

Robot Programming with Lisp 8. Coordinate Transformations, TF, ActionLib

Gayane Kazhoyan (and other members of IAI)

Institute for Artificial Intelligence University of Bremen

December 6th, 2018

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		F	lobot Programming with Lisp
December 6 th , 2018			2

Coordinate Transformations 3D Geometry Basics

Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			3

\$ roscore

\$ rosrun interactive_marker_tutorials basic_controls

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

Robot Programming with Lisp

3D Geometry Basics Coordinates of a point

• What is a point in space? How do we represent it?

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of	IAI)	Rob	ot Programming with Lisp
December 6 th , 2018			5

3D Geometry Basics Coordinates of a point

- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members o	f IAI)	Rob	ot Programming with Lisp
December 6 th 2018			6

3D Geometry Basics Coordinates of a point

- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)
- Reference frame $_{global}P = (0.1, 0.1, 0.0)$

 Coordinate Transformations
 TF Library
 ActionLib
 Organizational

 Gayane Kazhoyan(and other members of IAI)
 Robot Programming with Lisp
 7

 December 6th 2018
 7
 7

3D Geometry Basics Coordinates of a point

- What is a point in space? How do we represent it?
- Cartesian coordinates (x, y, z)
- Reference frame $_{global}P = (0.1, 0.1, 0.0)$
- Right-hand rule: $(X, Y, Z) \rightarrow (R, G, B)$

3D Geometry Basics Coordinates of an object

• How do we represent an object in 3D?

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members o	f IAI)	Rob	ot Programming with Lisp
December 6 th . 2018			9

3D Geometry Basics Coordinates of an object

- How do we represent an object in 3D?
- What is an object?

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of	IAI)	Rob	ot Programming with Lisp
December 6 th , 2018			10

3D Geometry Basics Coordinates of an object

Ρ, P, Global Ρ

- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement

3D Geometry Basics Coordinates of an object

- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement
- Solution: describe points on object relative to an object frame

 $_{global}P_1 = (0.1, 0.1, 0.0)$ $_{box}P_1 = (0.0, 0.0, 0.0)$

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Robot Programming with Li	
December 6 th , 2018			12

3D Geometry Basics Coordinates of an object

Coordinate Transformations

TF Library

- How do we represent an object in 3D?
- What is an object?
- Problem: all vertices change coordinates during movement
- Solution: describe points on object relative to an object frame

 $_{global}P_1 = (0.1, 0.1, 0.0)$ $_{box}P_1 = (0.0, 0.0, 0.0)$

• What do we need to describe the object frame?

ActionLib

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

Robot Programming with Lisp 13

3D Geometry Basics Coordinates of a frame

- *box* has a position and orientation relative to *global*
- *position* & *orientation* together are called *pose*
- _{global} T_{box} is a transformation that transforms poses from box to global
- How do we represent position and orientation?

 Coordinate Transformations
 TF Library
 ActionLib
 Organizational

 Gayane Kazhoyan(and other members of IAI)
 Robot Programming with Lisp
 14

 December 6th, 2018
 14
 14

Coordinate Transformations

3D Geometry Basics Rotation Representations Homogeneous Transformation

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		F	lobot Programming with Lisp
December 6 th , 2018			15

Rotation Representations

There are 4 common ways to describe rotations:

- euler angles
- rotation matrix
- axis-angle
- quaternion

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)	Rob	oot Programming with Lisp
December 6 th , 2018			16

• Describes orientation using 3 angles: roll (x-rotation), pitch (y-rotation), yaw (z-rotation)

Rotations are applied in sequence.
 What is the sequence is defined through a convention.
 There are many conventions, most common are z-y-x, x-y-z and z-x-z

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			17

+ easy to interpret

- has a Gimbal lock problem
- not suited for interpolation
- there are many possible conventions, always make sure you know which one is used!
- \rightarrow only useful for user interaction

Euler Angles Gimbal lock

Loss of one degree of freedom, e.g. after 90° pitch (in this case red axis).

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

Robot Programming with Lisp 19

- 3 x 3 matrix R
- is an orthogonal matrix, i.e. det(R) = 1 and $R^{-1} = R^{T}$
- this means, all raw (and correspondingly column) vectors are unit vectors, orthogonal to each other

• example:
$$R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
 rotates about z-axis by θ

Rotation Matrix Interpretation

- example: $R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$ rotates about z-axis by θ
- $_{global}R_{box} =$ $\begin{pmatrix} 0.88 & -0.48 & 0 \\ 0.48 & 0.88 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- columns are axis of box in the global coordinate frame

Coordinate Transformations

TF Library

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

Rotation Matrix Pros/Cons

- + easiest to do math with
 - rotate a vector with rotation matrix using matrix multiplication
 - rotation matrices can be combined using matrix multiplication
- + easy to construct rotation matrix from 3 vectors
- + can be extended to include translation in 4x4 matrix
- uses 9 numbers to describe 3 degrees of freedom
- matrix operations result in buildup of rounding error, you might have to normalize often
- not suitable for interpolation

- any rotation can be represented as right hand rotation by θ degree about a unit vector e
- angle can be encoded in length of the vector

$$\begin{pmatrix} e_{x} \\ e_{y} \\ e_{z} \end{pmatrix}, \theta \to \begin{pmatrix} \theta e_{x} \\ \theta e_{y} \\ \theta e_{z} \end{pmatrix}$$

• can be rotated by rotation matrices using matrix multiplication

Coordinate Transformations

TF Library

ActionLib

Organizational

Gayane Kazhoyan(and other members of IAI) December 6th. 2018

Robot Programming with Lisp 23

- math can get unstable when θ is close to 0 or $\pi,$ because there are infinitively many possible axis
- represents rotation by θ differently from $\theta+2\pi,$ but it is the same rotation
- + easy interpolation, just scale the angle, but take into account that $\theta=\theta+2\pi$
- \rightarrow more useful when describing rotation differences/changes instead of orientations, found in ROS messages like Twist or Accel.

• q = (x, y, z, w)

- number system introduced by Hamilton as an extension of complex numbers, only use case is representation of rotations
- only unit quaternions are used to represent rotations
- can be interpreted as an improved version of axis-angle

•
$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$
, $\alpha \to \begin{pmatrix} a_x \cdot \sin(\alpha/2) \\ a_y \cdot \sin(\alpha/2) \\ a_z \cdot \sin(\alpha/2) \\ \cos(\alpha/2) \end{pmatrix}$

Coordinate Transformations

TF Library

ary

ActionLib

Gayane Kazhoyan(and other members of IAI) December 6th, 2018 Robot Programming with Lisp 25

+ in contrast to axis-angle, stable when angle is close to zero and π

- + removes the $\theta=\theta+2\pi$ problem from axis-angle
- + more compact representation than rotation matrices
- + best for interpolation (slerp algorithm)
- difficult to interpret
- $\rightarrow\,$ most useful for interpolation and describing orientations ROS standard for representing poses

Rotations representations Conclusion

- use euler angles only on an interface level
- use axis-angle or quaternion for rigid body dynamics
- use quaternions when storing/sending orientation information or for interpolation
- else use rotation matrices for easy mathematical operations

Coordinate Transformations

3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Ro	bot Programming with Lisp
December 6 th , 2018			28

- 4 × 4 matrix to represent pose transformations
- ${}_{a}T_{b}$ means transform from frame b to a, i.e.: ${}_{a}T_{b} \cdot {}_{b}P = {}_{a}P$
- _aT_b is the same as _aP_b, i.e. pose of origin of b in a
- combined transformation:
 - $_{c}T_{b}\cdot _{b}T_{a}=_{c}T_{a}$
- invertible: ${}_{b}T_{a}^{-1} = {}_{a}T_{b}$
- but ${}_{b}T_{a}^{-1} \neq {}_{b}T_{a}^{T}$

Coordinate Transformations

TF Library

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

ActionLib

Organizational

• How do we do
$$_{c}T_{b} \cdot _{b}P = _{c}P$$
?

• Append 1 to point *P*, before matrix multiplication:

$$\begin{pmatrix} r_{0,0} & r_{0,1} & r_{0,2} & x \\ r_{1,0} & r_{1,1} & r_{1,2} & y \\ r_{2,0} & r_{2,1} & r_{2,2} & z \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} r_{0,0}p_x + r_{0,1}p_y + r_{0,2}p_z + x \cdot 1 \\ r_{1,0}p_x + r_{1,1}p_y + r_{1,2}p_z + y \cdot 1 \\ r_{2,0}p_x + r_{2,1}p_y + r_{2,2}p_z + z \cdot 1 \\ 0p_x + 0p_y + 0p_z + 1 \cdot 1 \end{pmatrix}$$

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI	l)	Robo	ot Programming with Lisp
December 6 th , 2018			30

• to transform $_{box}P_2$ into the global frame $_{global}P_2$, multiply with $_{global}T_{box}$

•
$$_{global}P_2 =_{global} T_{box} \cdot_{box} P_2$$

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			31

- what is the pose of *P_A* in global coordinate frame: *global P_A*?
- choose frame where it is the easiest to express a pose
- $_{box}P_A = (0.05, 0.15, 0.05, 1.0)$
- $_{global}P_A =_{global} T_{box} \cdot_{box} P_A$

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Rob	oot Programming with Lisp
December 6 th , 2018			32

$$_{box} T_A = \begin{pmatrix} & 0.05 \\ & 0.15 \\ & 0.05 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			33

$$_{box} T_A = egin{pmatrix} 0 & -1 & 0 & 0.05 \ 0 & 0 & -1 & 0.15 \ 1 & 0 & 0 & 0.05 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Ro	bot Programming with Lisp
December 6 th , 2018			34

Points in ROS Lisp

```
Point in 3D: \{x, y, z\}
```

3D-Vector

```
CL-TRANSFORMS> (make-3d-vector 1 2 3)
#<3D-VECTOR (1.0d0 2.0d0 3.0d0)>
CL-TRANSFORMS> (describe *)
#<3D-VECTOR (1.0d0 2.0d0 3.0d0)>
[standard-object]
Slots with :INSTANCE allocation:
X = 1.0d0
Y = 2.0d0
Z = 3.0d0
CL-TRANSFORMS> (y **)
2.0d0
```

```
      Object in 3D: {position, orientation}

      Position: {x, y, z}

      Orientation: axis-angle / rotation matrix / quaternions / ...

      Coordinate Transformations

      TF Library

      ActionLib

      Organizational
```

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

Rotations in ROS Lisp

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

Poses in ROS Lisp

cl-transforms:pose

```
CL-TRANSFORMS> (setf p (make-pose
(make-3d-vector 1 2 0)
(make-quaternion 0 0 0 1)))
#<POSE
#<3D-VECTOR (1.0d0 2.0d0 0.0d0)>
#<QUATERNION (0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (origin p)
#<3D-VECTOR (1.0d0 2.0d0 0.0d0)>
CL-TRANSFORMS> (orientation p)
#<QUATERNION (0.0d0 0.0d0 1.0d0)>
```

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			37

Universität Bremen

Transformations in ROS Lisp

Transformations

```
CL-TRANSFORMS> (setf W (make-identity-pose))
#<POSE
   #<3D-VECTOR (0.0d0 0.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (setf O (make-pose
                         (make-3d-vector 2 0 0)
                         (make-quaternion 0 0 0 1)))
#<POSE
   #<3D-VECTOR (2.0d0 0.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (transform
                (transform-inv (pose->transform 0))
                p)
#<POSE
   #<3D-VECTOR (-1.0d0 2.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
```

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Robot	Programming with Lisp
December 6 th , 2018			38

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Robe	ot Programming with Lisp
December 6 th , 2018			39

Coordinate Transformations

TF Library

ActionLib

Organizational

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

- Robots consist of many *parts* aka *links*
- Each link has its own coordinate frame
- Links change their position over time (including the robot base)
- Sensors measurements are defined in their own frame
- Example: transformations from camera to hand coordinates are needed for grasping objects

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of	IAI)	Rob	oot Programming with Lisp
December 6 th , 2018			41

TurtleBot Coordinate Frames

Coordinate Transformations

TF Library

.

ActionLib Image courtes rguin Robot

Gayane Kazhoyan(and other members of IAI) December 6th, 2018

Tracking Coordinate Frame Changes

- Transforms are produced by different nodes:
 - Localization node (AMCL, gmapping) for finding robot's pose in map
 - Odometry node (base driver) for tracking movement since initial pose
 - Joint positions (robot controllers and robot_state_publisher)
- Many publishers, many consumers
- Distributed system, redundancy issues, ...

• TF: a coordinate frame tracking system

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IA	l)	Robo	t Programming with Lisp
December 6 th , 2018			43

What is tf?

transform Library – a distributed coordinate frame tracking system

- Standardized protocol for publishing transforms to tf listeners
- Looking up and calculating transforms by asking tf listeners
- tf listener can be either local Lisp program or global tf buffer
- default global tf buffer is TF2's buffer_server
- ROS API for looking up, calculating and sending transforms
- Transforms are published on /tf and /tf_static topics: /tf
 - for all transforms that change over time
 - publish with a fixed rate, even if transform didn't change

/tf_static

- assumed to be static, thus never outdated
- useful for reducing redundancy
- only publish once with latched flag

TF Library

ary

ActionLib

Organizational

Launch the turtlesim TF demo:

\$ roslaunch turtle_tf turtle_tf_demo.launch

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			45

- view_frames
- tf_echo
- tf_monitor
- static_transform_publisher
- RViz

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of I	AI)	Rob	ot Programming with Lisp
December 6 th , 2018			46

Utilities rosrun tf view_frames

Generate a TF tree graph:

- TF tree consists of frames (links) and the transforms between them.
- Each transform is cached (10 secs default caching time)
- Transforms must form a proper tree (no cycles)
- Can have disconnected trees, but you can only ask for transforms inside of the same tree

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			47

\$ rosrun tf tf_echo <source_frame> <target_frame>

tf_echo
<pre>\$ rosrun tf tf_echo turtle1 turtle2 At time 0.000</pre>
- Translation: [0.100, 0.100, 0.000]
- Rotation: in Quaternion [0.000, 0.000, 0.247, 0.969] in RPY (radian) [0.000, -0.000, 0.500] in RPY (degree) [0.000, -0.000, 28.648]

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Rob	ot Programming with Lisp
December 6 th , 2018			48

Utilities static_transform_publisher

- rosrun tf2_ros static_transform_publisher x y z yaw pitch roll frame_id child_frame_id or rosrun tf2_ros static_transform_publisher x y z
 - qx qy qz qw frame_id child_frame_id
- publishes _{global} T_{box}

static_transform_publisher

\$ rosrun tf2_ros static_transform_publisher 0.1 0.1 0 3.14 0 0 global box

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			49

• rosrun tf tf monitor

tf monitor

\$ rosrun tf tf_monitor
RESULTS: for all Frames

Frames:

Frame: turtle1 published by /turtle1_tf_broadcaster Average Delay: 0.000382455 Max Delay: 0... Frame: turtle2 published by /turtle2_tf_broadcaster Average Delay: 0.000267847 Max Delay: 0...

All Broadcasters: Node: /turtle1_tf_broadcaster 64.6996 Hz, Average Delay: 0.000382455 Max Delay: 0.000991178 Node: /turtle2_tf_broadcaster 64.7127 Hz, Average Delay: 0.000267847 Max Delay: 0.00133464

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of	IAI)	Robo	ot Programming with Lisp
December 6 th , 2018			50

tf2_msgs/TFMessage

```
geometry_msgs/TransformStamped[]
    transforms
     std_msgs/Header header
      uint32 seq
      time stamp
      string frame id
     string child_frame_id
     geometry_msgs/Transform transform
      geometry_msgs/Vector3 translation
       float64 x
       float64 v
       float64 z
      geometry msgs/Ouaternion rotation
       float64 x
       float64 v
       float64 z
       float64 w
                  Action lib
TF Library
                                   Organizational
```

• frame_id: name of the
 published frame

- child_frame_id has to be an existing frame
- stamp: time when this transform is valid
- child_frame_id Tframe_id

Gayane Kazhoyan(and other members of IAI)

Coordinate Transformations

December 6th, 2018

- tf buffers transforms for X seconds
- possible to lookup transforms from the past
- tf interpolates frames
- tf does not extrapolate! it can't see into the future

cl tf

Artificial Intelligence \$ rosrun rviz rviz

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)			Robot Programming with Lisp
December 6 th , 2018			54

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Rob	ot Programming with Lisp
December 6 th , 2018			55

Universität Bremen

Interface to define and execute goals:

Illustration source: ROS actionlib wiki

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of	IAI)	Rob	ot Programming with Lisp
December 6 th , 2018			56

Universität Bremen

Action Protocol

Relies on ROS topics to transport messages.

Action Interface

Illustration source: ROS actionlib wiki

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Rob	ot Programming with Lisp
December 6 th , 2018			57

Action Definitions

- Similar to messages and services.
- Definition: request + result + feedback
- Defined in your_package/action/*.action
- Example: actionlib_tutorials/Fibonacci.action

```
# goal definition
int32 order
---
# result definition
int32[] sequence
---
# feedback
```

```
int32[] sequence
```

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IA	l)	Ro	bot Programming with Lisp
December 6 th , 2018			58

Coordinate Transformations 3D Geometry Basics Rotation Representations Homogeneous Transformations

TF Library

ActionLib

Organizational

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI))	Robo	Programming with Lisp
December 6 th , 2018			59

• Gilbert Strang's MIT course on linear algebra (free access):

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of	IAI)	Rob	ot Programming with Lisp
December 6 th , 2018			60

- Assignment points: 10 points
- TF Lisp tutorial:

http://wiki.ros.org/cl_tf/Tutorials/clTfBasicUsage

• ActionLib Lisp tutorial (Section 1 and 2, not 3):

http://wiki.ros.org/actionlib_lisp/Tutorials/actionlibBasicUsage

• Next class: 13.12, 14:00!, bring your laptops!

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Rob	ot Programming with Lisp
December 6 th , 2018			61

Thanks for your attention!

Coordinate Transformations	TF Library	ActionLib	Organizational
Gayane Kazhoyan(and other members of IAI)		Robo	t Programming with Lisp
December 6 th , 2018			62