

Robot Programming with Lisp 8. Coordinate Transformations, TF, ActionLib

Arthur Niedzwiecki

Institute for Artificial Intelligence University of Bremen

December 8th, 2022

Coordinate Transformations **3D** Geometry Basics Rotation Representations Homogeneous Transformations

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			2

Coordinate Transformations **3D** Geometry Basics

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			3

\$ roscore

\$ rosrun interactive_marker_tutorials basic_controls

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp

3D Geometry Basics Coordinates of a point

• What is a point in space? How do we represent it?

3D Geometry Basics Coordinates of a point

- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			6

3D Geometry Basics Coordinates of a point

- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)
- Reference frame $_{global}P = (0.1, 0.1, 0.0)$

 Coordinate Transformations
 TF Library
 ActionLib
 Organizational

 Arthur Niedzwiecki
 Robot Programming with Lisp
 7

3D Geometry Basics Coordinates of a point

- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)
- Reference frame $_{global}P = (0.1, 0.1, 0.0)$
- Right-hand rule: $(X, Y, Z) \rightarrow (R, G, B)$

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			8

3D Geometry Basics Coordinates of an object

• How do we represent an object in 3D?

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			9

3D Geometry Basics Coordinates of an object

- How do we represent an object in 3D?
- What is an object?

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			10

3D Geometry Basics Coordinates of an object

- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement

3D Geometry Basics Coordinates of an object

- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement
- Solution: describe points on object relative to an object frame

 $_{global}P_1 = (0.1, 0.1, 0.0)$ $_{hox}P_1 = (0.0, 0.0, 0.0)$

Coordinate Transformations TF Library Action lib Organizational Arthur Niedzwiecki Robot Programming with Lisp December 8th, 2022

3D Geometry Basics Coordinates of an object

TF Library

- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement
- Solution: describe points on object relative to an object frame

 $_{global}P_1 = (0.1, 0.1, 0.0)$ $_{box}P_1 = (0.0, 0.0, 0.0)$

 What do we need to describe the object frame? ActionLib
 Organizational

Arthur Niedzwiecki December 8th, 2022

Coordinate Transformations

3D Geometry Basics Coordinates of a frame

- box has a position and orientation relative to global
- position & orientation together are called pose
- $_{global} T_{box}$ is a transformation that transforms poses from box to global
- How do we represent position and orientation?

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			14

Coordinate Transformations

3D Geometry Basics Rotation Representations Homogeneous Transformation

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			15

Rotation Representations

There are 4 common ways to describe rotations:

- euler angles
- rotation matrix
- axis-angle
- quaternion

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			16

• Describes orientation using 3 angles: roll (x-rotation), pitch (y-rotation), yaw (z-rotation)

Rotations are applied in sequence.
 What is the sequence is defined through a convention.
 There are many conventions, most common are z-y-x, x-y-z and z-x-z

Arthur Niedzwiecki December 8th, 2022

Coordinate Transformations

Robot Programming with Lisp 17

Organizational

+ easy to interpret

- has a Gimbal lock problem
- not suited for interpolation
- there are many possible conventions, always make sure you know which one is used!
- \rightarrow only useful for user interaction

Euler Angles Gimbal lock

Loss of one degree of freedom, e.g. after 90° pitch (in this case red axis).

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 19

Rotation Matrix

- 3 x 3 matrix R
- is an orthogonal matrix, i.e. det(R) = 1 and $R^{-1} = R^T$
- this means, all raw (and correspondingly column) vectors are unit vectors, orthogonal to each other

• example:
$$R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
 rotates about z-axis by θ

Arthur Niedzwiecki December 8th, 2022

Rotation Matrix Interpretation

- example: $R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$ rotates about z-axis by θ
- $_{global}R_{box} = \begin{pmatrix} 0.88 & -0.48 & 0 \\ 0.48 & 0.88 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- columns are axis of box in the global coordinate frame

Coordinate Transformations

TF Library

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 21

Rotation Matrix Pros/Cons

- + easiest to do math with
 - rotate a vector with rotation matrix using matrix multiplication
 - rotation matrices can be combined using matrix multiplication
- + easy to construct rotation matrix from 3 vectors
- + can be extended to include translation in 4x4 matrix
- uses 9 numbers to describe 3 degrees of freedom
- matrix operations result in buildup of rounding error, you might have to normalize often
- not suitable for interpolation

- any rotation can be represented as right hand rotation by θ degree about a unit vector e
- angle can be encoded in length of the vector

$$\begin{pmatrix} e_{x} \\ e_{y} \\ \langle e_{z} \end{pmatrix}, \theta \to \begin{pmatrix} \theta e_{x} \\ \theta e_{y} \\ \theta e_{z} \end{pmatrix}$$

• can be rotated by rotation matrices using matrix multiplication

Coordinate Transformations

TF Library

Organizational

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 23

- math can get unstable when θ is close to 0 or $\pi,$ because there are infinitively many possible axis
- represents rotation by θ differently from $\theta+2\pi,$ but it is the same rotation
- + easy interpolation, just scale the angle, but take into account that $\theta=\theta+2\pi$
- $\rightarrow\,$ more useful when describing rotation differences/changes instead of orientations, found in ROS messages like Twist or Accel.

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki December 8 th 2022		R	bot Programming with Lisp 24

• q = (x, y, z, w)

- number system introduced by Hamilton as an extension of complex numbers, only use case is representation of rotations
- only unit quaternions are used to represent rotations
- can be interpreted as an improved version of axis-angle

•
$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$
, $\alpha \to \begin{pmatrix} a_x \cdot \sin(\alpha/2) \\ a_y \cdot \sin(\alpha/2) \\ a_z \cdot \sin(\alpha/2) \\ \cos(\alpha/2) \end{pmatrix}$

Coordinate Transformations

TF Library

ActionLib

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 25

+ in contrast to axis-angle, stable when angle is close to zero and $\boldsymbol{\pi}$

- + removes the $\theta = \theta + 2\pi$ problem from axis-angle
- + more compact representation than rotation matrices
- + best for interpolation (slerp algorithm)
- difficult to interpret
- $\rightarrow\,$ most useful for interpolation and describing orientations ROS standard for representing poses

Rotations representations Conclusion

- use euler angles only on an interface level
- use axis-angle or quaternion for rigid body dynamics
- use quaternions when storing/sending orientation information or for interpolation
- else use rotation matrices for easy mathematical operations

Coordinate Transformations

3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			28

- 4 × 4 matrix to represent pose transformations
- ${}_{a}T_{b}$ means transform from frame b to a, i.e.: ${}_{a}T_{b} \cdot {}_{b}P = {}_{a}P$
- _aT_b is the same as _aP_b, i.e. pose of origin of b in a
- combined transformation:
 - $_{c}T_{b}\cdot _{b}T_{a}=_{c}T_{a}$
- invertible: ${}_{b}T_{a}^{-1} = {}_{a}T_{b}$
- but ${}_{b}T_{a}^{-1} \neq {}_{b}T_{a}^{T}$

ActionLib

Organizational

Arthur Niedzwiecki December 8th, 2022

• How do we do
$$_{c}T_{b} \cdot _{b}P = _{c}P$$
?

• Append 1 to point *P*, before matrix multiplication:

$$\begin{pmatrix} r_{0,0} & r_{0,1} & r_{0,2} & x \\ r_{1,0} & r_{1,1} & r_{1,2} & y \\ r_{2,0} & r_{2,1} & r_{2,2} & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{0,0}p_x + r_{0,1}p_y + r_{0,2}p_z + x \cdot 1 \\ r_{1,0}p_x + r_{1,1}p_y + r_{1,2}p_z + y \cdot 1 \\ r_{2,0}p_x + r_{2,1}p_y + r_{2,2}p_z + z \cdot 1 \\ 0p_x + 0p_y + 0p_z + 1 \cdot 1 \end{pmatrix}$$

Coordinate Transformations

TF Library

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 30

• to transform $_{box}P_2$ into the global frame $_{global}P_2$, multiply with $_{global}T_{box}$

•
$$_{global}P_2 =_{global} T_{box} \cdot_{box} P_2$$

- what is the pose of P_A in global coordinate frame: $_{global}P_A$?
- choose frame where it is the easiest to express a pose
- $_{box}P_A = (0.05, 0.15, 0.05, 1.0)$
- $_{global}P_A =_{global} T_{box} \cdot_{box} P_A$

$$_{box} T_A = \begin{pmatrix} & 0.05 \\ & 0.15 \\ & 0.05 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}_{box}T_{A} = \begin{pmatrix} 0 & -1 & 0 & 0.05 \\ 0 & 0 & -1 & 0.15 \\ 1 & 0 & 0 & 0.05 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Points in ROS Lisp

```
Point in 3D: \{x, y, z\}
```

3D-Vector

```
CL-TRANSFORMS> (make-3d-vector 1 2 3)
#<3D-VECTOR (1.0d0 2.0d0 3.0d0)>
CL-TRANSFORMS> (describe *)
#<3D-VECTOR (1.0d0 2.0d0 3.0d0)>
[standard-object]
Slots with :INSTANCE allocation:
X = 1.0d0
Y = 2.0d0
Z = 3.0d0
CL-TRANSFORMS> (y **)
2.0d0
```

```
Object in 3D: {position, orientation}Position: {x, y, z}Orientation: axis-angle / rotation matrix / quaternions / ...Coordinate TransformationsTF LibraryActionLibOrganizational
```

Arthur Niedzwiecki December 8th, 2022

Rotations in ROS Lisp

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 36

Poses in ROS Lisp

cl-transforms:pose

```
CL-TRANSFORMS> (setf p (make-pose
(make-3d-vector 1 2 0)
(make-quaternion 0 0 0 1)))
#<POSE
#<3D-VECTOR (1.0d0 2.0d0 0.0d0)>
#<QUATERNION (0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (origin p)
#<3D-VECTOR (1.0d0 2.0d0 0.0d0)>
CL-TRANSFORMS> (orientation p)
#<QUATERNION (0.0d0 0.0d0 1.0d0)>
```


Transformations in ROS Lisp

Transformations

```
CL-TRANSFORMS> (setf W (make-identity-pose))
#<POSE
  #<3D-VECTOR (0.0d0 0.0d0 0.0d0)>
   #<QUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (setf O (make-pose
                         (make-3d-vector 2 0 0)
                         (make-quaternion 0 0 0 1))
#<POSE
  #<3D-VECTOR (2.0d0 0.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (transform
                (transform-inv (pose->transform 0)
                p)
#<POSE
   #<3D-VECTOR (-1.0d0 2.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
```

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki		l	Robot Programming with Lisp
December 8 th , 2022			38

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			39

Coordinate Transformations

TF Library

- Robots consist of many *parts* aka *links*
- Each link has its own coordinate frame
- Links change their position over time (including the robot base)
- Sensors measurements are defined in their own frame
- Example: transformations from camera to hand coordinates are needed for grasping objects

ActionLib

Organizational

niversität Bremen

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			41

TurtleBot Coordinate Frames

Coordinate Transformations

TF Library

ActionLib

Image courtesy: Yujin Robot Organizational

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 42

Tracking Coordinate Frame Changes

- Transforms are produced by different nodes:
 - Localization node (AMCL, gmapping) for finding robot's pose in map
 - Odometry node (base driver) for tracking movement since initial pose
 - Joint positions (robot controllers and robot state publisher)
- Many publishers, many consumers
- Distributed system, redundancy issues, ...

• TF: a coordinate frame tracking system

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			43

What is tf?

transform Library – a distributed coordinate frame tracking system

- Standardized protocol for publishing transforms to tf listeners
- Looking up and calculating transforms by asking tf listeners
- tf listener can be either local Lisp program or global tf buffer
- default global tf buffer is TF2's buffer_server
- ROS API for looking up, calculating and sending transforms
- Transforms are published on /tf and /tf_static topics: /tf
 - for all transforms that change over time
 - publish with a fixed rate, even if transform didn't change

/tf_static

- assumed to be static, thus never outdated
- useful for reducing redundancy
- only publish once with latched flag

Coordinate Transformations

TF Library

Organizational

Launch the turtlesim TF demo:

\$ roslaunch turtle_tf turtle_tf_demo.launch

• view_frames

- tf_echo
- tf_monitor
- static_transform_publisher
- RViz

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki		R	obot Programming with Lisp
December 8 th , 2022			46

Utilities rosrun tf view_frames

Generate a TF tree graph:

- TF tree consists of frames (links) and the transforms between them.
- Each transform is cached (10 secs default caching time)
- Transforms must form a proper tree (no cycles)
- Can have disconnected trees, but you can only ask for transforms inside of the same tree

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki		F	Robot Programming with Lisp
December 8 th , 2022			47

\$ rosrun tf tf_echo <source_frame> <target_frame>

static_transform_publisher

- rosrun tf2_ros static_transform_publisher x y z yaw pitch roll frame_id child_frame_id or rosrun tf2_ros static_transform_publisher x y z qx qy qz qw frame_id child_frame_id
- publishes _{global} T_{box}

static_transform_publisher

\$ rosrun tf2_ros static_transform_publisher 0.1 0.1 0 3.14 0 0 global box

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			49

• rosrun tf tf_monitor

f monitor

\$ rosrun tf tf_monitor
RESULTS: for all Frames

Frames:

Frame: turtle1 published by /turtle1_tf_broadcaster Average Delay: 0.000382455 Max Delay: 0... Frame: turtle2 published by /turtle2_tf_broadcaster Average Delay: 0.000267847 Max Delay: 0...

All Broadcasters: Node: /turtle1_tf_broadcaster 64.6996 Hz, Average Delay: 0.000382455 Max Delay: 0.000991178 Node: /turtle2_tf_broadcaster 64.7127 Hz, Average Delay: 0.000267847 Max Delay: 0.00133464

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			50

tf2_msgs/TFMessage

```
geometry_msgs/TransformStamped[]
                                  transforms
 • frame id: name of the
                                   std msgs/Header header
                                    uint32 seq
   published frame
                                    time stamp
                                    string frame id
 • child frame id has to
                                   string child_frame_id
   be an existing frame
                                   geometry_msgs/Transform transform
                                    geometry_msgs/Vector3 translation

    stamp: time when this

                                      float64 x
   transform is valid
                                      float64 v
                                      float64 z
 • child frame id Tframe id
                                    geometry msgs/Ouaternion rotation
                                      float64 x
                                      float64 v
                                      float.64 z
                                      float64 w
Coordinate Transformations
                                               Action lib
                                                                 Organizational
                             TF Library
```

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 51

- tf buffers transforms for X seconds
- possible to lookup transforms from the past
- tf interpolates frames
- tf does not extrapolate! it can't see into the future

cl_tf TF> (roslisp:start-ros-node "lisp_node") TF> (defparameter *transform-listener* nil) TF> (defun init-listener () (unless (eq (roslisp:node-status) :RUNNING) (roslisp:start-ros-node "turtle_follower")) (setf *transform-listener* (make-instance 'transform-listener))) TF> (lookup-transform *transform-listener* "turtle1" "turtle2") #<STAMPED-TRANSFORM FRAME-ID: "turtle1", CHILD-FRAME-ID: "turtle2", STAMP: 1.4169d9</pre>

#<3D-VECTOR (0.0d0 0.0d0 0.0d0)>

#<QUATERNION (0.0d0 0.0d0 -0.5401331068059835d0 0.8415796022552d0)>>

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 53

\$ rosrun rviz rviz

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki		I	Robot Programming with Lisp
December 8 th , 2022			55

Interface to define and execute goals:

Illustration source: ROS actionlib wiki

 Coordinate Transformations
 TF Library
 ActionLib
 Organizational

 Arthur Niedzwiecki
 Robot Programming with Lisp
 S6
 S6

Action Protocol

Relies on ROS topics to transport messages.

Action Interface

Illustration source: ROS actionlib wiki

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			57

_ _ _

Universität Bremen

Action Definitions

- Similar to messages and services.
- Definition: request + result + feedback
- Defined in your_package/action/*.action
- Example: actionlib_tutorials/Fibonacci.action

```
# goal definition
int32 order
```

```
# result definition
int32[] sequence
```

```
# feedback
int32[] sequence
```

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			58

• Gilbert Strang's MIT course on linear algebra (free access):

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

• Also check out the 3D-Poses tutorial in cram-teaching:

https://github.com/cram2/cram_teaching/blob/main/lectures/tutorials/02-Lesson_02_CRAM_Basics.ipynb

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			60

Assignment 7 Update

• Update repository:

\$ git pull

- Merge/Edit docker-compose-headless.yml to use image version 1.2
- Compare your changes with those on GitHub

https://github.com/cram2/cram_teaching/blob/main/docker-compose-headless.yml

• Launch the container

\$ docker-compose -f docker-compose-headless.yml up

Attach to container

\$ docker exec -it cram_headless /bin/bash

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki		F	Robot Programming with Lisp
December 8 th , 2022			61

Assignment 7 Setup workspace

• Go to assignment 7 workspace

\$ cd /home/lectures/robot_programming_with_lisp/07_turtle_chase/ros_ws/

• Build workspace

\$ catkin_make

• Add source-command at the bottom of /root/.bashrc

\$ nano /root/.bashrc

source /home/lectures/robot_programming_with_lisp/07_turtle_chase/ros_ws/devel/setup.bash

• Check if the workspace is sourced with

\$ echo \$CMAKE_PREFIX_PATH

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			62

Start byobu: \$ byobu

- F2 new terminal
- CTRL-D kill current terminal
- F3 previous terminal
- F4 next terminal
- F7 unlock scroll function. Hit ENTER to end.
- F8 rename current terminal

See also the Byobu Cheat Sheet:

https://cheatography.com/mikemikk/cheat-sheets/byobu-keybindings/pdf_bw/

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			63

Showcase turtle chase

Task for assignment 7 looks like this \$ roslaunch turtle_tf turtle_tf_demo.launch except that turtle1 automatically moves in random shapes

- Assignment points: 7 points
- Due: 14.12.22
- TF Lisp tutorial:

http://wiki.ros.org/cl_tf/Tutorials/clTfBasicUsage

• ActionLib Lisp tutorial (Section 1 and 2, not 3):

http://wiki.ros.org/actionlib_lisp/Tutorials/actionlibBasicUsage

• Next class: 15.12, 14:15

Coordinate Transformations	TF Library	ActionLib	Organizational
Arthur Niedzwiecki			Robot Programming with Lisp
December 8 th , 2022			65

Thanks for your attention!

Coordinate Transformations

TF Library

ActionLib

Organizational

Arthur Niedzwiecki December 8th, 2022 Robot Programming with Lisp 66