

Robot Programming with Lisp 7. Coordinate Transformations, TF,

ActionLib

Gayane Kazhoyan

Institute for Artificial Intelligence University of Bremen

November 30th, 2017

Concepts Coordinate Transformations TF ActionLib

Organizational

Concepts

Organizational

Gayane Kazhoyan November 30th, 2017

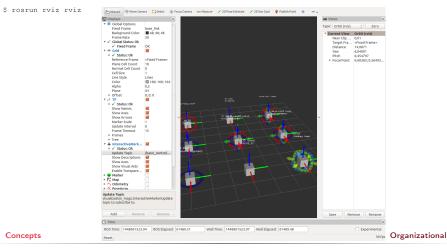
Concepts Coordinate Transformations TF ActionLib

Organizational

Concepts

Organizational

Gayane Kazhoyan November 30th, 2017



Poses in 3D Space

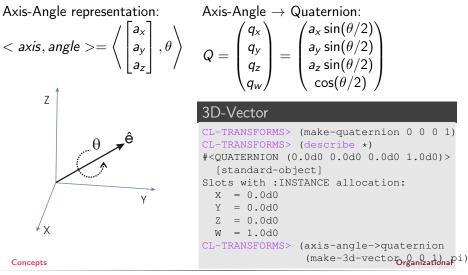
\$ roscore

\$ rosrun interactive_marker_tutorials basic_controls

Gayane Kazhoyan November 30th, 2017

Representing Poses

```
Point in 3D: \{x, y, z\}
```

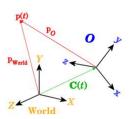

3D-Vector

```
CL-TRANSFORMS> (make-3d-vector 1 2 3)
#<3D-VECTOR (1.0d0 2.0d0 3.0d0)>
CL-TRANSFORMS> (describe *)
#<3D-VECTOR (1.0d0 2.0d0 3.0d0)>
[standard-object]
Slots with :INSTANCE allocation:
X = 1.0d0
Y = 2.0d0
Z = 3.0d0
CL-TRANSFORMS> (y **)
2.0d0
```

```
Object in 3D: {position, orientation}
Position: {x, y, z}
Orientation: axis-angle / rotation matrix / quaternions / ...
Concepts
```


Representing Rotations

cl-transforms:pose


```
CL-TRANSFORMS> (setf p (make-pose
(make-3d-vector 1 2 0)
(make-quaternion 0 0 0 1)))
#<POSE
#<3D-VECTOR (1.0d0 2.0d0 0.0d0)>
#<QUATERNION (0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (origin p)
#<3D-VECTOR (1.0d0 2.0d0 0.0d0)>
CL-TRANSFORMS> (orientation p)
#<QUATERNION (0.0d0 0.0d0 1.0d0)>
```

Concepts

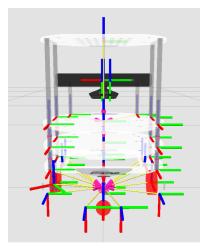
Organizational

Coordinate Systems

Transformations

```
CL-TRANSFORMS> (setf W (make-identity-pose))
#<POSE
   #<3D-VECTOR (0.0d0 0.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (setf O (make-pose
                         (make-3d-vector 2 0 0)
                         (make-quaternion 0 0 0 1)))
#<POSE
   #<3D-VECTOR (2.0d0 0.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
CL-TRANSFORMS> (transform
                (transform-inv (pose->transform 0))
                p)
#<POSE
   #<3D-VECTOR (-1.0d0 2.0d0 0.0d0)>
   #<OUATERNION (0.0d0 0.0d0 0.0d0 1.0d0)>>
```

Concepts


Organizational

Gayane Kazhoyan November 30th, 2017

TurtleBot Coordinate Frames

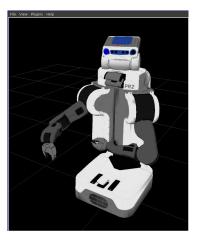
Concepts

Gayane Kazhoyan November 30th, 2017 Image courtes rguina Robat

Concepts

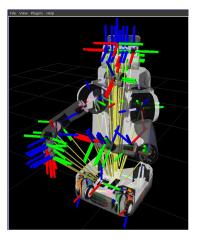
Coordinate Transformations TF ActionLib

Organizational


Concepts

Organizational

Gayane Kazhoyan November 30th, 2017


- Robots consist of many links
- Every link describes its own coordinate system
- Sensor measurements are local to the corresponding link
- Links change their position over time (including the robot base)

Organizational

Concepts

- Robots consist of many *links*
- Every link describes its own coordinate system
- Sensor measurements are local to the corresponding link
- Links change their position over time (including the robot base)

Organizational

Concepts

Implementation

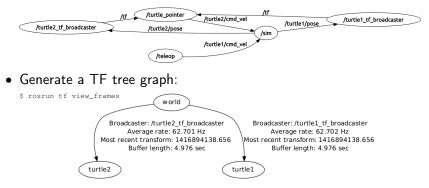
- Transforms are produced by different nodes:
 - Localization in map (AMCL, gmapping)
 - Odometry (base controller)
 - Joint positions (robot controllers and robot_state_publisher)
- Many publishers, many consumers
- Distributed system, redundancy issues, ...

Ļ

- TF: a coordinate frame tracking system
 - Publishing transforms to tf listeners
 - Looking up and calculating transforms by asking tf listeners
- Transformation data is cached over time
- All the transforms together build a TF tree

Concepts

Organizational



TurtleSim TF

• Launch the turtlesim TF demo:

\$ roslaunch turtle_tf turtle_tf_demo.launch

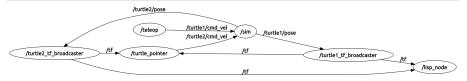
• Listen to transforms:

\$ rosrun tf tf_echo turtle1 turtle2

Concepts

Gayane Kazhoyan November 30th, 2017 Organizational

cl_tf


- TF> (roslisp:start-ros-node "lisp_node")
- TF> (defparameter *transform-listener*

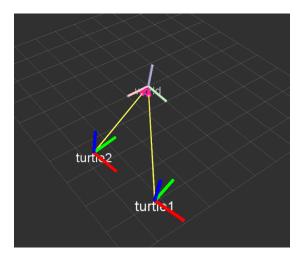
(make-instance 'transform-listener))

TF> (lookup-transform *transform-listener* :source-frame "turtle1" :targe #<STAMPED-TRANSFORM</pre>

FRAME-ID: "turtle1", CHILD-FRAME-ID: "turtle2", STAMP: 1.4169d9
#<3D-VECTOR (0.0d0 0.0d0 0.0d0)>

#<QUATERNION (0.0d0 0.0d0 -0.5401331068059835d0 0.8415796022552d0)>>

Concepts


Organizational

Gayane Kazhoyan November 30th, 2017

\$ rosrun rviz rviz

Concepts

Organizational

Gayane Kazhoyan November 30th, 2017

Concepts

Coordinate Transformations TF Action1 ib

Organizational

Concepts

Organizational

Gayane Kazhoyan November 30th, 2017

Interface to define and execute goals:

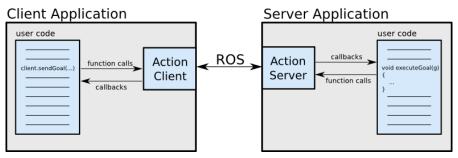


Illustration source: ROS actionlib wiki

Concepts

Action Protocol

Relies on ROS topics to transport messages.

Action Interface

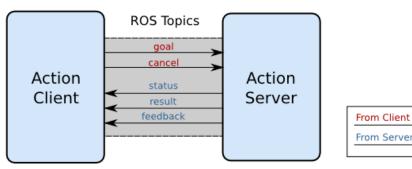


Illustration source: ROS actionlib wiki

Organizational

Gayane Kazhoyan November 30th, 2017

Concepts

Action Definitions

- Similar to messages and services.
- Definition: request + result + feedback
- Defined in your_package/action/*.action
- Example: actionlib_tutorials/Fibonacci.action

```
# goal definition
int32 order
---
# result definition
int32[] sequence
---
# feedback
```

```
int32[] sequence
```

Concepts

Gayane Kazhoyan November 30th, 2017 Organizational

Concepts Coordinate Transformations TF ActionLib

Organizational

Concepts

Organizational

Gayane Kazhoyan November 30th, 2017

• Assignment points: 10 points

- Assignment code: REPO/assignment_7_README.txt
- TF Lisp tutorial:

http://wiki.ros.org/cl_tf/Tutorials/clTfBasicUsage

• ActionLib Lisp tutorial (Section 1 and 2, not 3):

http://wiki.ros.org/actionlib_lisp/Tutorials/actionlibBasicUsage

- Next class: 07.12, 14:00
- Starting next week: teamwork on the robot, bring your laptops, robot time is limited to Thursday afternoons, missing class at that time means failing the course.

Concepts

Organizational

Gayane Kazhoyan November 30th, 2017

Thanks for your attention!

Concepts

Gayane Kazhoyan November 30th, 2017 Organizational