3 eα1 .

2. Since c is large the weight updates cause w
(2)
2 to be close to 0, whereas w

(1)
2

is not scaled down as much, and w
(3)
2 is increased due to misclassification.

Therefore, in the second iteration, if w
(1)
2 + w

(3)
2 > w

(2)
2 , the base learner is

2. A Survey of Boosting 51

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) AdaBoost

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) AdaC1

Figure 2.3.: (a) AdaBoost and (b) AdaC1 run on the toy example with c = 3 over 10
iterations: AdaBoost solves the problem after 4 iterations; AdaC1 shows
oscillations.

likely to constantly predict the negative class (i.e. f2(x) = −1), since there is
no threshold achieving lower weighted error, which causes α2 to turn negative
and the weight updates

w
(1)
3 = w

(1)
2 eα2 , w

(2)
3 = w

(2)
2 e−cα2 and w

(3)
3 = w

(3)
2 eα2 ,

such that in the next iteration, due to c, w
(2)
3 becomes very large and the base

learner is forced to correctly classify x2.

It is traceable that the exponential influence of the cost factor c results in strongly
oscillating weights of one class, which induces oscillating predictive behavior, since
strong penalties of false-negative predictions are compensated by strong rewards of
true-positives. In order to illustrate this effect we run AdaC1 and Discrete AdaBoost
over 10 iterations on the above toy example, having set c = 3. The results are shown
in Figure 2.3. As can be seen, AdaBoost succeeds in solving the problem after 4
iterations, whereas AdaC1 does not converge, thus this approach seems not to be
promising.

Asymmetric Logistic Regression

In the previous sections we considered cost-sensitive extensions to the original Ad-
aBoost algorithm. The AdaC1-3 algorithms are obtained by inserting constant cost
factors at different positions in the weight update and by minimizing an upper bound
on the training error like we did in Section 2.1. We also provided another way to de-
rive the AdaBoost algorithm at population level by minimizing the conditional expec-

52 2. A Survey of Boosting

Algorithm 11 AdaC3

Start with weights wn←
1
N

, n= 1, . . . , N

for m= 1 to M do

Fit the classifier fm(x) ∈ {−1,+1} using weights wn

αm =
1

2
ln

∑N

n=1 w(n)
m

cn+
∑N

n=1 w(n)
m

c2
n

yn fm(xn)
∑N

n=1 w(n)
m

cn−
∑N

n=1 w(n)
m

c2
n

yn fm(xn)

Update the weights: wm+1←
1

Zm

w(n)
m

cne−cn ynαm fm(xn),

where Zm is a normalization factor such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final classifier sgn(
∑M

m=1αm fm(x))

tation of an exponential misclassification function of the margin yF(x), giving rise
to the RealBoost, GentleBoost and LogitBoost procedures having several advantages
over classical Discrete AdaBoost. Corresponding cost-sensitive extensions to these
algorithms exist, which we want to introduce in this section.

Li et al. [28] introduce an asymmetric logistic regression model of the form

F(x) =
1

2
ln

P(y = 1 | x)c

1− P(y = 1 | x)
=

1

2
ln

P(y = 1 | x)

1− P(y = 1 | x)
+

1

2
ln c. (2.59)

The constant factor c in the numerator of the logit transform achieves a decision
threshold that is 1

2
ln c smaller than it would be in the normal logistic regression

model. This leads to more samples being predicted as positive to the expense of
increasing false positive cases, hence the model is biased towards the positive class.
It can be shown that a model of the form (2.59) can be obtained at population level
by employing the asymmetric exponential loss

❊

�

c y∗e−yF(x)
�
� x
�

, (2.60)

where we have defined y∗ =
y+1

2
. Here, the cost factor c can be interpreted in a way

that a misclassification of a positive sample is c times as expensive as making an error
on a negative sample. Before deriving an additive asymmetric logistic regression
model from the expectation in (2.60) we have to deploy the objective function to be
minimized in each iteration. For this we note that

J (F(x)) =❊
�

c y∗e−yF(x)
�
� x
�

=❊

�

c y∗e−y
∑M

m=1 fm(x)

�
�
� x

�

=❊

M∏

m=1

c
y∗/M e−y fm(x)

�
�
�
�
�
x

!

,

(2.61)

2. A Survey of Boosting 53

such that in each iteration, the asymmetric cost c
y∗/M is assigned to the positive sam-

ples. At the end of this section, we will discuss why this step is necessary for the
algorithms to work.

Cost-Sensitive RealBoost

Let us now derive a cost-sensitive version of the RealBoost algorithm. Let k = c
1/M

and suppose we want an improved estimate Fm−1(x)+ fm(x) in the current iteration.
We have to minimize the objective function with respect to fm(x) at an arbitrary but
fixed x:

J
�

Fm−1+ fm

�
= ❊

�

kmy∗e−y(Fm−1(x)+ fm(x))
�
� x
�

= ❊

�

kmy∗e−yFm−1(x)−y fm(x)
�
� x
�

= e− fm(x)❊

�

kmy∗e−yFm−1(x)1y=1

�
� x
�

+e fm(x)❊

�

kmy∗e−yFm−1(x)1y=−1

�
� x
�

= e− fm(x)❊w

�

1y=1

�
� x
�

+ e fm(x)❊w

�

1y=−1

�
� x
�

where we have defined w(x , y) = kmy∗e−yFm−1(x). Again, ❊w (· | x) refers to the condi-
tional weighted expectation defined in (2.35). Setting the derivative to zero yields

fm(x) =
1

2
ln
❊w

�

1y=1

�
� x
�

❊w

�

1y=1

�
� x
� =

1

2
ln

Pw(y = 1 | x)

1− Pw(y = 1 | x)
, (2.62)

and the weights get updated by w(x , y)← w(x , y)k y∗e−y fm(x). This leads to the CSRA
(Cost-Sensitive RealAdaBoost) procedure listed in Algorithm 12.

Cost-Sensitive GentleBoost

In the same way we can obtain a cost-sensitive version of the GentleBoost algorithm,
by performing a Newton step on the asymmetric exponential loss in each iteration:

∂ J(Fm−1+ fm(x))

∂ fm(x)

�
�
�
�

fm(x)=0

= −❊
�

yk y∗e−yFm−1(x) | x
�

∂ 2J(Fm−1+ fm(x))

∂ fm(x)
2

�
�
�
�

fm(x)=0

= ❊

�

k y∗e−yFm−1(x) | x
�

.

Hence, the Newton update becomes

fm(x) =
❊

�

yk y∗e−yFm−1(x) | x
�

❊
�
k y∗e−yFm−1(x) | x

� =❊w(y | x) = 2Pw(y = 1 | x)− 1, (2.63)

54 2. A Survey of Boosting

Algorithm 12 CSRA

Start with weights w
(n)

1 ←
1/N, n= 1, . . . , N .

Compute k = c
1/M , with false negative costs c.

for m= 1 to M do

Fit the conditional distribution Pw(y = +1 | x) by training a weak learner using
weights wm

Compute fm(x) =
1

2
ln

Pw(y = +1 | x)

1− Pw(y = +1 | x)

Update the weights: w
(n)

m+1 =
1

Zm

k y∗w(n)
m

e−yn· fm(xn), y∗ =
y+1

2

where Zm is a normalization factor, such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final classifier sgn(F(x)), where

F(x) =

M∑

m=1

fm(x)

where the weights are again updated by w(x , y)← w(x , y)k y∗e−y fm(x). The complete
CSGA (Cost-Sensitive Gentle AdaBoost) is shown in Algorithm 13.

Let us analyze the impact of introducing asymmetric costs into the exponential loss
on the weighted probability estimates in more detail. According to the weighted
conditional expectation in (2.35) we write, having defined w(x , y) = k y∗e−yFm−1(x),

Pw(y = 1 | x) =❊w(1y=1 | x) =
❊

�

k y∗e−yFm−1(x)1y=1

�
� x
�

❊

�

k y∗e−yFm−1(x)
�
� x
�

=
ke−Fm−1(x)P(y = 1 | x) + 0 · P(y = −1 | x)

ke−Fm−1(x)P(y = 1 | x) + eFm−1(x)P(y = −1 | x)

=
P(y = 1 | x)

P(y = 1 | x) + 1/k e2Fm−1(x)P(y = −1 | x)
. (2.64)

We see that the weighted probability estimate of an asymmetric loss (i.e. its popula-
tion version) is equivalent to the weighted probability estimate of the symmetric loss,
except that the influence of the negative class is stemmed by a factor 1/k. It is now
obvious why a splitting of the costs over the iterations in (2.61) is necessary: Suppose
we are in iteration m and according to (2.64) the base learner is biased towards the
positive class. From (2.59) we know that the bias is 1/2 ln c, such that the model of
the next iteration becomes

Fm(x) = Fm−1(x) +
1

2
ln

Pw(y = 1 | x)

1− Pw(y = 1 | x)
+

1

2
ln c

2. A Survey of Boosting 55

Algorithm 13 CSGA

Start with weights w
(n)

1 ←
1/N, n= 1, . . . , N and F(x) = 0

Compute k = c
1/M , with false negative costs c.

for m= 1 to M do

Fit the conditional distribution Pw(y = 1 | x) by training a weak learner using
weights wm

Compute: fm(x) = 2 · Pw(y = 1 | x)− 1
Update the weights: w

(n)

m+1 =
1

Zm

k y∗w(n)
m

e−yn fm(xn)

where Zm is a normalization factor, such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final classifier sgn(F(x)), where

F(x) =

M∑

m=1

fm(x)

and according to the weight updates the weighted probability estimate of the next
iteration is given by

Pw(y = 1 | x) =
P(y = 1 | x)

P(y = 1 | x) + 1/k e
2Fm−1(x)+ln Pw (y=1 | x)

Pw (y=−1 | x)
+ln c

P(y = −1 | x)

=
P(y = 1 | x)

P(y = 1 | x) + c/k e
2Fm−1(x)+

Pw (y=1 | x)
Pw (y=−1 | x) P(y = −1 | x)

.

(2.65)

Thus, if at each iteration m the cost factor k is chosen to be a constant c, then after
one iteration the biasing effect of costs will vanish. Hence, it is important for cost-
sensitive boosting algorithms to work that the cost factors increase in each iteration
in order buoy up the bias towards the positive class, as it is suggested by (2.61).

Cost-Sensitive LogitBoost

A corresponding cost-sensitive modification of the LogitBoost algorithm was first pro-
posed by Li et al. [28]. However, we detected several flaws in their derivation of the
algorithm and therefore want to present a correct version in this thesis.

56 2. A Survey of Boosting

From the logit in (2.59) we get the corresponding asymmetric class probabilities by
inverting, i.e.

p(x) = P(y = 1 | x) =
1

1+ ce−2F(x)

=
1

1+ ce−2
∑M

m=1 fm(x)

=
1

1+
∏M

m=1 ke−2 fm(x)
,

where we have defined k = c
1/M , such that the expected asymmetric log-likelihood

becomes

−❊

�

ln
�

1+ c y e−2yF(x)
���
� x

�

, (2.66)

which we want to maximize by Newton steps in order to obtain a cost-sensitive vari-
ant of the LogitBoost algorithm.

∂ J
�

Fm−1(x) + fm(x)
�

∂ fm(x)

�
�
�
�

fm(x)=0

= 2❊
�

y∗− p(x)
�
� x
�

∂ 2J
�

Fm−1(x) + fm(x)
�

∂ fm(x)
2

�
�
�
�

fm(x)=0

= 4❊
�

p(x)
�
1− p(x)

��
� x
�

.

As can be seen, the only thing that has to be modified to come from the original
LogitBoost algorithm to a cost sensitive extension, is to alter the probability estimates
in each round to

pm+1(x) =
1

1+ kme−2Fm(x)

This leads to the CSLB (Cost-Sensitive LogitBoost) procedure described in Algorithm
14.

Exponential Cost Items

In the previous section we derived cost-sensitive versions of the probabilistic boosting
variants RealBoost, GentleBoost and LogitBoost. In doing so, we inserted a class-
dependent cost factor c into the exponential loss function, which causes the base
learner to be biased towards one of the classes by giving the patterns of the respective
class constantly higher weights. In this case, a cost item has been inserted as a

2. A Survey of Boosting 57

Algorithm 14 CSLB

Compute k = c
1/M , with false negative costs c.

Start with F(x) = 0 and probability estimates p
(n)

1 =
1

1+k
.

for m= 1 to M do

Compute:

z(n) =
y∗

n
− p(n)

m

p(n)
m
(1− p(n)

m
)
, where y∗ =

y + 1

2

w(n)
m
= p(n)

m
(1− p(n)

m
).

Fit the function fm(x) 7→ z using weights wm.
Update:

Fm(x) = Fm−1(x) +
1

2
fm(x), p

(n)

m+1 =
1

1+ kme−2Fm(xn)

end for

Output the final classifier sgn(F(x)), where

F(x) =

M∑

m=1

fm(x)

58 2. A Survey of Boosting

multiplicative term outside the exponent of the error loss. Alternatively, the cost item
can also be placed in the exponent, such that the expected conditional loss becomes

❊

�

e−yc y∗ F(x) | x
�

,

where y∗ =
y+1

2
again. The effect of using an exponential cost item instead of a

multiplicative one shall be discussed in the following. Starting from the premise
that we are seeking an improvement on the ensemble we have learned so far, i.e.
Fm−1(x) + fm(x), the expected exponential loss becomes

❊

�

e−yc y∗(Fm−1(x)+ fm(x)) | x
�

. (2.67)

Minimizing (2.67) with respect to fm(x) as it has been done in the previous section
yields

fm(x) =
1

1+ c
ln

cPw(y = 1 | x)

1− Pw(y = 1 | x)
=

1

1+ c
ln

Pw(y = 1 | x)

1− Pw(y = 1 | x)
+

1

1+ c
ln c, (2.68)

where we have defined the weights w(x , y) = e−yc y∗ Fm−1(x). Let us study the effect
of using exponential costs on the weighted probability estimate of the base classifier.
Starting from the weighted conditional expectation we get

Pw(y = 1 | x) =❊w(1y=1 | x) =

❊

�

e−yc y∗ Fm−1(x)1y=1

�
�
� x

�

❊

�

e−yc y∗ Fm−1(x)

�
�
� x

�

=
e−cFm−1(x)P(y = 1 | x) + 0 · P(y = −1 | x)

e−cFm−1(x)P(y = 1 | x) + eFm−1(x)P(y = −1 | x)

=
P(y = 1 | x)

P(y = 1 | x) + e(1+c)Fm−1(x)P(y = −1 | x)
(2.69)

as the population version of the weighted probability Pw(y = 1 | x). At a first glance,
the effect of c seems to be counter-intuitive, since it strengthens the influence of
the negative class on the training process and hence stems the (relative) influence
of the positive class. Indeed, if a boosting ensemble is trained using weights as de-
fined above and the update at iteration m is given by (2.68), the base learners are
biased towards the negative class instead of the positive one. However, considering
the ensemble output, the bias of the base learner is compensated by the constant
term 1

1+c
ln c in (2.68). Furthermore, with increasing costs c the entire update fm(x)

will vanish, such that the ensemble output converges to 0, which corresponds to a
classifier making random guesses. Masnadi-Shirazi and Vasconcelos [39] yet report
on improved performance of such a model in dealing with rare classes. Against the
background of our theoretical investigations, we can explain this by means of the

2. A Survey of Boosting 59

insensitivity of a base classifier to data. In these terms, the classifier is expected to
pay less attention to the increased influence of the negative class, which causes the
log odd ratio in (2.68) to be smaller than the absolute bias 1

1+c
ln c. However, with

increasing costs c this effect will vanish and the ensemble output converges to 0.

2.4. Boosting with Imbalanced Classes

In the previous section we described cost-sensitive boosting approaches by introduc-
ing cost items for particular patterns (i.e. all patterns of the rare class) with the goal
of compensating for the bias of the learner towards the prevalent class induced by its
numerical dominance. In this section, we present an alternative approach for tack-
ling the imbalance problem from the algorithmic and the data level, that are reported
in literature.

RareBoost

As described in Chapter 1, a classifier achieves high recall by learning a powerful
model for distinguishing false-negative (FN) from true-negative (TN) and high pre-
cision by distinguishing false-positive (FP) from true-positive (TP) cases. In general,
precision and recall are conflicting goals and, as we have seen, optimizing the overall
misclassification error (i.e. accuracy) does not necessarily lead to desirable precision
and recall values. Joshi et al. [32] approach this problem by giving different treat-
ment to FPs and FNs. In particular, the idea is to learn different αm coefficients in
each iteration m for positive and negative predictions. We denote these as α+

m
for pos-

itive predictions, (i.e. f (x) > 0) and as α−
m

for the negative ones (f (x) < 0). Based
on its classification result, a hypothesis fm(x) will be weighted by the corresponding
αm, such that the final decision of the ensemble is obtained by

F(x) =
∑

m: fm(x)≥0

α+
m

fm(x) +
∑

m: fm(x)<0

α−
m

fm(x). (2.70)

The α values can be obtained as follows. By recursively expanding the weight updates
over all iterations, we get

w
(n)

M+1 =
1

N
∏M

m=1 Zm

exp

−

∑

m: fm(xn)≥0

ynα
+
m

fm(xn) +
∑

m: fm(xn)<0

ynα
−
m

fm(x)

=
exp
�

ynF(xn)
�

N
∏M

m=1 Zm

.

60 2. A Survey of Boosting

Following the proof of Schapire and Singer [7], the training error is minimized by
greedily minimizing Zm, which in this case is the sum of weights of the positive and
the negative predictions after iteration m, i.e. Zm = Z+

m
+ Z−

m
, where

Z+
m
=

∑

m: fm(xn)≥0

ynα
+
m

fm(xn), Z−
m
=

∑

m: fm(xn)<0

ynα
−
m

fm(x).

Each of the Zm can be minimized by setting the derivative with respect to α±
m

to zero,
yielding

α+
m
=

1

2
ln

T Pm

F Pm

, where

T Pm =
∑

n: fm(xn)=1,yn=1 w(n)
m

fm(xn)

F Pm =
∑

n: fm(xn)=1,yn=−1 w(n)
m

fm(xn)

α−
m
=

1

2
ln

T Nm

FNm

, where

T Nm =
∑

n: fm(xn)=−1,yn=−1 w(n)
m

fm(xn)

FNm =
∑

n: fm(xn)=−1,yn=1 w(n)
m

fm(xn)

The resulting algorithm is known as RareBoost and shown in Algorithm 15. The
principal advantage of RareBoost over classical AdaBoost is the distinction between
positive and negative predictions. Consider, for example, an imbalanced setting,
where the negative prevalent class achieves high accuracy, whereas the minority class
is predicted only infrequently. In such a scenario, we expect to get a very large
amount of T N cases, such that the α−

m
for negative predictions get large. In this case,

an FN sample, that belongs to the rare class but is misclassified, experiences a large
increase of its weights, such that the learner of the next iteration will focus more on
that example. On the other hand, since the positive predictions are rare, we expect
the base classifier to produce only few T P cases, such that a misclassified example
of the negative (prevalent) class will gain only little increase of its weight since the
corresponding α+

m
value is small. In the original AdaBoost algorithm these two cases

are treated equally, so F P and FN cases get updated by the same ratio.

Although the RareBoost algorithm indeed often performs significantly better than
AdaBoost, there are some points of criticism that have been reported in literature.
Sun et al. [21], for instance, remark that the RareBoost update scheme is only able
to scale down the training error if the base learner achieves performance with

T P > F P and T N > FN

and collapses if this constraint is not satisfied. They argue that, especially in presence
of class imbalance, demanding T P > F P is a too strong condition since it is equivalent
to demanding a precision value greater 0.5. Imbalanced problems, however, were
characterized by both poor recall and precision. We disagree with this argument,

2. A Survey of Boosting 61

since our experiments have shown that mostly recall suffers from imbalance, whereas
precision is relatively high in most cases. By inspecting Algorithm 15, one can see
that RareBoost indeed collapses if the condition T P > F P is violated, while T N > FN

holds. In this case, T P predictions are penalized by increasing their weights (since
α+

m
is negative), while T N predictions are rewarded (since α−

m
is positive). However,

we can show that as long as the base learner minimizes its weighted error rate this
case is impossible to occur, which rebuts the above arguments. For showing this, we
introduce the following lemma.

Lemma 1 Assume a binary classification problem, i.e. y ∈ {−1,+1}. Let F(x) be a

classifier producing errors F P > T P and T N > FN. Then the trivial classifier F ′(x) ≡

−1 achieves a lower misclassification error than F(x):

N∑

n=1

1F(xn) 6=yn
>

N∑

n=1

1F ′(xn) 6=yn
(2.71)

Proof The trivial cases of equality of T P and F P as well as T N and FN , respectively,
can be ruled out since we demand the classifier to be better than random guessing.
For F ′(x)≡ −1 the following holds:

T P ′ = F P ′ = 0, T N ′ = T N + F P, FN ′ = T P + FN .

We assume that F(x) achieves a lower misclassification error than F ′(x). Then

N∑

n=1

1F(xn) 6=yn
<

N∑

n=1

1F ′(xn) 6=yn

F P + FN < F P ′+ FN ′

F P + FN < T P + FN

⇐⇒ F P < T P,

which contradicts the assumption F P > T P.

�

Note that we postulate T N > FN for F(x) in Lemma 1. Although Lemma 1 would
also hold without this demand, it is a reasonable assumption since a classifier F(x)

with F P > T P and FN > T N can easily be inverted into −F(x), which then has
T P > F P and T N > FN .

62 2. A Survey of Boosting

Lemma 1 tells us that whenever we have trained a classifier which produces more
errors than correct predictions regarding the one of the two classes, we can always
do better when we constantly predict the other class. The proof for the case FN > T N

and T P > F P is analogous. This means, as long as the misclassification error of the
base classifier we use is upper-bounded by the trivial classifier, we can show that the
situation described above cannot occur. We state this in

Proposition 2 Let F(x) be a classifier that minimizes the overall misclassification rate,

such that

F(x) = argmin
F

1

N

N∑

n=1

1F(xn) 6=yn
, (2.72)

Then the following holds for its performance measures T P, F P, T N and FN:

(T P > F P ∧ T N > FN) ∨ (F P > T P ∧ FN > T N), (2.73)

where we have omitted the cases of equality.

Proof We prove our proposition by refuting the remaining cases

(T P < F P ∧ T N > FN) and (F P < T P ∧ FN > T N).

1. ¬(T P < F P ∧ T N > FN): We assume T P < F P ∧ T N > FN . Then the trivial
classifier F ′(x) ≡ −1 achieves a lower misclassification rate than F(x), which
follows from Lemma 1, such that F(x) does not satisfy (2.72).

2. ¬(F P < T P ∧ FN > T N): analogous to 1.

�

From Proposition 2 we can conclude that the particular situation in which the RareBoost
algorithm is supposed to collapse cannot occur as long as the base classifier we use
minimizes its training error and is able to act as a trivial classifier which constantly
predicts one of the two classes. Thus we have disproved the above statements by Sun
et al.

Nevertheless, we can also show that RareBoost is not a solution of the imbalance
problem, since it can be interpreted as an approximation to the RealBoost algorithm.
In fact, RareBoost is even equivalent to RealBoost, if decision stumps are used as base
learners. We state this in

2. A Survey of Boosting 63

Proposition 3 The RareBoost algorithm is equivalent to the RealBoost algorithm if de-

cision stumps are used as base classifiers.

Proof We prove the identity of RareBoost and RealBoost in the case where the weak
learner is a decision stump with fm ∈ {−1, 1}. From the RareBoost update scheme
for positive predictions (fm(x)≥ 0) it follows that

α+
m
=

1

2
ln(T Pm/F Pm)

=
1

2
ln

T Pm/
∑

n: fm(xn)≥0 w(n)
m

fm(xn)

F Pm/
∑

n: fm(xn)≥0 w(n)
m

fm(xn)

=
1

2
ln

Pw(T P | x)

Pw(F P | x)
(2.74)

=
1

2
ln

Pw(y = 1 | x)

Pw(y = −1 | x)
=

1

2
ln

Pw(y = 1 | x)

1− Pw(y = 1 | x)
=: f +(x),

where Pw(T P | x) denotes the weighted probability that the weak learner produces a
true positive prediction given the sample x . Analogously for the negative predictions:

α−
m
=

1

2
ln(T Nm/FNm)

=
1

2
ln

T Nm/
∑

n: fm(xn)<0 w(n)
m

fm(xn)

FNm/
∑

n: fm(xn)<0 w(n)
m

fm(xn)

=
1

2
ln

Pw(T N | x)

Pw(FN | x)
(2.75)

=
1

2
ln

Pw(y = −1 | x)

Pw(y = 1 | x)
=

1

2
ln

1− Pw(y = 1 | x)

Pw(y = 1 | x)
=: f −(x),

and f +(x) = − f −(x) because of the identity

ln
x

1− x
= − ln

1− x

x
.

hence the weight updates result in

for fm(x) = 1 : w
(n)

m+1 = w(n)
m
· e−ynα

+
m fm(xn) = w(n)

m
· e−yn f +m (xn)

for fm(x) = −1 : w
(n)

m+1 = w(n)
m
· e−ynα

−
m fm(xn) = w(n)

m
· e−yn f −m (xn) fm(xn)

= wm · e
−yi f +m (x i), (2.76)

64 2. A Survey of Boosting

which is exactly the update scheme of the RealBoost algorithm. Correspondingly,
composing the single weak learners to the final classifier yields

F(x) =
∑

m: fm(x)=1

α+
m

fm(x) +
∑

m: fm(x)=−1

α−
m

fm(x)

=
∑

m: fm(x)=1

f +
m
(x) +

∑

m: fm(x)=−1

− f −
m
(x)

=
∑

m: fm(x)=1

f +
m
(x) +

∑

m: fm(x)=−1

f +
m
(x)

=
∑

m

f +
m
(x).

�

The transformations in (2.74) and (2.75) are valid, since for a decision stump, the
weighted probability estimate of producing an F P prediction given x , Pw(F P | x), is
given by the weighted proportion of false-positive samples and all samples predicted
to be positive. The same holds for T P, T N and FN predictions, analogously. Equiv-
alently, this corresponds to the weighted conditional expectations ❊w(1y=1 | x) and
❊w(1y=−1 | x), respectively.

2.5. Regularized Boosting

When discussing different loss functions in context of AdaBoost, we observed that
there is the risk that the final model will be overtrained. This is due to the exponential
growth of weights of noisy data that tend to be misclassified over many iterations
and hence may have great influence on the training process. However, in its early
days, empirical studies [6, 61, 62] suggested that AdaBoost were resistant against
overfitting. Nevertheless, later studies [63, 64, 37] have shown that its immunity to
overfitting is clearly a myth.

Rätsch et al. [37] show some interesting similarities between AdaBoost and Support-
Vector Learning [52]. A first important observation in studying AdaBoost’s sensitivity
to noise is noting that it produces a large hard margin during training, i.e. boost-
ing pursues the goal of classifying every single pattern in the training set correctly.
According to maximum-margin classifiers, such as Support-Vector Machines (SVM)
[51], a decision boundary is the preferable choice, that exhibits a margin as large as
possible. However, because this paradigm assumes general separability of the data at

2. A Survey of Boosting 65

Algorithm 15 RareBoost

Start with weights w(n)
m
← 1/N, n= 1, . . . , N

for m= 1 to M do

Fit the classifier fm(x) ∈ {−1,+1} using weights wm

Compute:

T Pm =
∑

n: fm(xn)=1,yn=1

w(n)
m

fm(xn)

F Pm =
∑

n: fm(xn)=1,yn=−1

w(n)
m

fm(xn)

α+
m
=

1

2
ln

T Pm

F Pm

T Nm =
∑

n: fm(xn)=−1,yn=−1

w(n)
m

fm(xn)

FNm =
∑

n: fm(xn)=−1,yn=1

w(n)
m

fm(xn)

α−
m
=

1

2
ln

T Nm

FNm

Update the weights:

∀n : fm(xn)≥ 0 : w
(n)

m+1 =
1

Zm

w(n)
m

e−ynα
+
m fm(xn)

∀n : fm(xn)< 0 : w
(n)

m+1 =
1

Zm

w(n)
m

e−ynα
−
m fm(xn),

where Zm is a normalization factor, such that
∑N

n=1 w
(n)

m+1 = 1.
end for

Output the final Classifier sgn(F(x)) with

F(x) =
∑

m: fm(x)≥0

α+
m
· fm(x) +

∑

m: fm(x)<0

α−
m
· fm(x)

66 2. A Survey of Boosting

(a) Noiseless Data (b) Outlier (c) Noisy data

Figure 2.4.: Decision boundaries of hard margin classifiers in (a) a noiseless setting, (b)
presence of an outlier and (c) a noisy setting.

hand, in the presence of noise or overlapping class distributions, hard margin training
may lead to suboptimal generalization behavior.

In order to discuss the generally bad performance of hard margin classifiers in pres-
ence of unreliable data, let us analyze the toy example in Figure 2.4. In Figure
2.4(a) we sketch the case without noise. A large margin classifier (such as an SVM
or AdaBoost) can successfully estimate the optimal decision boundary. If there is an
outlier, however, as depicted in Figure 2.4(b), the estimate is corrupted by this sin-
gle pattern, hence it has negative influence on the generalization performance of the
resulting classifier. In the case of noisy feature measurements or incorrectly labeled
data, as shown in Figure 2.4(c), the classifier suffers as well from hard margin train-
ing. Especially with increasing model complexity (e.g. when more and more base
learners are added to the ensemble) the classifier tends to correctly classify all train-
ing samples, which results in an overfitted decision boundary and bad generalization
performance [37].

We can assess the problem of hard margin classifiers in context of AdaBoost theoret-
ically by defining the margin of an input-output pair zn = (xn, yn) as

ρ(xn,α) = ynF(xn) = yn

M∑

m=1

αm fm(xn), (2.77)

where α denotes the vector of all coefficients α= (α1, . . . ,αM)
T . This is a reasonable

definition since the margin of a pattern is commonly understood as its "distance"
to the decision boundary [51]. Additionally, we can define the margin of a whole
classifier F(x) as the minimal margin of all training patterns, i.e.

̺(α) =min
n
ρ(zn,α).

2. A Survey of Boosting 67

Using the definition in (2.77), we can write the exponential loss function in terms of
the margin:

L
�

y,ρ(x ,α)
�
=

N∑

n=1

e−ρ(xn,α), (2.78)

which we already minimized analytically in previous sections. The important obser-
vation is that L essentially defines a loss function over margin distributions, which
depends on the α coefficients, i.e. the larger the margins, the smaller the loss will
be. So, in order to decrease L maximally, α and the hypothesis should be selected
in such a way, that the margins increase most strongly. Rätsch et al. [37] interpret
this as an analogy to support vector learning, and they show that the smallest margin
of patterns of each class asymptotically converge to the same value. In the style of
SVMs, they call these patterns with smallest margin support patterns.

AdaBoostReg

In order to overcome the problem of overfitting, the SVM model is enhanced by slack

variables that allow a certain misclassification error during the training phase in an
area close to the margin, which results in a smoother decision boundary and coun-
ters the problem of such "insular" classification regions as shown in Figure 2.4(c).
The dose of the tolerated error is controlled by a regularization parameter C . An
analogous extension to AdaBoost exists which we want to introduce in the follow-
ing.

As can be seen from (2.78), the loss function is minimized when the margin ρ is
maximized, where for all pattern margins

ρ(xn,α)≤ ̺(α)

holds. If ̺ > 0, then all − also the possibly mislabeled or noisy − patterns are
predicted correctly, which indicates overfitting in presence of noise. Therefore, a
modification to AdaBoost should allow these unreliable patterns to have a margin
smaller than 0. If we knew them beforehand, we could just remove them from the
data set, but in practice, identifying these patterns is difficult. Suppose we have a
measure ξ(xn) that denotes the "mistrust" we have in a particular sample xn. This
could be a probability that xn is an outlier or mislabeled, for instance. Then we can
relax the above inequality by

ρ(xn,α)≤ ̺(α)− Cξ(xn),

68 2. A Survey of Boosting

such that a highly mistrusted sample may have a margin smaller than ̺, where C is
an a-priori chosen constant. Additionally, we can define the soft margin of a pattern
as

ρ̃(xn,α) = ρ(xn,α) + Cξ(xn), where ρ̃(xn,α)≤ ̺(α). (2.79)

Now the boosting procedure simply has to be modified to maximize the soft margin
instead of the hard margin. However, there remains the problem of how to estimate
the mistrust function ξ(xn). Here, good heuristics are in demand. Rätsch et al. [37]
propose the choice of ξ to be based on the influence of a pattern on the combined
hypotheses fm

ξ(xn) =

M∑

m=1

αmw(n)
m

, (2.80)

which is a weighted sum of a pattern’s weights over the boosting rounds. Following
these heuristics, a sample that is frequently misclassified during training (which is
seen as an indication for noise), will have a large average weight and thus is supposed
to be untrustworthy.

The new loss function in terms of the soft margin becomes [37]

LReg(y,αm) =

N∑

n=1

exp
�

−
1

2
ρ̃(xn,αm)

�

=

N∑

n=1

exp
�

−
1

2

�
ρ(xn,αm) + C |αm|µm(xn)

p
�
�

, (2.81)

where αm denotes the vector of α coefficients up to the current iteration m, αm =

(α1, . . . ,αm)
T and p is an a-priori chosen constant (e.g. p ∈ {1, 2}). Unfortunately,

(2.81) does not have an analytical solution. Rätsch et al. propose to employ a line
search procedure [72] for obtaining the optimal α in each iteration.

A complete algorithmic description of the AdaBoostReg procedure is given in Algo-
rithm 16.

WeightBoost

So far, we supposed the ensemble obtained by the AdaBoost algorithm (and its deriva-
tives) to take the form of Eq. (2.16), i.e. an additive model. In order to get to a model
of this kind we greedily learned a hypothesis fm(x) in each iteration and assigned it
a mixing coefficient αm. Except for the LPBoost and QPBoost variations [37], none

2. A Survey of Boosting 69

Algorithm 16 AdaBoostReg

Start with weights w
(n)

0 ←
1/N, n= 1, . . . , N

for m= 1 to M do

Fit the classifier fm(x) ∈ {−1,+1} using weights wm

Compute

αm = argmin
αm

N∑

n=1

exp
�

−
1

2

�
ρ(zn,αm) + C |αm|µm(zn)

p
�
�

, (2.82)

with ρ(zn,αm) = yn

m∑

t=1

αt ft(xn), α
m = (α1, . . . ,αm)

Update the weights:

w
(n)

m+1 =
1

Zm

exp
�

−
1

2

�
ρ(zn,αm) + C |αm|µm(zn)

p
�
�

where Zm is a normalization factor such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final Classifier sgn(F(x)) with

F(x) =

M∑

m=1

αm fm(x)

70 2. A Survey of Boosting

of the boosting algorithms touches any of the parameters that have already been de-
termined in a previous iteration, where αm, (1 ≤ m ≤ M), is a constant, such that
the final model is a linear combination of weak hypotheses:

F(x) =

M∑

m=1

αm fm(x)

This approach is an implementation of the classifier fusion paradigm we introduced
in Chapter 1, i.e., for classifying a new data point, each weak hypothesis gives its
vote, and all of the individual decisions are combined by a weighted majority vote.
An alternative paradigm in combining classifier outputs is to select that one from
which we expect the most promising response, based on the current sample at hand.
More formally, the weighting coefficients become functions that depend on the input
themselves:

F(x) =

M∑

m=1

γm(x) fm(x)

A model of this form is also known as a mixture-of-experts and can be employed
in order to alleviate the overfitting problem. The principal idea of achieving this
is as follows: As pointed out earlier, the cumulative misclassification by multiple
base classifiers and the related exponential growth of weights is a reason why noisy
data may distort the training process of boosting. At the same time, as noise is still
supposed to occur only desultorily over the whole input space, mistrusted patterns
are expected to be misclassified with high confidence, i.e. their margin is expected
to be significantly below 0 (because they are supposed to be surrounded by a vast
amount of trustworthy patterns). Now, if the mixing coefficient γm(x) is chosen to be
inverse to the previously accumulated weights, we should be able to filter out noisy
data from the training process, since, as their weights get larger and larger, they
forfeit their influence on future boosting iterations.

In the WeightBoost algorithm proposed by Jin et al. [38], the mixing function γm(x)

is defined as

γm(x) = αme−|βFm−1(x)|, (2.83)

where αm denotes a mixing coefficient as in original AdaBoost, β is a regularization
parameter and Fm−1(x) denotes the ensemble output up to the current iteration m.

2. A Survey of Boosting 71

By minimizing the upper bound on the training error in the style of Schapire and
Singer [31], one obtains the choice for αm

αm =
1

2
ln

∑N

n=1 e−Fm−1(xn)yn e−|βFm−1(xn)|1 fm(xn)=yn
∑N

n=1 e−Fm−1(xn)yn e−|βFm−1(xn)|1 fm(xn) 6=yn

=
1

2
ln

∑N

n=1 w(n)
m

1 fm(xn)=yn
∑N

n=1 w(n)
m

1 fm(xn) 6=yn

=
1

2
ln

1− εm

εm

,

where we have redefined the weights as

w(n)
m
=

1

Zm

e−Fm−1(xn)yn e−|βFm−1(xn)|

and εm refers to the weighted misclassification error produced by the m-th weak
learner. The complete boosting procedure is listed in Algorithm 17.

Algorithm 17 WeightBoost

Start with weights w
(n)

1 ←
1/N, n= 1, . . . , N

for m= 1 to M do

Fit the classifier fm(x) ∈ {−1,+1} using weights wm

Compute

αm =
1

2
ln

1− εm

εm

, where εm =

N∑

n=1

1yn 6= fm(x)

Update the weights: w
(n)

m+1 =
1

Zm

e−ynFm(xn)−|βFm(xn)|,

where Zm is a normalization factor, such that
∑N

n=1 w
(n)

m+1 = 1
end for

Output the final Classifier sgn (F(x)) with

F(x) =

M∑

m=1

αme−|βFm−1(x)| fm(x)

72 2. A Survey of Boosting

2.6. Summary

In the previous sections we introduced some of the most outstanding developments
in the area of boosting that have been reported from its early days up to present.

We introduced the original (discrete) AdaBoost algorithm which relies on base classi-
fiers with binary output, as well as its variants RealBoost, GentleBoost and LogitBoost
that use weighted probability estimates instead of discrete class assignments. Since
the original boosting algorithms do not differentiate between class-specific misclassi-
fication errors, we have discussed several cost-sensitive extensions which have been
designed in order to cope with the problem of imbalanced classes and uneven mis-
classification costs.

We gave theoretical explanations of phenomena that have only been empirically ob-
served by other authors [36, 21, 34]:

• On page 51, we illustrated why the AdaC1 algorithm is instable in particular sit-
uations since introducing cost items inside the exponent of the weight updates
does not result in an effective bias towards the respective class. Exponential
cost factors in the weight updates rather cause the weights to oscillate since
stronger penalties of misclassifications are compensated by stronger rewards of
correct predictions.

• At population level, we have derived Eq. (2.69) on page 58 which relates ex-
ponential cost settings in the expected exponential loss to the weighted condi-
tional probability estimate that the base learner is supposed to fit. Here, we
found that exponential cost setups regarding a particular class causes the base
classifier to be biased towards the other class during training, but the biasing
effect vanishes due to the ensemble update fm(x) in Eq. (2.68). Hence we have
shown that this approach, which has been first proposed by Masnadi-Shirazi
and Vasconcelos [39], is not recommended.

• Another cost-sensitive approach, AdaCost, strives to compensate for the draw-
backs of the AdaC1 algorithm by introducing a cost adjustment function in the
exponent of the weight updates, which prevents the weights from oscillating.
On page 46 we gave a theoretical explanation of the still poor performance im-
provement by AdaCost, which has been empirically observed by several authors
[21, 34]. Due to the fact that there is no cost setting for which AdaCost reduces
to original AdaBoost and costs are bounded by the interval [0, 1], the semantics
of costs in this algorithm are counterintuitive, which makes it less practical.

• For the RareBoost algorithm, which does not employ explicit cost parameters,
we have shown that it is a special case of the RealBoost algorithm. In Proposi-
tion 3, we have even proven that these two methods are equivalent in the case

2. A Survey of Boosting 73

where decision stumps are used as base learners. In Lemma 1 and Proposition
2, we have also disproved the presumption given in [21] that RareBoost were
instable in particular situations.

• Based on our theoretical findings in this chapter we conclude that for counter-
ing the imbalance problem employing cost-sensitive boosting variants that use
multiplicative cost factors in their weight updates are more favorable, such as
the AdaC2 algorithm and its corresponding probabilistic methods CSRA, CSGA
and CSLB. We confirm this theoretical result in the next chapter by an empirical
study.

Since the cost-sensitive variants and the original AdaBoost procedures are prone to
overfitting in noisy settings and in presence of overlapping class distributions, we also
considered two regularized versions, namely AdaBoostReg and WeightBoost. Both
techniques pursue different strategies of regularization. AdaBoostReg adopts the con-
cept of soft margins similar to Support-Vector-Machines by assigning each training
pattern a "mistrust" that controls its influence on the subsequent training iterations.
By contrast, WeightBoost implements a mixture-of-experts system that mediates be-
tween influence of different ensemble members depending on the input pattern. In
the next chapter we show that these two approaches lead to different behavior in
presence of rare classes.

We conclude our survey of state-of-the-art boosting techniques with a concise jux-
taposition of all algorithms considered in this chapter, which can be found in Table
2.1. In the next chapter, we continue with our discussion of boosting and empirically
study their performance and ability to cope with rare classes and concurrent goals of
classification.

74 2. A Survey of Boosting

Approach Algorithm Cost-Sensitivity Regularization

Data Level

(Discrete) AdaBoost − −

CSB0, CSB1, CSB2 + −

AdaC1, AdaC2, AdaC3 + −

AdaCost + −

RareBoost − −

AdaBoostReg − +

WeightBoost − +

Population Level

RealBoost − −

GentleBoost − −

LogitBoost − −

CSRA + −

CSGA + −

CSLB + −

Table 2.1.: Overview of boosting algorithms considered in Chapter 2.

Chapter 3

Empirical Evaluation

In this chapter, we study the performance of boosting algorithms and their deriva-
tions introduced in previous chapters. We empirically compare and evaluate the
algorithms concerning their ability to cope with the imbalance problem in terms of
pure numerical imbalance as well as competitive classification goals, their general-
ization performance and means of regularization, and their robustness against noise
and overlapping class distributions. In particular, we address the following issues:

1. Impact of imbalance. In previous chapters, we referred to imbalanced class
distributions and competitive classification goals as a problem making classi-
fication harder than it is when dealing with even classes. In this chapter, we
show how imbalance affects the performance of classical boosting algorithms
which have not been endowed with additional means for rebalancing a-priori
class distributions.

2. Impact of cost-sensitivity. As we have shown in the previous chapters, the only
algorithmic approach in countering the imbalance problem so far is introduc-
ing cost items into the weight update rule of AdaBoost. We examine how cost-
sensitive methods are able to alleviate imbalance and can be used to bias a
classifier in order to achieve a particular goal of classification, when class pref-
erences are uneven.

3. Regularization and overfitting. In its early days, AdaBoost gained a lot of atten-
tion because it conveyed being immune against overfitting. Later it was shown
by Rätsch [37] and others, that boosting shares many properties with support-
vector machines, which indeed tend to overfit unless being equipped with some
means of regularization. We study the regularization behavior in presence of
noise and overlapping class distributions, in particular of cost-sensitive vari-
ants. We also examine how regularized methods behave in presence of the
imbalance problem.

76 3. Empirical Evaluation

Up to this thesis, to the best of our knowledge, we do not know any work providing
an extensive analysis and contrasting juxtaposition of a wide range of boosting al-
gorithms, including cost-sensitive methods as well as regularized variants. Although
there has been done a lot of work on the topic of cost-sensitive extensions of Ad-
aBoost there is no study on their behavior in presence of noise and their tendency to
overfit. Likewise, regularized methods have not been regarded in presence of rare
classes so far and imbalance has only been considered in terms of numerically un-
even a-priori distributions, disregarding the ubiquitous case of aiming at particular
class-specific error rates.

Before discussing the conducted experiments and results we first provide a descrip-
tion of the data we use for our empirical studies.

3.1. Evaluation Setup and Data

Most authors of previous work evaluate their algorithms on synthetic toy data or
academic benchmark data sets. However, the ultimate goal of machine learning tech-
niques is to turn up in practical real-world applications. However, many of the boost-
ing algorithms reported in literature have only sparsely been empirically evaluated
on real-world data. As we already mentioned in Chapter 1, in practice, imbalanced
classes are ubiquitous but, since imbalance often occurs as a problem-intrinsic prop-
erty, it can hardly be reflected adequately by synthetically generated data. Hence,
we put emphasis on evaluating the algorithms considered in this work on real-world
data collected in different industrial environments and applications at Siemens AG,
as well as on two publicly available benchmark data sets.

Network Intrusion Detection

Network Intrusion Detection Systems (IDS) are systems for automatically detecting
computer attacks. For instance, computer attacks may aim at eaves-dropping com-
munication, tampering with files of compromised hosts or misuse of hardware re-
sources [67]. The data we are using have been ascertained by Rieck [67] and consist
of two major sets containing 10 days of consecutive network traffic of HTTP (Hy-
pertext Transfer Protocol) (data set 1) and FTP (File Transfer Protocol) (data set 2)
servers, which have been enhanced by adding data of different network attacks. Each
instance in the data set represents a network connection by means of seven statistical
features:

3. Empirical Evaluation 77

1. Length of payload: real
2. Byte entropy of payload: real
3. Minimum byte value in payload: real
4. Maximum byte value in payload: real
5. Number of distinct bytes: real
6. Number of non-printable characters: real
7. Number of punctuation characters: real

The data contain more than 50,000 patterns and are highly imbalanced from a nu-
merical point of view. 98.82% of the data represent "normal" network connections
(y = −1), whereas network attacks are represented by only 1.18%. The classifica-
tion goal is to identify as much network attacks as possible, whereas false alarms
are sternly to be avoided, since, in the view of the drastic numerical disproportion of
normal connections (y = −1) and attacks (y = +1), even a false-positive rate of only
1%, for instance, would cause an unacceptably high number of connections that are
potentially refused in a system in operation. Both the HTTP and FTP data set consist
of 20 data subsets, each of which contains about 2530 (including 30 attacks) pat-
terns. For each subset there is an independent test set provided for evaluation. The
results always are averaged over all 20 subsets. As base classifiers decision stumps
are used.

Fire Detection

In next generation industrial fire detection systems, chemical gas sensors are de-
ployed that are changing their electrical properties when reacting with gases that are
formed in case of fire. Currently, there are three chips of different materials under in-
vestigation, i.e. platinum, titan nitride and phtalocyanine. Hence, each data instance
is represented by a three-dimensional vector holding the gradient of induced voltage
measured by each sensor:

1. Pt (platinum): real
2. TiN (titan nitride): real
3. PH (phtalocyanine): real

The data are smoothed by moving average filtering (20 samples window size) and
resampled afterwards. Although the samples originate from a time series, they are
assumed i.i.d. for classification. In the selection of data sets considered in this work,
this is the only one representing a three-class problem, in particular

1. clean air: y = 0

78 3. Empirical Evaluation

2. open fire: y = 1
3. smoldering fire: y = 2,

which allow further distinction between different types of fire. Since we do not
consider multiclass problems in this work, and the primary goal of classification is
discriminating between fire and no-fire, we subsume the open and smoldering fire
cases in one single class fire. Fire patterns (y = +1) are represented by 12.5% of the
data, 87.5% are no-fire cases. The set consists of about 1,600 samples. Since no test
sets are provided, we use 5-fold cross validation, which we run 10 times and average
the results using stumps as base learners.

Airbag Deployment & Crash Detection

In safety-related applications, such as automotive crash detection systems, where a
control system has to decide whether or not to trigger the airbag, it is particularly
important not to produce false-positive predictions [68]. However, not deploying
it in real crash situations may have disastrous consequences as well. Additionally,
besides this kind of imbalance in terms of uneven misclassification costs, eliciting
enough crash data is elaborate and costly, hence much more "non-crash" data (which
are given by negative examples y = −1) are available than "crash" data (positive
examples, y = +1), such that the data exhibit strong numerical imbalance, too. The
original data set provided by Nusser et al. [68] consists of 30-dimensional vectors
per pattern, but we use a 2-dimensional projection, where one variable can be in-
terpreted as a temporal quantity, the other one as the corresponding measurements
of the negative acceleration of the vehicle. There are two data subsets available,
each comprising 2,500 patterns, 12.0% of which represent "fire" cases. Since no test
sets are available, we use 5-fold cross validation, averaged over 10 runs. The base
learning algorithm used with this data is CART.

Banana

The Banana data are an artificial data set by Rätsch [37] synthetically generated for
benchmark purposes. The 2-dimensional data are generated by multiple gaussian
distributions that form four convoluted "bananas" with partially overlapping areas.
Although these data are not highly imbalanced they are suitable for comparing dif-
ferent algorithms regarding regularization and overfitting aspects. 100 subsets are
provided, each consisting of one training set and one corresponding test set. For
computational reasons, however, we pick only 10 train-test pairs out of the 100.

3. Empirical Evaluation 79

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

X_SPP

X
_
P

o
w

e
r

y=−1

y=+1

(a) Crash Detection

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

X

Y

y=−1

y=+1

(b) Banana

−0.04 −0.03 −0.02 −0.01 0
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

PH

P
T

Clean Air

Smouldering Fire

Open Fire

(c) Fire Detection

Figure 3.1.: Visualization of two dimensional data sets (a) airbag control, (b) banana and
a 2-dimensional projection of the (c) fire detection data.

Wisconsin Breast Cancer

Wisconsin Breast Cancer data [69] obtained from the UCI Machine Learning Repos-

itory [70] is a popular data set often called on in literature for benchmarking pur-
poses. The classification task is to discern malignant (positive class, y = +1) from
benign (negative class, y = −1) cases. The 9 numerical variables represent mor-
phologic and biochemical features extracted from a digitized image of a fine needle
aspirate (FNA) of a breast mass, one per instance. The features are given by

1. Clump Thickness: real

2. Uniformity of Cell Size: real

3. Uniformity of Cell Shape: real

4. Marginal Adhesion: real

5. Single Epithelial Cell Size: real

6. Bare Nuclei: real

7. Bland Chromatin: real

8. Normal Nucleoli: real

9. Mitoses: real

The data set contains 699 patterns, 241 of which (35.0%) represent the malignant
(y = +1) case. There are 16 instances with incomplete feature information, these
are removed from the data, since the base learners that are used have no means for
dealing with unknown or nominal features. Figure 3.1 shows a visualization of the
two dimensional classification problems considered in this work. The most important
properties of the data set are summarized in Table 3.1.

80 3. Empirical Evaluation

Data Set Variables Imbalance Important

Class

Base Learner

IDS Data 7 1.1% vs. 98.82% y=−1
(no attack)

stump

Fire Detection 2 12.5% vs. 87.5% y=−1
(clean air)

stump

Airbag Control 2 12.0% vs. 88.0% y=−1
(no crash)

CART

Breast Cancer 9 35.0% vs. 65.0% y=+1
(malignant)

stump

Banana 100 2 42.6% vs. 57.4% N/A CART

Table 3.1.: Summary of all data sets considered in this work and the base classifiers that
are used in each case.

Performance Measure

As pointed out in Chapter 1, there are several metrics for measuring the performance
of a classification system and not all of them are suitable in case of imbalanced
classes. As most commonly employed measures in literature we use precision, re-
call and F1-score for determining the classification performance of the algorithms. In
cases where it is appropriate, we also bring in the misclassification error with respect
to the training and test set performance.

Some of the algorithms considered in this work are driven by some parameter, such as
cost factors or regularization constants. Unfortunate choices of these variables result
in poor performance and hence an inadequate validation. In most empirical studies
of boosting, equal choices of parameter values are applied to different algorithms
[21, 36, 28, 39]. Since such model parameters have to be chosen individually for
each problem and optimal choices may vary from case to case, we think that this
way of comparing different methods does not necessarily lead to reasonable results.
In order to assess the performance of each algorithm as fair-minded as possible, we
determined a range of 10 parameter values for each algorithm and problem, in which
it performs best. The parameter ranges have been manually determined in advance
by 5-fold cross validation on the training set. In doing so, we give each approach the
chance to get on its best behavior.

3. Empirical Evaluation 81

3.2. Experiments

In this section we present the results of the experiments that have been conducted
in order to assess the algorithms’ performances in the scenarios described above. In
each case we only pick some of the most outstanding results. For a complete list of
evaluation statistics we refer to Appendix B.

For the experiments, we use two kinds of base learners: decision stumps and Clas-
sification and Regression Trees (CART) [47]. Both are identical with regard to their
learning procedures, yet different in terms of bias and variance. A decision stump can
be seen as a special case of a CART that has only one single terminal node, therefore
is characterized by high bias. In contrast, as CART learning can build a decision tree
down to each single training pattern, it is highly sensitive to changes in the data.
Since the AdaBoost algorithm is supposed to be adaptive to any kind of classifier,
even those that are just slightly better than random guessing, we think that these
two extremes are a good choice for getting a big picture of AdaBoost’s performance.
In each of the data sets all algorithms are run with the same base learner and the
same number of iterations in order to ensure comparability.

3.3. Results

Impact of Imbalance

In this section we demonstrate how numerical imbalance affects the classification per-
formance of algorithms that do not have additional mechanisms for rebalancing the
a-priori distributions. For this purpose we run the cost-insensitive boosting methods
AdaBoost, RealBoost, GentleBoost and LogitBoost on the data sets that exhibit strong
numerical imbalance, i.e. IDS, airbag and cancer data.

Cost-Insensitive Methods

We exemplarily show the progression of precision, recall and F1-score of the positive
and the negative class in Figure 3.2, as well as the training and test error rates of the
(Discrete) AdaBoost algorithm applied to the airbag data set using CART over 500
iterations. As can be clearly seen, while all 3 measures regarding the negative class

82 3. Empirical Evaluation

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) y = +1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) y = −1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iterations

Training Error Rate

Test Error Rate

(c) Error Rates

Figure 3.2.: Precision, recall and F1-score with respect to the (a) positive and (b) nega-
tive class. (c) the corresponding training and test error rates, achieved by
Discrete AdaBoost on the crash data over 500 iterations.

(Figure 3.2(b)) lie significantly above 0.9 from the first iteration on, the F1-score of
the positive class ranges from below 0.4 to 0.6.

As can be seen in Table 3.2, the cost-insensitive boosting variants perform almost
equally, though a slight tendency can be detected, that the probabilistic variants,
especially the GentleBoost and RealBoost variants outperform Discrete AdaBoost,
which confirms the empirical findings of Friedman et al. [11]. Additionally, as a
result of the bias towards the prevalent class, which is much more frequently pre-
dicted than the minority class, mainly recall with respect to the rare class suffers
from imbalance. In contrast, precision is relatively high, since only few instances are
classified as the minority class and as a consequence, there are only few F P cases
produced by the classifier.

Regularized Methods

For analyzing how imbalance affects the behavior of the regularized algorithms we
concentrate on two different data sets which both represent two-dimensional prob-
lems, namely the banana benchmark as well as the airbag data. We choose these
two data sets since two dimensional data are easy to visualize and therefore enables
convenient evaluation of the algorithms’ performance. Additionally, both data sets
contain overlapping class distributions, which is a property only necessitating regu-
larization.

We first analyze the behavior of the classical boosting algorithms and show that Ad-
aBoost, against the common predominant assumption, indeed tends to overfit in pres-

3. Empirical Evaluation 83

Algorithm AdaBoost RealBoost

Data Set P R F P R F

Banana
y=+1 0.818 0.835 0.826 0.814 0.827 0.820
y=-1 0.865 0.849 0.857 0.859 0.846 0.853

IDS
y=+1 0.970 0.860 0.907 0.973 0.869 0.910

y=-1 0.998 1.000 1.000 0.998 1.000 0.999

Cancer
y=+1 0.942 0.926 0.933 0.942 0.930 0.936
y=-1 0.961 0.968 0.964 0.963 0.969 0.966

Fire
y=+1 0.994 0.999 0.997 0.997 0.999 0.998

y=-1 0.998 0.966 0.981 0.997 0.984 0.990

Airbag
y=+1 0.700 0.529 0.600 0.711 0.541 0.612
y=-1 0.937 0.969 0.953 0.939 0.969 0.954

Algorithm GentleBoost LogitBoost

Data Set P R F P R F

Banana
y=+1 0.815 0.833 0.823 0.813 0.838 0.825
y=-1 0.863 0.847 0.855 0.866 0.844 0.855

IDS
y=+1 0.974 0.854 0.905 0.936 0.847 0.880
y=-1 0.998 1.000 0.999 0.998 0.999 0.999

Cancer
y=+1 0.942 0.939 0.940 0.948 0.930 0.938
y=-1 0.968 0.968 0.968 0.963 0.972 0.967

Fire
y=+1 0.995 0.999 0.997 0.995 0.999 0.998

y=-1 0.995 0.972 0.982 0.997 0.976 0.986

Airbag
y=+1 0.717 0.541 0.614 0.713 0.539 0.612
y=-1 0.939 0.970 0.954 0.938 0.970 0.954

Table 3.2.: Precision (P), Recall (R) and F1-score (F) for the positive and negative class
of cost-insensitive boosting algorithms applied to the data sets. Highest F1-
scores are bolded. The values are rounded to 3 decimals.

84 3. Empirical Evaluation

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) RealBoost

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) AdaBoostReg

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(c) RealBoost

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(d) AdaBoostReg

Figure 3.3.: Decision boundaries and progress of error of the RealBoost and AdaBoostReg

algorithms. The brightness of the colored areas indicates the confidence.

ence of overlapping class distributions, and hence we confirm our expectation driven
by the theoretical analyses of the previous chapter.

Figure 3.3 shows the decision boundaries learned by the RealBoost and the AdaBoostReg

algorithms applied to the Banana data set. The brightness of the colored areas in-
dicates the confidence, i.e. the absolute value of the ensemble output |F(x)|. As
several "insular" regions can be detected in the output of RealBoost, where not even
one training pattern of the particular class is located, one might say that the classifier
shown in Figure 3.3(a) suffers from overfitting. Studying the progress of training and
generalization error in Figure 3.3(c), it can be seen that the training error reaches
zero after 100 iterations, whilst the generalization error increases from iteration 50
on. Comparing to the classifier learned by the AdaBoostReg procedure, shown in Fig-
ure 3.3(b), we detect that its boundary is obviously smoother and not as frayed as

3. Empirical Evaluation 85

Algorithm AdaBoostReg WeightBoost

Data Set P R F P R F
Banana y=+1 0.833 0.833 0.832 0.820 0.835 0.827
IDS y=+1 0.998 0.703 0.812 0.964 0.855 0.900

Cancer y=+1 0.945 0.930 0.937 0.950 0.944 0.946

Fire y=+1 0.991 0.993 0.992 0.995 1.000 0.997

Airbag y=+1 0.716 0.536 0.611 0.735 0.569 0.639

Table 3.3.: Precision (P), Recall (R) and F1-score (F) for the positive class of regularized
boosting algorithms applied to the data sets. Highest F1-scores are bolded.
The values are rounded to 3 decimals. In each case the result obtained by the
best parameter setting is shown.

in the RealBoost case. In terms of misclassification, the training error stagnates at
a value significantly above 0 after 30 iterations and so does the generalization per-
formance. However, though higher misclassification error, the regularized method
outperforms the unregularized one clearly, as can be seen by inspecting the F1-scores
in Table 3.2 and 3.3.

Let us now examine the differences between the AdaBoostReg and the WeightBoost
procedures. Table 3.3 summarizes the results of the two regularized boosting meth-
ods. As can be seen, AdaBoostReg performs quite similar to Discrete AdaBoost or
might be slightly better in some cases. However, as the regularization parameters
have been chosen to be as benignly as possible, it turned out that AdaBoostReg shows
its best performance at parameter choices very close to 0 in strongly imbalanced set-
tings, i.e. when the regularization terms in its weight update scheme vanish and
it reduces to the original update. We illustrate this effect in Figure 3.4(a), where
we show AdaBoostReg ’s performance at different operating points (i.e. different as-
signments of the regularization factor C). The figure shows decreasing performance
in increasing choices for C . Indeed, during our experiments it turned out that the
algorithm dramatically suffers from choices of C that are even larger. We explain
this behavior with the equal treatment of both the minority and the majority class.
AdaBoostReg is designed to allow for misclassifications close to the decision boundary
in a certain degree in order to avoid overfitting. The intensity of regularization of
each pattern is determined by means of an estimate of "mistrust", given by its sum
of weights, averaged over previous iterations. In presence of imbalance, however,
due to the bias towards the prevalent class, minority patterns are expected to be
misclassified frequently, leading to exponentially increasing weights. Hence they are
assigned huge mistrust and, as a consequence, loose impact on the training process.
One might say, the minority class is "regularized away".

86 3. Empirical Evaluation

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C

Precision

Recall

F1−Score

(a) AdaBoostReg

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

β

Precision

Recall

F1−Score

(b) WeightBoost

Figure 3.4.: Precision, Recall and F1-score of the original AdaBoostReg and WeightBoost
with at different operating points applied to the cancer data. Different
choices of parameter values of the respective algorithms are spread over the
x-axis.

We know from Table 3.3 that WeightBoost significantly outperforms AdaBoostReg ,
applied to almost all data sets, except the banana data. This is remarkable since it
achieves considerably higher F1-scores than the classical variants in three out of five
data sets as well. We make an attempt to explain the dominance of WeightBoost
over AdaBoostReg as follows: Based on the confidence a training pattern is predicted
with up to a particular iteration, it looses influence on the training process due to
the margin, which is further increased, so its weight is scaled down, as it is in the
AdaBoostReg update scheme. However, in the latter case, weights of such a pattern
may re-increase due to misclassification by subsequent base learners. In WeightBoost,
indeed, this does not happen since the influence of subsequent base learners is scaled
down as well by the γ-function, such that future misclassifications have no more
impact. This can be thought of as a kind of "permanent smooth removal" of samples
from the data that are easy to classify. In an imbalanced setting, this procedure may
lead to removal of large portions of the prevalent class, which is likely to be predicted
with large confidence, such that the class distributions may be rebalanced during the
training process.

Cost-Sensitive Methods

In this section, we study the cost-sensitive extensions of AdaBoost that have been
introduced in the previous chapter. We first examine how cost-sensitivity can be used
in order to predict the minority class more accurately in imbalanced settings and,

3. Empirical Evaluation 87

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) Banana Data, c = 3

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) Cancer Data, c = 3

Figure 3.5.: Oscillating predictions of the AdaC1 algorithm on the (a) banana data and
(b) cancer data.

afterwards, contrast the methods in terms of their predictive performance regarding
concurrent classification goals.

In Chapter 2 we noted that the AdaC1 method by Sun et al. [21] is instable in partic-
ular situations and leads to oscillating classifier output due to the exponential weight
updates, which do not induce a bias towards one of the classes. We illustrated this
behavior by means of a simple toy example. We now demonstrate that AdaC1 is in-
deed instable even when applied to real data. For this we bring in Figure 3.5, which
shows precision, recall and F1-score achieved by AdaC1, which has been run on the
banana and the cancer data. As can be clearly seen, precision and recall start oscillat-
ing reciprocally against each other and do not converge within 200 iterations. This
confirms the results of Masnadi-Shirazi and Vasconcelos [39] and we think that this
is reasons enough in order to omit further analyses of this algorithm.

Numerical Imbalance

For comparing the cost-sensitive algorithms with respect to their ability to counter
imbalanced a-priori distributions of classes, we run the algorithms on each data set
with different cost settings and study if they result in improved classification accuracy
with regard to the minority class.

In each case (except for AdaCost), costs for the prevalent (majority) class are chosen
to be 1, i.e. a "neutral" cost item for which the respective algorithm reduces to its cor-
responding cost-insensitive analog. False-negative costs (costs for the minority class)
are scaled up within a particular interval which has been determined manually in

88 3. Empirical Evaluation

Algorithm AdaC2 AdaC3 CSRA

Data Set P R F P R F P R F
Banana y=+1 0.775 0.870 0.820 0.761 0.876 0.815 0.813 0.835 0.823
IDS y=+1 0.958 0.874 0.909 0.946 0.889 0.912 0.972 0.871 0.911
Cancer y=+1 0.913 0.963 0.937 0.915 0.966 0.939 0.933 0.955 0.944

Fire y=+1 0.999 0.999 0.999 0.998 0.998 0.998 0.996 1.000 0.998
Airbag y=+1 0.672 0.608 0.638 0.659 0.612 0.634 0.677 0.616 0.644

Algorithm CSGA CSLB AdaCost

Data Set P R F P R F P R F
Banana y=+1 0.804 0.852 0.827 0.812 0.840 0.825 0.817 0.828 0.822
IDS y=+1 0.958 0.898 0.922 0.912 0.887 0.890 0.958 0.884 0.914
Cancer y=+1 0.947 0.936 0.941 0.931 0.951 0.940 0.981 0.965 0.925
Fire y=+1 0.998 1.000 0.999 0.997 1.000 0.998 0.995 1.000 0.998
Airbag y=+1 0.704 0.614 0.655 0.704 0.572 0.630 0.500 0.000 0.500

Table 3.4.: Precision (P), Recall (R) and F1-score (F) for the positive class of cost-
sensitive boosting algorithms applied to the data sets. Highest F1-scores are
bolded. The values are rounded to 3 decimals. In each case the result obtained
by the best parameter setting is shown.

advance for each algorithm and data set to ensure that the parameters lie in a sound
range. Since AdaCost does not reduce to original AdaBoost for any parameter assign-
ment, it demands special treatment. In AdaCost, choices of costs are bounded to the
interval [0, 1], where choices close to 0 do not correspond to the intuitive meaning
of "misclassifications are not penalized" since the cost adjustment function β(x) gets
constantly 0.5. Additionally, as a consequence, relative misclassification costs are
upper-bounded which might inhibit determining optimal parameter settings. This
seems counter-intuitive and makes it difficult to define appropriate parameter as-
signments. However, in order to still get an impression of AdaCost’s performance we
rate negative patterns (of the prevalent class) constantly with costs 0 and increment
costs for positive patterns stepwise up to 1.0.

The results of experiments conducted in this context are shown in Table 3.4. The
AdaC1 algorithm is omitted for the reasons mentioned above. Each of the algorithms
achieves higher classification accuracy if compared with its cost-insensitive variant.
Similarly to Table 3.2, the probabilistic methods outperform the "Discrete" variants
slightly. Here, cost-sensitive Gentle AdaBoost (CSGA) and cost-sensitive Real Ad-
aBoost (CSRA) share highest rankings, while CSGA achieves highest F1-scores in four
of five cases and therefore does slightly better than CSRA and CSLB. This coincides
with the empirical results of Li et al. [28].

3. Empirical Evaluation 89

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(a) c = 1.01

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(b) c = 1.02

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(c) c = 1.03

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(d) c = 1.04

10
0

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) c = 1.05

10
0

10
1

10
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) c = 1.06

10
0

10
1

10
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) c = 1.07

10
0

10
1

10
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) c = 1.08

Figure 3.6.: Progress of precision, recall and F1-score for different cost setups of the
AdaC2 algorithm applied to the cancer data.

Figure 3.6 illustrates the effect of using costs on the classification performance re-
garding the positive (rare) class. Shown is the AdaC2 algorithm applied with differ-
ent cost settings on the breast cancer data. In the beginning of the learning phase,
precision is significantly above recall, which we identified as an effect of class imbal-
ance in previous sections. With increasing iterations, however, rare instances gain
influence on the training process and hence tend to be predicted more frequently.
As a result, recall increases at the expense that more negative samples are predicted
to be positive, such that precision suffers from employing costs. As costs are further
increased, this effect gets even amplified and occurs earlier in time, which may have
severe impact on the learning process. If costs are chosen too large, the weights as-
signed to positive patterns dominate the weak hypothesis and negative samples loose
influence on the training process. This leads to an approximately trivial classifier that
almost constantly predicts the positive class, so recall gets close to 1 (or even exactly
1) while precision and F1-score drops down. These observations indicate that costs
indeed are able to alleviate the imbalance of class distributions. However, as can be
seen in Figure 3.6, the methods actually are very sensitive to changes in costs and
therefore require careful tweaking of parameters.

90 3. Empirical Evaluation

Concurrent Classification Goals

In the previous section we studied several cost-sensitive boosting algorithms in terms
of their ability to alleviate the problem of numerically imbalanced class distributions,
which typically causes a classifier to be biased towards the prevalent class. As men-
tioned in Chapter 1, imbalance may also occur as a kind of preference for one of the
classes. Even if a given problem is not intrinsically imbalanced, this kind of uneven
misclassification cost arises in almost every practical application. In this section we
analyze the cost-sensitive boosting approaches with respect to their applicability to
this second kind of imbalance.

We propose the following experimental setup. As depicted in Table 3.1, there is
one class in each experiment, which constitutes the "more important" one. In the
breast cancer data, for instance, the "malignant" class − which at the same time
is the rare class − is the more important one, since in breast cancer detection, we
prefer false alarms over misses. At the same time, however, the number of false-
positive predictions should be minimized. In order to assess how well a particular
algorithm can be employed to accomplish such goals of classification, we determine
a parameter setting for each method, which complies the classification goal, which is
given by an a-priori value in terms of precision and recall. As an example, consider
again the cancer detection data. Since we have no data for testing available, we
perform 5-fold cross validation over 10 runs and average the results. For a parameter
assignment to meet a classification goal "at least 95% of malignant cases must be
correctly predicted", the respective classifier must achieve an average recall of 95%±ε
over all runs and all folds. Having accomplished this goal, the classifier that achieves
lower misclassification error is regarded to be superior. We have set ε= 10−3.

Since the banana are synthetically generated data, the class labels have no particular
semantics, thus we define the positive label y = +1 to be the more important one
in this case. Furthermore, we define 3 classification goals that lie above the recall
values achieved by the cost-insensitive methods, i.e. 85%, 90% and 95%. For the
fire, the airbag and the IDS data we choose only the 100% precision goal, since these
data are already classified with high accuracy by the original boosting variants.

Figure 3.7 shows the decision boundaries learned by the CSRA algorithm on the ba-
nana data set in order to achieve the goals of 85% and 95% recall. As can be seen,
the areas of positive (red) classifier output increasingly grow together so the risk of
misclassifying a positive sample is minimized. Table 3.5 shows the results of this ex-
periment. Although each algorithm succeeds in achieving the demanded goal (except
for the IDS data), it is hard to determine an algorithm that clearly outperforms the
others. From Table 3.5 it can be seen that in some cases, such as in the airbag and
fire detection data, recall dramatically suffers from the high precision requirement.

3. Empirical Evaluation 91

Algorithm AdaC2 AdaC3 CSRA

Data Set P R F P R F P R F

Banana

R=85% 0.802 0.850 0.825 0.811 0.85 0.796 0.793 0.850 0.820
R=90% 0.749 0.900 0.818 0.724 0.90 0.782 0.758 0.901 0.823

R=95% 0.683 0.950 0.794 0.689 0.95 0.761 0.668 0.950 0.783
IDS R=100% - - - - - - - - -

Cancer
R=95% 0.897 0.950 0.923 0.892 0.949 0.920 0.922 0.950 0.935
R=100% 0.350 1.000 0.519 0.369 1.000 0.539 0.396 1.000 0.567

Fire P=100% 1.000 0.617 0.763 1.000 0.524 0.688 1.000 0.779 0.872

Airbag P=100% 1.000 0.242 0.387 1.000 0.235 0.381 1.000 0.247 0.393

Algorithm CSGA CSLB

Data Set P R F P R F

Banana

R=85% 0.807 0.850 0.828 0.794 0.850 0.822
R=90% 0.741 0.900 0.813 0.747 0.901 0.817
R=95% 0.677 0.950 0.790 0.680 0.950 0.793

IDS R=100% - - - - - -

Cancer
R=95% 0.921 0.950 0.935 0.923 0.951 0.937

R=100% 0.401 1.000 0.572 0.389 1.000 0.558
Fire P=100% 1.000 0.537 0.689 1.000 0.607 0.752
Airbag P=100% 1.000 0.217 0.352 1.000 0.265 0.416

Table 3.5.: Precision (P), Recall (R) and F1-score (F) for the positive class of cost-
sensitive boosting algorithms applied to the data sets and different classifi-
cation goals. Highest F1-scores are bolded. The values are rounded to 3
decimals. In each case the result obtained by the best parameter setting is
shown.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) R=85%, c=1.0125

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) R=95%, c=1.0515

Figure 3.7.: Decision boundaries for CSRA applied to the banana data for achieving the
85% and 95% recall goals.

92 3. Empirical Evaluation

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) Precision, Recall, F1-Score

10
0

10
1

10
2

0

1

2

3

4

5

6
x 10

−4

Iterations

Training Error

Test Error

(b) Error Rates

Figure 3.8.: Progress of Precision, Recall, F1-Score and Error Rate of the CSGA algo-
rithm applied to IDS data.

In the IDS data however, none of the algorithms succeeded in achieving the goal
of 100% precision, i.e. no erroneously refused network connections. Indeed, an
interesting effect can be observed when costs are chosen too high. In Figure 3.8 we
show the progress of precision, recall and F1-score as well as the training and test
error rates produced by the CSGA algorithm applied to the IDS data, having set costs
for false-positive predictions as c = 10.

As can be seen, precision and recall rapidly (even exponentially) drop down after
35 iterations. Up to the completion of this thesis, we have no definite theoretical
explanation for this behavior, but we think that it might be related to the exponential
gain of influence of misclassified positive samples, which, at some point in time,
overwhelm the weights of correctly predicted negative samples, though amplified by
a constant cost factor. This might lead to distortions in the training process.

Our results imply that, on the one hand, costs can be used in order achieve a certain
error rate regarding a particular class. However, we can conclude that this goal is
not guaranteed to be reachable by scaling up misclassification costs of the important
class. Indeed, each algorithm succeeded in a second run, when costs of the less
important class have been scaled down. Though intuition might suggest, that, if
we define c = ∞, i.e. infinite misclassification costs for one class, we might obtain
at least a trivial classifier for this particular class, in practice, this is not necessarily
the case. As one reason for that we note that the weights do only have impact on
the individual classifiers and not on the ensemble. That is, if exclusively the weight
updates are modified in order to assign a particular class higher weights, this does
not necessarily induce a bias towards this class on the ensemble. As a trivial example,

3. Empirical Evaluation 93

consider a binary classification problem comprising two points x1 and x2, x1 6= x2, of
different classes and we wish to build a prediction model that never fails on one of
the two. In terms of boosting, costs for either of the two classes can be set arbitrarily
high, but they will not induce any bias to the ensemble decision. However, setting
costs c = 0 for one class will accomplish the goal. This might be another reason why
introducing costs does not necessarily lead to arbitrarily high recall of a particular
class. Hence, this experiment supports the common finding that under-sampling the
less important class is more effective than over-sampling the more important one.

Summary

We conclude this chapter by giving a concise valuation of each algorithm in differ-
ent scenarios, regarding our theoretical and empirical findings. We characterize the
respective algorithms in four categories: the regularization behavior or robustness
against overfitting, respectively, the ability for coping with numerical imbalance and
classification performance with regard to class preferences or uneven misclassifica-
tion costs. Additionally, we assign each algorithm a valuation scoring its predictive
performance in general, where Î means "good" and È means "poor".

The algorithms that are regarded as not being promising due to empirical results or
theoretical analysis are labeled ÈÈÈ . The CSB0-2 algorithms have been ruled out
due to poor performance in early experiments and lack of theoretical motivation, as
described in Chapter 2. Likewise, the AdaC1 algorithm has been proven as being
instable for particular cost settings in this chapter.

We found that AdaCost achieves only very poor performance improvements com-
pared to other cost-sensitive methods, and suffers from counter-intuitive semantics
of parameters, which complicate its practical application. We therefore regard Ada-
Cost to be inferior to the other algorithms.

In almost all of our experiments, the probabilistic variants outperform their "discrete"
analogs. At the head GentleBoost, which robustly yields good classification results
and has a powerful cost-sensitive extension.

WeightBoost, as a regularized boosting method significantly outperforms AdaBoostReg

which dramatically suffers from the imbalance problem, and even exceeded the cost-
sensitive variants in some of our experiments.

94 3. Empirical Evaluation

Algorithm
Criterion

Predictive Power Regularization Imbalance Concurrent Goals

(Discrete) AdaBoost Î È È È

CSB0, CSB1, CSB2 ÈÈÈ ÈÈÈ ÈÈÈ ÈÈÈ

AdaC1 ÈÈÈ ÈÈÈ ÈÈÈ ÈÈÈ

AdaC2 Î È Î Î

AdaC3 ÎÎ È ÎÎ Î

AdaCost ÈÈÈ ÈÈÈ ÈÈÈ ÈÈÈ

RareBoost È È È È

AdaBoostReg Î Î È È

WeightBoost Î ÎÎÎ Î È

RealBoost ÎÎ È È È

GentleBoost ÎÎÎ È È È

LogitBoost ÎÎ È È È

CSRA Î È ÎÎ Î

CSGA Î È ÎÎÎ Î

CSLB Î È Î Î

Table 3.6.: Overview of boosting algorithms considered in Chapter 3.

Chapter 4

Implementation

In context of this thesis a Matlab toolbox has been developed which implements all
of the 14 boosting algorithms that have been discussed in the previous chapters. In
this chapter we briefly outline the implementation and usage of this library.

4.1. Base Classifiers

The following base classifiers have been implemented:

• Decision stump: A Decision stump is a linear discriminant classifier that subdi-
vides the input space into cuboid regions, i.e. its decision boundary corresponds
to a parallel of one coordinate axis. The dimension and variable for each
stump is chosen, such that the weighted training error is minimized. There-
fore, a stump can be regarded as a CART that has only one single terminal
node. Our stump implementation returns an estimate of the weighted proba-
bility Pw(y = 1 | x). If regression is the goal instead of classification (e.g. with
LogitBoost), the output is given by a weighted average over all samples in a
terminal node.

• CART: Classification and Regression Trees can be regarded as the decision
stump algorithm being recursively applied to the data. We use the built-in
Matlab implementation of CART, which returns a weighted probability estimate
Pw(y = 1 | x).

• SVM: First trials with Support-Vector-Machines have been conducted using lib-
SVM [77], but since it is hard to obtain reliable probability estimates from SVM
models, the usage of SVM stubs in the probabilistic boosting versions is not rec-
ommended. However, SVM stubs can be combined with Discrete AdaBoost,
where the base learners only have to provide binary class labels.

96 4. Implementation

4.2. Usage

We briefly describe how the Matlab toolbox is used. The main functionality is em-
bodied within two functions: boost_learn and boost_eval. The signature and
parameters are defined as follows.

boost = boost_learn(X,Y,method, baselearner, M, par1, val1, ...);

which returns a boost structure representing the prediction model that has been
learned. X is an N × p matrix holding N observations of p variables. Y is a column
vector holding the class labels. Parameters:

method − The boosting algorithm to be used. Possible values:

• ’ada_boost’ − (Discrete) AdaBoost
• ’real_boost’ − RealBoost
• ’gentle_boost’ − GentleBoost
• ’logit_boost’ − LogitBoost
• ’ada_c1’ − AdaC1
• ’ada_c2’ − AdaC2
• ’ada_c3’ − AdaC3
• ’ada_cost’ − AdaCost
• ’cs_realboost’ − Cost-Sensitive Real AdaBoost (CSRA)
• ’cs_gentleboost’ − CostSensitive Gentle AdaBoost (CSGA)
• ’cs_logitboost’ − CostSensitive LogitBoost (CSLB)
• ’rare_boost’ − RareBoost
• ’adaboost_reg’ − AdaBoostReg

• ’weight_boost’ − WeightBoost

M − The number of iterations.

baselearner − The base learning algorithm to be used. Currently allowed values
are

• ’stump’ − Decision stump.
• ’cart’ − Classification and Regression Trees (CART) [47].
• ’svm’ − Support-Vector-Machine (SVM) [51].

par1, val1 − Parameter-value pairs. Options for the learning process:

4. Implementation 97

• ’c’ − Cost parameter in case of cost-sensitive methods or regularization pa-
rameter in case of regularized methods, respectively.

• ’cv’ − Performs K-fold cross-validation by stratified sampling. The result is
written to the console. Default is 1 (no validation).

• ’testdata’ − A test data set X and labels Y . The result is written to the
console.

• ’plot’ − Plots a figure of the progression of training and test error and preci-
sion, recall and F1-score over the iterations. Averaged over all folds in case of
cross validation. Default is ’no’.

• ’boundary’ − In case of 2-dimensional problems, plots the decision surface.
Default is ’no’.

• ’v’ − Verbose mode. Default is ’no’.

Y = boost_eval(boost, X, Y);

Returns the predictions, i.e. a column vector Y holding the responses F(x) of the
ensemble.

boost − A predictor model learned by the boost_learn procedure.

X − An N × p matrix holding the observations, where each row is a data point and
each column represents a variable.

Y − [optional] Column vector holding class labels. If true class labels are provided,
the corresponding error, precision, recall and F1-score are written to the console.

Optionally, there is a function show_decision_boundary(boost,X,Y), which can
be used independently in order to visualize the output of a boosting classifier applied
to a a two dimensional problem.

Example

Let us demonstrate the usage of our Matlab toolbox for boosting by means of a simple
example. The following code generates two slightly overlapping gaussian clusters of
two classes, and applies the original Discrete AdaBoost algorithm, using decision
stumps as base learners.

N = 1000;

98 4. Implementation

−3 −2 −1 0 1 2 3 4 5 6

−2

−1

0

1

2

3

4

5

6

Figure 4.1.: Decision boundary of the code example.

M = 50;
X=randn(N,2);
X=[X;randn(N,2)+3];
Y(1:N,1) = 1;
Y(N+1:2*N,1) = -1;
boost = boost_learn(X,Y,’adaboost’,’stump’,M);

A call of

show_decision_boundary(boost,X,Y);

displays the corresponding scatter plot shown in Figure 4.1.

Chapter 5

Conclusions

The presence of class imbalance in machine learning, i.e. learning from rare or
skewed classes, and/or the presence of uneven costs of making different kinds of
errors represents a challenging topic for the machine learning community, which at-
tracted a great deal of attention during the recent decade. Traditional standard clas-
sifier learning algorithms typically assume balanced class distributions. One of the
most popular approaches in the area of ensemble learning is boosting. Boosting has
been proven as being an efficient and powerful meta-algorithm for converting a weak
classifier, which has only poor individual predictive performance, into a strong clas-
sifier with arbitrarily low training error. However, the original boosting algorithms
have severe drawbacks in imbalanced problems as they only consider the overall ac-
curacy, which is not class-specific.

This thesis investigates boosting algorithms for learning in the presence of imbal-
anced classes and uneven misclassification costs. In particular, we have addressed
the AdaBoost algorithm by Freund and Schapire [6]. A large number of extensions
to AdaBoost have been proposed in literature in order to tackle the imbalance prob-
lem. Among these, introducing cost items in the error function is the prevalent ap-
proach.

We have discussed the cost-sensitive extensions of AdaBoost theoretically and have
approved our findings by empirical evaluation. We identified the AdaC1 algorithm
by Sun et al. [21] as being instable, and we theoretically have shown that introduc-
ing exponential cost items into the weight updates is not recommended. We found
that exponential cost setups, in contrast to multiplicative ones, fail in inducing an
effective bias towards the respective class and hence such approaches seem not to be
promising. We have confirmed the findings of previous empirical studies, that one of
the earliest approaches in cost-sensitive boosting, namely AdaCost, yields only subop-
timal classification performance. We additionally gave a theoretical explanation for
this.

100 5. Conclusions

A boosting approach countering skewed classes, that abstains from using explicit cost
items, RareBoost [32], has been exposed as being a special case of the well-known
RealBoost algorithm by Friedman et al. [11]. We provide proofs for RareBoost being
even identical to RealBoost if decision stumps are used as base classifiers, and for
disproving the common presumption that RareBoost is instable in particular situa-
tions.

We have studied the behavior of the AdaBoost algorithm in presence of noise and
overlapping class distributions, and confirmed its tendency to overfit, which has been
undetected for a considerable time after AdaBoost’s inception, and we have reviewed
the common assumption that this is due to its particularly aggressive strategy towards
misclassifications during the learning phase. We found that a soft-margin solution
AdaBoostReg by Rätsch [37] particularly suffers from imbalance since it assigns equal
"mistrust" to patterns of both classes, further reducing the influence of the minority
class. The WeightBoost algorithm by Liu et al. [38] is a kind of mixture-of-experts

system, which succeeds in rebalancing class distributions by removing patterns that
are easy to classify permanently from the training set.

We have approved our theoretical findings by an empirical study using several data
sets from real-world applications as well as publicly available benchmark data. The
algorithms under consideration have been discussed and compared in terms of their
ability to improve predictive performance in the presence of rare classes and tackling
the problem of uneven misclassification costs. Our empirical findings are summa-
rized in Table 3.6, which gives a qualitative assessment of each algorithm considered
in this work. We found that algorithms inducing a bias towards the important class
by means of a multiplicative cost factor in the weight update scheme, such as AdaC2,

CSRA, CSGA and CSLB, significantly outperform their competitors. Furthermore, a
tendency could be detected that the probabilistic variants of boosting are superior to
their discrete analogs. The experiments using highly skewed IDS (Intrusion Detection
System) data show that assigning higher costs to the more important class cannot be
used for implementing uneven misclassification costs in general. Instead, scaling
costs down for the less important class yields better results. Since the reweighting
mechanism of AdaBoost can be regarded as a smooth form of resampling, these re-
sults support the common finding that under-sampling is superior to over-sampling
[13, 16, 17].

As a subject for future investigations combining the concept of soft-margin regular-
ization and cost-sensitivity appears to be an attractive line of research. As pointed
out, we identified the AdaBoostReg algorithm as being sensitive to class imbalance
since its mistrust estimate treats patterns of both classes equally. Here, the mistrust
estimate should differentiate between the classes.

5. Conclusions 101

In this work, only binary classification problems have been considered. Extensions to
multiclass problems remain an open issue. For the original AdaBoost procedure such
extensions exist, but have been only rarely discussed in context of cost-sensitivity and
imbalance [21, 33].

Appendix A

Proofs

In this Appendix proofs are provided of lemmata that can be found in literature.
However, in most sources the proofs are kept very tight, so we think it is expedient to
supply the reader with more detailed reformulations of these for better re-enacting
the concepts presented in this work.

Lemma 4 The normalization factor

Zm =

N∑

n=1

w(n)
m

e−ynαm fm(xn)

is minimized at

αm =
1

2
ln

1− εm

εm

, with εm =

N∑

n=1

w(n)
m

1yn 6= fm(xn)
.

Proof

Zm =

N∑

n=1

w(n)
m

e−ynαm fm(xn) =

M∑

m=1

w(n)
m

�
1+ yn fm(xn)

2
e−αm +

1− yn fm(xn)

2
eαm

�

=
1

2
e−αm

M∑

m=1

w(n)
m

�
1+ yn fm(xn)

�

+
1

2
eαm

M∑

m=1

w(n)
m

�
1− yn fm(xn)

�

104 A. Proofs

Setting the derivative w.r.t. αm to zero yields

1

2
eαm

M∑

m=1

w(n)
m

�
1− yn fm(xn)

�
=

1

2
e−αm

M∑

m=1

w(n)
m

�
1+ yn fm(xn)

�

αm+ ln
M∑

m=1

w(n)
m

�
1− yn fm(xn)

�
= −αm ln

M∑

m=1

w(n)
m

�
1+ yn fm(xn)

�

2αm = ln
M∑

m=1

w(n)
m

�
1+ yn fm(xn)

�

− ln
M∑

m=1

w(n)
m

�
1− yn fm(xn)

�

αm =
1

2
ln

∑M

m=1 w(n)
m

�
1+ yn fm(xn)

�

∑M

m=1 w(n)
m

�
1− yn fm(xn)

�

αm =
1

2
ln

1+
∑M

m=1 w(n)
m

yn fm(xn)

1−
∑M

m=1 w(n)
m

yn fm(xn)

αm =
1

2
ln

1− εm

εm

, with εm =

N∑

n=1

w(n)
m

1yn 6= fm(xn)

�

Lemma 5 A Newton-like step towards the minimum of the objective function

J(Fm−1(x) +αm fm(x)) =❊
�

e−y(Fm−1(x)+αm fm(x)) | x
�

is given by

fm(x) =

�
+1 if Pw(y = +1 | x)≥ Pw(y = −1 | x)
−1 if Pw(y = +1 | x)< Pw(y = −1 | x)

.

Proof We follow the proof of Friedman et al. [11]. A Newton update step towards
the minimum of a convex objective function J(x) is given by minimization of the
second order Taylor expansion of J(x) around the current estimate of its minimum
x t:

x t+1 = x t + argmin
∆x

�

J(x t) + J ′(x t)∆x +
1

2
J ′′(x t)∆x2

�

. (A.1)

A. Proofs 105

In our case, e−yF(x) constitutes the objective function and the current estimate is given
by Fm−1(x). For fixed αm, expanding to second order around fm(x) = 0 yields

J(Fm−1(x) +αm fm(x)) = ❊

�

e−y(Fm−1(x)+αm fm(x)) | x
�

≈ ❊

�

e−yFm−1(x)
�

1− yαm fm(x) + y2α2
m

fm(x)
2/2 | x

��

= ❊

�

e−yFm−1(x)(1− yαm fm(x) +α
2
m
/2) | x

�

,

since y2 = 1 and fm(x)
2 = 1, such that the "∆" to be added to Fm−1(x) is given by

fm(x) = argmin
f

❊w

�

1− yαm f (x) +α2
m
/2 | x

�

, (A.2)

where we have defined w = w(x , y) = e−yFm−1(x) and the notation ❊w(· | x) refers to
the weighted conditional expectation, which is defined as

❊w(g(x , y) | x) =
❊(w(x , y)g(x , y) | x)

❊(w(x , y) | x)
. (A.3)

Since all other terms in (A.2) are constant, for any αm > 0, (A.2) is minimized when

❊w(y fm(x) | x) = fm(x) · Pw(y = 1 | x)− fm(x) · Pw(y = −1 | x)

is maximized. This is the case if fm(x) meets

fm(x) =

�
+1 if Pw(y = +1 | x)≥ Pw(y = −1 | x)
−1 if Pw(y = +1 | x)< Pw(y = −1 | x)

.

�

Lemma 6 The objective function

J
�

Fm−1(x) + fm(x)
�
= ❊

�

e−y(Fm−1(x)+ fm(x)) | x
�

is minimized at

fm(x) =
1

2
ln

Pw(y = +1 | x)

Pw(y = −1 | x)
.

Proof Following Friedman et al. [11]:

J
�

Fm−1(x) + fm(x)
�
= ❊

�

e−y(Fm−1(x)+ fm(x)) | x
�

= ❊

�

e−yFm−1(x)e−y fm(x) | x
�

= ❊

�

e−yFm−1(x)1y=1e− fm(x)+ e−yFm−1(x)1y=−1e fm(x) | x
�

= e− fm(x)❊

�

e−yFm−1(x)1y=1 | x
�

+ e fm(x)❊

�

e−yFm−1(x)1y=−1 | x
�

= e− fm(x)❊w

�

1y=1 | x
�

+ e fm(x)❊w

�

1y=−1 | x
�

,

106 A. Proofs

where we have defined w = w(x , y) = e−yFm−1(x), and ❊w(· | x) refers to the weighted
conditional expectation defined in (2.35). Setting the derivative with respect to fm(x)

to zero yields

e fm(x)❊w

�

1y=−1 | x
�

= e− fm(x)❊w

�

1y=1 | x
�

fm(x) + ln❊w

�

1y=−1 | x
�

= − fm(x) + ln❊w

�

1y=1 | x
�

2 · fm(x) = ln❊w

�

1y=1 | x
�

− ln❊w

�

1y=−1 | x
�

fm(x) =
1

2
ln
❊w

�

1y=1 | x
�

❊w

�

1y=−1 | x
�

fm(x) =
1

2
ln

Pw(y = +1 | x)

Pw(y = −1 | x)

�

Appendix B

Evaluation Data

This appendix provides detailed results obtained by conducting the experiments de-
scribed in Chapter 3. For a selection of algorithms and data sets, we provide the
progression of precision, recall, F1-score and/or training and test error over the iter-
ations. In case of two-dimensional data the decision boundaries of the classifier at the
end of the training in combination with the training patterns are also plotted. For the
algorithms driven by a parameter, results of 10 different parameter values are shown,
that lie in an interval where the respective algorithm performs best (s.a. Chapter 3).
An additional precision-recall-F-score (PRF) curve summarizes the performance of an
algorithm regarding different parameter settings.

Banana Data Set

Iterations/Base Classifiers: 200 CART
Evaluation Mode: Test Set Evaluation averaged over 10 Subsets.

108 B. Evaluation Data

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) AdaBoost

10
0

10
1

10
2

0

0.01

0.02

0.03

0.04

0.05

0.06

Iterations

Training Error

Test Error

(b) AdaBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) RealBoost

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(d) RealBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) GentleBoost

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(f) GentleBoost

Figure B.1.: Cost-insensitive algorithms on banana data.

B. Evaluation Data 109

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) LogitBoost

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

# Iterations	

Training Error

Test Error

(b) LogitBoost

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) AdaBoost

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d) RealBoost

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(e) GentleBoost

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(f) LogitBoost

Figure B.2.: Cost-insensitive algorithms on banana data (ctd.).

110 B. Evaluation Data

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Decision boundary, β = 0.15

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.7

0.75

0.8

0.85

0.9

0.95

1

β

Precision

Recall

F1−Score

(b) PRF for different β , best at β = 0.15

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(c) β = 0.05

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(d) β = 0.10

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(e) β = 0.15

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(f) β = 0.20

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(g) β = 0.25

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(h) β = 0.30

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(i) β = 0.35

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(j) β = 0.40

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

Training Error

Test Error

(k) β = 0.45

Figure B.3.: WeightBoost on banana data.

B. Evaluation Data 111

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Decision boundary, C = 0.01

0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46
0.7

0.75

0.8

0.85

0.9

0.95

1

X: 1

Y: 0.8322

C

Precision

Recall

F1−Score

(b) PRF for different C, best at C = 0.01

10
0

10
1

10
2

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(c) C = 0.01

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(d) C = 0.06

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(e) C = 0.11

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(f) C = 0.16

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(g) C = 0.21

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(h) C = 0.26

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(i) C = 0.31

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(j) C = 0.36

10
0

10
1

10
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iterations

Training Error

Test Error

(k) C = 0.41

Figure B.4.: AdaBoostReg on banana data: Due to regularization, training error stops
decreasing at a particular level and test error does not increase.

112 B. Evaluation Data

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Decision boundary, C = 1.008

1.004 1.008 1.012 1.016 1.020 1.024 1.028 1.032 1.036 1.040
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

Precision

Recall

F1−Score

(b) PRF for different C, best at C = 1.008

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) C = 1.004

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(d) C = 1.008

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) C = 1.012

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) C = 1.016

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) C = 1.020

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) C = 1.024

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(i) C = 1.028

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(j) C = 1.032

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(k) C = 1.036

Figure B.5.: CSGA on banana data: Recall (regarding the positive (red) class) increases
with increasing costs to the expense of worse precision.

Airbag Deployment / Crash Data

Iterations/Base Classifiers: 200 CART
Evaluation Mode: Test Set Evaluation averaged over 10 Subsets.

114 B. Evaluation Data

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) AdaBoost

10
0

10
1

10
2

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iterations

Training Error

Test Error

(b) AdaBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) RealBoost

10
0

10
1

10
2

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

−3

Iterations

Training Error

Test Error

(d) RealBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) GentleBoost

10
0

10
1

10
2

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
x 10

−3

Iterations

Training Error

Test Error

(f) GentleBoost

Figure B.6.: Cost-insensitive algorithms on crash data.

B. Evaluation Data 115

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) LogitBoost

10
0

10
1

10
2

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iterations

Training Error

Test Error

(b) LogitBoost

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(c) AdaBoost

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(d) RealBoost

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(e) GentleBoost

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(f) LogitBoost

Figure B.7.: Cost-insensitive algorithms on crash data (ctd.): Due to large areas of over-
lapping class distributions, there is only poor improvement of classification
accuracy over 100 iterations.

116 B. Evaluation Data

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Decision boundary, β = 0.10

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 2

Y: 0.639

β

Precision

Recall

F1−Score

(b) PRF for different β , best at β = 0.10

10
0

10
1

10
2

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iterations

Training Error

Test Error

(c) β = 0.05

10
0

10
1

10
2

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Iterations

Training Error

Test Error

(d) β = 0.10

10
0

10
1

10
2

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iterations

Training Error

Test Error

(e) β = 0.15

10
0

10
1

10
2

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Iterations

Training Error

Test Error

(f) β = 0.20

10
0

10
1

10
2

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Iterations

Training Error

Test Error

(g) β = 0.25

10
0

10
1

10
2

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Iterations

Training Error

Test Error

(h) β = 0.30

10
0

10
1

10
2

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iterations

Training Error

Test Error

(i) β = 0.35

10
0

10
1

10
2

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Iterations

Training Error

Test Error

(j) β = 0.40

10
0

10
1

10
2

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iterations

Training Error

Test Error

(k) β = 0.45

Figure B.8.: WeightBoost on crash data.

B. Evaluation Data 117

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Decision boundary, C = 0.0003

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 3

Y: 0.6105

C

Precision

Recall

F1−Score

(b) PRF for different C, best at C = 0.0003

10
0

10
1

10
2

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

−3

Iterations

Training Error

Test Error

(c) C = 0.0001

10
0

10
1

10
2

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iterations

Training Error

Test Error

(d) C = 0.0002

10
0

10
1

10
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

−3

Iterations

Training Error

Test Error

(e) C = 0.0003

10
0

10
1

10
2

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

−3

Iterations

Training Error

Test Error

(f) C = 0.0004

10
0

10
1

10
2

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iterations

Training Error

Test Error

(g) C = 0.0005

10
0

10
1

10
2

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iterations

Training Error

Test Error

(h) C = 0.0006

10
0

10
1

10
2

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

−3

Iterations

Training Error

Test Error

(i) C = 0.0007

10
0

10
1

10
2

2

2.5

3

3.5

4

4.5

5
x 10

−3

Iterations

Training Error

Test Error

(j) C = 0.0008

10
0

10
1

10
2

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

−3

Iterations

Training Error

Test Error

(k) C = 0.0009

Figure B.9.: AdaBoostReg on crash data.

118 B. Evaluation Data

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) Decision boundary, k = 1.012

1.000 1.004 1.008 1.012 1.016 1.020 1.024 1.028 1.032 1.036 1.040
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

(b) PRF for different k, best at k = 1.012

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) k = 1.000

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(d) k = 1.004

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) k = 1.008

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) k = 1.012

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) k = 1.016

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) k = 1.020

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(i) k = 1.024

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(j) k = 1.028

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(k) k = 1.032

Figure B.10.: CSGA on crash data: If costs are chosen too high, F1-score drops rapidly
after a certain number of iterations.

B. Evaluation Data 119

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) AdaC2

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b) CSRA

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(c) CSGA

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(d) CSLB

Figure B.11.: Achieving classification goal of 100% precision on crash data by AdaC2,
CSRA, CSGA and CSLB: There are no false-positive cases in the area of
overlapping class distributions.

B. Evaluation Data 121

Fire Detection Data

Iterations/Base Classifiers: 500 decision stumps
Evaluation Mode: 5-fold cross validation, averaged over 10 runs.

122 B. Evaluation Data

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) AdaBoost

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(b) AdaBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) RealBoost

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(d) RealBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) GentleBoost

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(f) GentleBoost

Figure B.12.: Cost-insensitive algorithms on fire data.

B. Evaluation Data 123

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) LogitBoost

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(b) LogitBoost

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

x 10−3

−4

−3

−2

−1

0

1

2

3

x 10−3

(c) AdaBoost

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

x 10−3

−4

−3

−2

−1

0

1

2

3

x 10−3

(d) RealBoost

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

x 10−3

−4

−3

−2

−1

0

1

2

3

x 10−3

(e) GentleBoost

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

x 10
−3

−4

−3

−2

−1

0

1

2

3

x 10
−3

(f) LogitBoost

Figure B.13.: Cost-insensitive algorithms on fire data (ctd.).

124 B. Evaluation Data

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

x 10
−3

−4

−3

−2

−1

0

1

2

3

x 10
−3

(a) Decision boundary, β = 0.10

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.985

0.99

0.995

1

X: 2

Y: 0.9973

β

Precision

Recall

F1−Score

(b) PRF for different β , best at β = 0.10

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(c) β = 0.05

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(d) β = 0.10

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(e) β = 0.15

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(f) β = 0.20

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(g) β = 0.25

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(h) β = 0.30

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(i) β = 0.35

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(j) β = 0.40

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(k) β = 0.45

Figure B.14.: WeightBoost on fire data.

B. Evaluation Data 125

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

x 10
−3

−4

−3

−2

−1

0

1

2

3

x 10
−3

(a) Decision boundary, C = 0.01

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

C

Precision

Recall

F1−Score

(b) PRF for different C, best at C = 0.01

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(c) C = 0.01

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(d) C = 0.02

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(e) C = 0.03

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(f) C = 0.04

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(g) C = 0.05

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(h) C = 0.06

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(i) C = 0.07

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(j) C = 0.08

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3
x 10

−3

Iterations

Training Error

Test Error

(k) C = 0.09

Figure B.15.: AdaBoostReg on fire data.

126 B. Evaluation Data

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

x 10−3

−4

−3

−2

−1

0

1

2

3

x 10−3

(a) Decision boundary, k = 0.976

1.000 0.996 0.992 0.988 0.984 0.980 0.976 0.972 0.968 0.964 0.960
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

k

Precision

Recall

F1−Score

(b) PRF for different k, best at k = 0.976

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(c) k = 1.000

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(d) k = 0.996

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(e) k = 0.992

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(f) k = 0.988

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(g) k = 0.984

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(h) k = 0.980

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(i) k = 0.976

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(j) k = 0.972

10
0

10
1

10
2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Precision

Recall

F1−Score

(k) k = 0.968

Figure B.16.: CSGA on fire data.

Network Intrusion Detection (IDS) Data

Iterations/Base Classifiers: 500 decision stumps
Evaluation Mode: Test Set Evaluation averaged over 20 Subsets.

128 B. Evaluation Data

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) AdaBoost

10
0

10
1

10
2

0

1

2

x 10
−4

Iterations

Training Error

Test Error

(b) AdaBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) RealBoost

10
0

10
1

10
2

0

1

2

x 10
−4

Iterations

Training Error

Test Error

(d) RealBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) GentleBoost

10
0

10
1

10
2

0

1

2

3

x 10
−4

Iterations

Training Error

Test Error

(f) GentleBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) LogitBoost

10
0

10
1

10
2

0

1

2

x 10
−4

Iterations

Training Error

Test Error

(h) LogitBoost

Figure B.17.: Cost-insensitive algorithms on IDS data.

B. Evaluation Data 129

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
−

Precision

Recall

F1−Score

(a) PRF for different c−, best at c− = 0.9

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) c+ = 1, c− = .1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) c+ = 1, c− = .2

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(d) c+ = 1, c− = .3

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) c+ = 1, c− = .4

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) c+ = 1, c− = .5

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) c+ = 1, c− = .6

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) c+ = 1, c− = .7

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(i) c+ = 1, c− = .8

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(j) c+ = 1, c− = .9

Figure B.18.: AdaC1 on IDS data

130 B. Evaluation Data

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
−

Precision

Recall

F1−Score

(a) PRF for different c−, best at c− = 0.9

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) c+ = 1, c− = .1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) c+ = 1, c− = .2

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(d) c+ = 1, c− = .3

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) c+ = 1, c− = .4

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) c+ = 1, c− = .5

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) c+ = 1, c− = .6

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) c+ = 1, c− = .7

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(i) c+ = 1, c− = .8

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(j) c+ = 1, c− = .9

Figure B.19.: AdaC2 on IDS data

B. Evaluation Data 131

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
−

Precision

Recall

F1−Score

(a) PRF for different c−, best at c− = 0.9

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) c+ = 1, c− = .1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) c+ = 1, c− = .2

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(d) c+ = 1, c− = .3

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) c+ = 1, c− = .4

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) c+ = 1, c− = .5

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) c+ = 1, c− = .6

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) c+ = 1, c− = .7

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(i) c+ = 1, c− = .8

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(j) c+ = 1, c− = .9

Figure B.20.: AdaC3 on IDS data

132 B. Evaluation Data

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
−

Precision

Recall

F1−Score

(a) PRF for different c−, best at c− = 0.9

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) c+ = 1, c− = .1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) c+ = 1, c− = .2

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(d) c+ = 1, c− = .3

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) c+ = 1, c− = .4

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) c+ = 1, c− = .5

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) c+ = 1, c− = .6

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) c+ = 1, c− = .7

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(i) c+ = 1, c− = .8

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(j) c+ = 1, c− = .9

Figure B.21.: AdaCost on IDS data

Wisconsin Breast Cancer Data

Iterations/Base Classifiers: 500 decision stumps
Evaluation Mode: 5-fold cross-validation averaged over 10 runs.

134 B. Evaluation Data

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(a) AdaBoost

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

−3

Iterations

Training Error

Test Error

(b) AdaBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) RealBoost

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

Iterations

Training Error

Test Error

(d) RealBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) GentleBoost

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Iterations

Training Error

Test Error

(f) GentleBoost

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) LogitBoost

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Iterations

Training Error

Test Error

(h) LogitBoost

Figure B.22.: Cost-insensitive Boosting algorithms on cancer data.

B. Evaluation Data 135

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C

Precision

Recall

F1−Score

(a) PRF for different C, best at C = 0.00

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) C = 0.00

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) C = 0.05

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(d) C = 0.10

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) C = 0.15

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) C = 0.20

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) C = 0.25

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) C = 0.30

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(i) C = 0.35

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(j) C = 0.40

Figure B.23.: AdaBoostReg on cancer data.

136 B. Evaluation Data

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

β

Precision

Recall

F1−Score

(a) PRF for different β , best at β = 0.60

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(b) β = 0.10

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(c) β = 0.20

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(d) β = 0.30

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(e) β = 0.40

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(f) β = 0.50

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(g) β = 0.60

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(h) β = 0.70

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(i) β = 0.80

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Precision

Recall

F1−Score

(j) β = 0.90

Figure B.24.: WeightBoost on cancer data.

B. Evaluation Data 137

1.00 1.001 1.002 1.003 1.004 1.005 1.006 1.007 1.008 1.009 1.010
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

k

Precision

Recall

F1−Score

(a) PRF for different k, best at k = 1.001

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(b) k = 1.000

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(c) k = 1.001

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(d) k = 1.002

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(e) k = 1.003

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(f) k = 1.004

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(g) k = 1.005

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(h) k = 1.006

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(i) k = 1.007

10
0

10
1

10
2

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Precision

Recall

F1−Score

(j) k = 1.008

Figure B.25.: CSGA on cancer data.

Bibliography

[1] Japkowicz, N. (editor), Proceedings of the AAAI’2000 Workshop on Learning from

Imbalanced Data Sets, AAAI Tech Report, WS-00-05, AAAI, 2000.

[2] Chawla, N.V. and Japkowicz, N. and Kolcz, A. (editors), Proceedings of the

ICML’2003 Workshop on Learning from Imbalanced Data Sets, 2003.

[3] Chawla, N. and Japkowicz, N. and Kolcz, A. (editors), SIGKDD Explorations,

Special Issue on Class Imbalances, SIGKDD Explorations, 6(1), 2004.

[4] Dietterich, T. and Margineantu, D. and Provost, F. and Turney, P., editors, Pro-

ceedings of the ICML’2000 Workshop on Cost-sensitive Learning, 2000.

[5] He, H. and Garcia, E. A.: Learning from Imbalanced Data, IEEE Transactions on

Knowledge and Data Engineering, vol. 21, no. 9, 2009.

[6] Freund, Y. and Schapire, R.E.: Experiments with a new Boosting Algorithm,
Proceedings of the Thirteenth International Conference on Machine Learning, pp.
148-156, 1996.

[7] Freund, Y. and Schapire, R.E.: A Decision-Theoretic Generalization of On-Line
Learning and Application to Boosting, Journal of Computer and System Sciences,
vol. 55, no. 1, pp. 119-139, 1997.

[8] Schapire, R.E.: The boosting approach to machine learning: An overview, LEC-

TURE NOTES IN STATISTICS, pp. 149-172, Springer, 2003.

[9] Schapire, R. and Freund, Y.: A Short Introduction to Boosting, Journal of

Japanese Society for Artificial Intelligence, vol. 14, no. 5, pp. 771-780, 1999.

[10] Schapire, R. and Freund, Y. and Bartlett, P. and Lee, W.S.: Boosting the Mar-
gin: A new Explanation for the Effectiveness of Voting Methods, The Annals of

Statistics, vol. 26, no. 2, pp. 1651-1686, 1998.

140 Bibliography

[11] Friedman, J. and Hastie, T. and Tibshirani, R.: Additive logistic regression: a
statistical view of boosting. The annals of statistics, vol. 28, no. 2, pp. 337-407,
2000.

[12] Breiman, L.: Random Forests, Machine Learning, vol. 45, no. 1, pp. 5-32,
Springer, 2001.

[13] Japkowicz, N.: Learning from imbalanced data sets: A comparison of vari-
ous strategies, Learning from imbalanced data sets: The AAAI Workshop 10-15.
Menlo Park, CA: AAAI Press, Technical Report WS-00-05, 2000.

[14] Davis, J. and Goadrich, M.: The Relationship Between Precision-Recall and ROC
Curves, Proceedings of the 23rd International Conference on Machine Learning,
pp. 233-240, 2006.

[15] Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Data Mining
Researchers, Technical Report HPL-2003-4, HP Labs, 2003.

[16] Maloof, M.A.: Learning when data sets are Imbalanced and when costs are
unequal and unknown, ICML-2003 Workshop on Learning from Imbalanced Data

Sets II, 2003.

[17] Drummond, C. and Holte, R.: C4.5, class imbalance, and cost sensitivity: why
under-sampling beats over-sampling, Workshop on Learning from Imbalanced

Data sets II, held in conjunction with ICML’2003, 2003.

[18] Breiman, L.: Bagging Predictors, Technical Report 421, Department of Statistics,
University of California, 1994.

[19] Chawla, N.V. and Japkowicz, N. and Kotcz, A.: Editorial: Special Issue on Learn-
ing from Imbalanced Data Sets, ACM SIGKDD Explorations Newsletter, vol. 6, no.
1, pp. 1-6, 2004.

[20] Weiss, G.M.: Mining with Rarity: A unifying Framework, SIGKDD Explorations,
vol. 6, no. 1, 2004.

[21] Sun, Y. and Kamel, M.S. and Wong, A.K.C. and Wang, Y.: Cost-sensitive boosting
for classification of imbalanced data, Pattern Recognition, vol. 40, no. 12, pp.
3358-3378, Elsevier, 2007.

[22] Dietterich, T.: Ensemble methods in machine learning, Multiple classifier sys-
tems, pp. 1-15, Springer, 2000.

Bibliography 141

[23] Polikar, R.: Ensemble Based Systems in Decision Making, IEEE Circuits and

Systems Magazine, vol. 6, no. 3, pp. 21-45, 2006.

[24] Kotsiantis, S. and Kanellopoulos, D. and Pintelas, P.: Handling imbalanced
datasets: A review, GESTS International Transactions on Computer Science and

Engineering, vol. 30, no. 1, pp. 25-36, 2006.

[25] Kamel, M. and Wanas, N.: Data dependence in Combining Classifiers, Proc.

4th Int. Workshop on Multiple Classifier Systems, in Lecture Notes in Computer
Science vol. 2709, pp. 1-14, 2003.

[26] Džeroski, S. and Ženko, B.: Is combining classifiers with stacking better than
selecting the best one?, Machine Learning, vol. 54, no. 3, pp. 255-273, Springer,
2004.

[27] Duin, R.: The combining classifier: To train or not to train?, International Con-

ference on Pattern Recognition, vol. 16, pp. 765-770, 2002.

[28] Li, Q. and Mao, Y. and Wang, Z. and Xiang, W.: Cost-Sensitive Boosting: Fitting
an Additive Asymmetric Logistic Regression Model, ACML2009, Lecture Notes in

Artificial Intelligence, Springer, 2009.

[29] Guo, H. and Viktor, H.L.: Learning from imbalanced data sets with boosting
and data generation: the DataBoost-IM approach. ACM SIGKDD Explorations

Newsletter - Special issue on learning from imbalanced datasets, Volume 6, Issue
1, June 2004.

[30] Fan, W. and Stolfo, S.J. and Zhang, J. and Chan, P.K.: AdaCost: misclassifi-
cation cost-sensitive boosting, MACHINE LEARNING-INTERNATIONAL WORK-

SHOP, pp. 97-105, 1999.

[31] Schapire, R.E. and Singer, Y.: Improved boosting algorithms using confidence-
rated predictions, Machine Learning Journal, vol. 37, no. 3, pp. 297-336,
Springer, 1999.

[32] Joshi, M. and Kumar, V. and Agarwal, R.: Evaluating boosting algorithms to
classify rare classes: Comparison and improvements, First IEEE International

Conference on Data Mining, pp. 257-264, 2001.

[33] Song, J. and Lu, X. and Wu, X.: An improved AdaBoost algorithm for unbal-
anced classification data, Proceedings of the 6th international conference on Fuzzy

systems and knowledge discovery, August 14-16, 2009.

142 Bibliography

[34] Ting, K.M.: A comparative study of cost-sensitive boosting algorithms, Pro-

ceedings of the Seventeenth International Conference on Machine Learning, pp.
983-990, 2000.

[35] Chawla, N.V. and Lazarevic, A. and Hall, L.O. and Bowyer, K.W.: SMOTEBoost:
Improving prediction of the minority class in boosting, Knowledge Discovery in

Databases, pp. 107-119, Springer, 2003.

[36] Ting, K.M. and Zheng, Z.: Boosting Trees for Cost-sensitive Classifications, Pro-

ceedings of the First International Conference on Discovery Science, pp. 244-255,
Springer, 1998.

[37] Rätsch, G. and Onoda, T. and Müller, K.R.: Soft margins for AdaBoost, Machine

Learning, vol. 42, no. 3, pp. 287-320, Springer, 2001.

[38] Liu, Y. and Si, L. and Carbonell, J..: A new boosting algorithm using
input-dependent regularizer, The Twentieth Conference on Machine Learning

(ICML’03), 2003.

[39] Masnadi-Shirazi, H. and Vasconcelos, N.: Asymmetric Boosting, Proceedings of

the 24th international conference on Machine learning, ACM, pp. 619, 2007.

[40] Hastie, T. and Tibshirani, R. and Friedman, J.: The Elements of Statistical
Learning - Data Mining, Inference, and Prediction, Springer Series in Statistics,
2nd Edition, Springer, 2009.

[41] Bishop, C.: Pattern Recognition and Machine Learning, Springer, 2006.

[42] Kuncheva, L. I.: Combining Pattern Classifiers - Methods and Agorithms, John

Wiley & Sons, Inc., 2004.

[43] Lewis, D. and Gale, W.: Training Test Classifiers by Uncertainty Sampling, Pro-

ceedings of the Seventeeth Annual International ACM SIGIR Conference on Re-

search and Development in Informaion, pp. 73-79, 1998.

[44] Tan, P. and Steinbach, M. and Kumar, V.: Introduction to Data Mining, Addison-

Wesley, 2006.

[45] Hanson, L. K. and Salamon, P.: Neural Network Ensembles, IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp.993-1991, 1990.

[46] Efron, B. and Tibshirani, R.: An Introduction to the Boostrap, Chapman & Hall,

NY, 1993.

Bibliography 143

[47] Breiman, L.: Classification and Regression Trees, Chapman & Hall, 1984.

[48] Domingos, P.: Why does Bagging work? A Bayesian Account and its implica-
tions, Proceedings of the third International Conference on Knowledge Discovery

and Data Mining, pp. 155-158, 1997.

[49] Breiman, L.: Pasting Small Votes for Classification in Large Databases and On-
Line, Machine Learning, vol. 36, no. 1, pp. 85-103, 1999.

[50] Rudin, C. and Schapire, R.E. and Daubechies, I.: Boosting Based on a Smooth
Margin, Learning Theory, pp. 502-517, Springer, 2004.

[51] Cortes, C. and Vapnik, V.: Support Vector Networks, Machine Learning, vol. 20,
pp. 273-297, 1995.

[52] Boser, B. and Guyon, I. and Vapnik V.: A Training Algorithm for Optimal Margin
Classifiers, Fifth Annual ACM Workshop on COLT, pp. 144-152, ACM Press, 1992.

[53] Weiss, G. and Provost, F.: The effect of class distribution on classifier learning:
an empirical study, Rutgers Univ, 2001.

[54] Weiss, G. and Provost, F.: Learning when Training Data are Costly: The Effect of
Class Distribution on Tree Induction, Journal for Artificial Intelligence Research,
vol. 19, pp. 315-354, 2003.

[55] Kubat, M. and Matwin, S.: Addressing the Curse of Imbalanced Training Sets:
One Sided Selection, Proceedings of the Fourteenth International Conference on

Machine Learning, Morgan Kaufmann, pp. 179-186, 1997.

[56] Chawla, N. V. and Hall, L. O. and Bowyer, K. W. and Kegelmeyer, W. P.: SMOTE:
Synthetic Minority Oversampling TEchnique, Journal of Artificial Intelligence

Research, vol. 16, pp. 321-357, 2002.

[57] Raskutti, B. and Kowalczyk, A.: Extreme Rebalancing for SVMs: A Case Study,
SIGKDD Explorations, vol. 6, no. 1, pp. 60-69, 2004.

[58] Schapire, R.: The Strength of Weak Learnability, Machine Learning, vol. 5, no.
2, pp. 197-227, 1990.

[59] Blumer, A. and Ehrenfeucht, A. and Haussler, D. and Warmuth, M.K.: Learn-
ability and the Vapnik-Chervonenkis Dimension, Journal of the ACM, vol. 36,
no. 4, pp. 929-965, 1989.

144 Bibliography

[60] Vapnik, V.N. and Chervonenkis, A.Y.: On Uniform Convergence of the Frequen-
cies of Events to their Pobebility, Theory of Probability and its Applications, vol.
16, no. 2, pp. 264-280, 1971.

[61] Breiman, L.: Arcing Classifiers, The Annals of Statistics, vol. 26, no. 3, pp. 801-
849, 1998.

[62] Krieger, A. and Long, C. and Wyner, A.: Boosting Noisy Data, International

Conference on Machine Learning, pp. 274-281, 2001.

[63] Quinlan, J.: Boosting First-Order Learning, Lecture Notes in Computer Sciences,
pp. 143-155, Springer, 1996.

[64] Grove, A.J. and Schuurmans, D.: Boosting in the Limit: Maximizing the Mar-
gin of Learned Ensembles, Proceedings of the National Conference on Artificial

Intelligence, pp. 692-699, 1998.

[65] Drucker, H. and Cortes, C.: Boosting Decision Trees, Advances in Neural Infor-

mation Processing Systems, vol. 8, pp. 479-485, 1996.

[66] Quinlan, J.R.: Bagging, Boosting and C4.5, Programs for Machine Learning,
Morgan Kaufmann, 1993.

[67] Rieck, K.: Machine Learning for Application-Layer Intrusion Detection, Disser-
tation, 2009.

[68] Nusser, S. and Otte, C. and Hauptmann, W. and Leirich, O. and Krätschmer,
M. and Kruse, R.: Machine Learning of Verifiable Classifiers for Autonomous
Control of Safetly-related Systems, at - Automatisierungstechnik, vol. 57, no. 3,
pp. 138-145, 2009.

[69] Mangasarian, O.L. and Wolberg, W.H.: Cancer diagnosis via linear program-
ming, SIAM News, vol. 23, no. 5, pp. 1-18, 1990.

[70] Frank, A. and Asuncion, A.: UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml, University of California, Irvine, School of
Information and Computer Sciences, 2010.

[71] Zhu, X., Wu, X.: Class Noise vs. Attribute Noise: A quantitative Study, Artificial

Intelligence Review, Springer, 2004.

[72] Press, W. and Flannery, B. and Teukolsky, S. and Vetterling, W.: Numerical
Recipes in C, Cambridge University Press, Second Edition, 1992.

Bibliography 145

[73] Valiant, L.G.: A Theory of the Learnable, Communications of the ACM, vol. 27,
no. 11, pp. 1134-1142, 1984.

[74] Fawcett, T.: An Introduction to ROC Analysis, Pattern Recognition Letters, vol.
27, no. 8, pp. 861-874, Elsevier, 2006.

[75] Sochman, J. and Matas, J.: AdaBoost, Lecture Slides, Center for Machine
Perception, Czech Technical University, Prague,
http://cmp.felk.cvut.cz/~sochmj1/adaboost_talk.pdf, (accessed

on 10/30/2010).

[76] Wang, Z. and Fang, C. and Ding, X.: Symmetric Real AdaBoost, 19th Interna-

tional Conference on Pattern Recognition (ICPR), pp. 1-4, 2009.

[77] Chang, C.C. and Chih-Jen, L.: LIBSVM, http://www.csie.ntu.edu.tw/ cjlin/lib-
svm/

[78] Quinlan, J.R.: Induction of Decision Trees, Machine Learning, vol. 1, no. 1, pp.
81-106, Springer, 1086.

[79] Sun, Y. and Kamel, M.S. and Wang, Y.: Boosting for Learning Multiple Classes
with Imbalanced Class Distribution, Sixth International Conference on Data Min-

ing, ICDM’06, pp. 592-602, 2006.

http://cmp.felk.cvut.cz/~sochmj1/adaboost_talk.pdf

	Introduction
	Ensemble Based Systems
	The Class Imbalance Problem
	Related Work
	Thesis Contributions

	A Survey of Boosting
	General Properties
	Boosting Variants
	Cost-sensitive Boosting
	Boosting with Imbalanced Classes
	Regularized Boosting
	Summary

	Empirical Evaluation
	Evaluation Setup and Data
	Experiments
	Results

	Implementation
	Base Classifiers
	Usage

	Conclusions
	Proofs
	Evaluation Data
	Bibliography

