

Institute for Artificial Intelligence Faculty 03 Mathematics &

Computer Science

Robot Programming with ROS

6. Navigation

Arthur Niedźwiecki, Stefan Eirich 30th Nov. 2023

Universität	0200	A: Artificial	Robot Programming with ROS	Arthur Niedźwiecki,	Faculty 03
Universität Bremen	EASE 2	Artificial Intelligence	6. Navigation	Stefan Eirich 30 th Nov. 2023	Mathematics & Computer Science

Outline

2 Hardware

- 3 Conceptualization
- 4 ROS Navigation Stack

6 Organizational

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Autonomous Driving (2005)

6. Navigation

https://youtu.be/7a6GrKqOxeU

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Mobile Manipulation (2012)

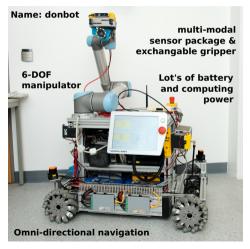
6. Navigation

Universität	0000	AT Artificial	Robot Programming with ROS	Arthur Niedźwiecki,	Faculty 03
Universität	EASE	Artificial	6. Navigation	Stefan Eirich	Mathematics &
Bremen	B	Intelligence		30 th Nov. 2023	Computer Science

Outline

2 Hardware

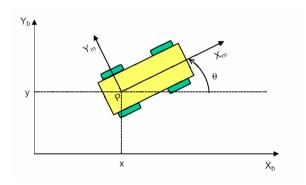
- 3 Conceptualization
- 4 ROS Navigation Stack


6 Organizational

Robot Programming with ROSArthur Niedźwiecki,6. NavigationStefan Eirich

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Capabilities

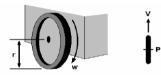


Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Locomotion - Wheeled Locomotion

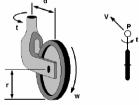
Goal: Bring the robot to a desired pose (x, y, θ) : \Rightarrow 3 DOF (typically, with **non-holonomic constraints**)

6. Navigation

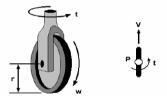


6. Navigation

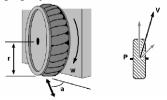
Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science


Robot Locomotion - Wheel Types

Fixed wheel

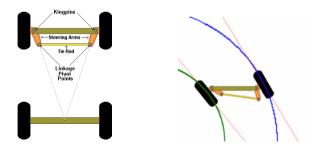


Off-centered orientable wheel



Centered orientable wheel

Swedish wheel:omnidirectional property

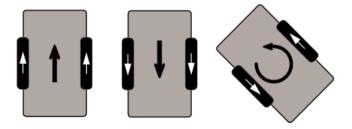

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Locomotion - Ackerman steering

- Car-like steering
- + Robust
- + Outer wheels moves on a circle of different radius than inner wheel

6. Navigation

- But hard to control (parking!)



6. Navigation

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Locomotion - Differential-Drive

- + Turns on spot
- + Good choice for round robots
- + Parking is easier
- Cannot move sidewards

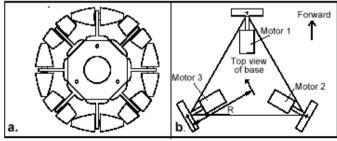
6. Navigation

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Locomotion - Turnable wheels

- + Omnidirectional (can drive forwards, sideways and turn)
- On change of direction, requires 'reconfiguration' of its wheels.
- \rightarrow Controllers should not oscillate

PR2: Double wheel construction to reduce friction while turning the wheel


6. Navigation

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Locomotion - Omniwheels

- + Omnidirectional (can drive forwards, sideways and turn)
- Wheels have free rollers at 90°
- + Three wheels are enough
- Hard to make them run smooth

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Locomotion - Mecanum-Wheels

- + Omnidirectional (can drive forwards, sideways and turn)
- Wheels have free rollers at 45°
- + No reconfiguration is involved
- Depending on wheels, requires flat ground

6. Navigation

$\textbf{Linearity} \Rightarrow$

A (linear) combination of cartesian movements can be achieved with the linear combination of the respective wheel velocities.

Stefan Firich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

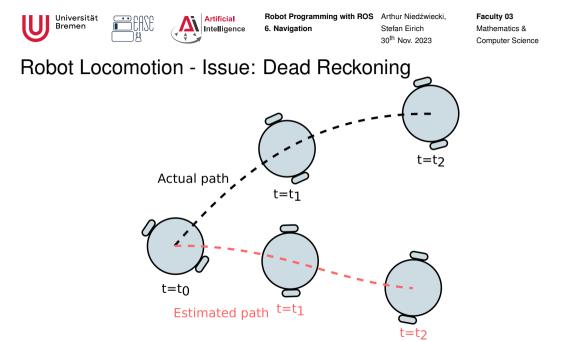
Robot Locomotion - Issue: Dead Reckoning

Dead Reckoning

"In navigation, dead reckoning is the process of calculating one's current position by using a previously determined position, or fix, and advancing that position based upon known or estimated speeds over elapsed time and course." https://en.wikipedia.org/wiki/Dead reckoning

6. Navigation

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science


Robot Locomotion - Issue: Dead Reckoning

Dead Reckoning

"In navigation, dead reckoning is the process of calculating one's current position by using a previously determined position, or fix, and advancing that position based upon known or estimated speeds over elapsed time and course."

6. Navigation

tl;dr: calculating position based on estimating direction and distance traveled (instead of using landmarks)

6. Navigation

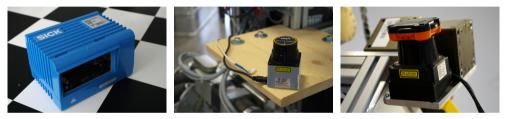
Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Sensing - Time-of-Flight Sensors

Artificial

ntelligence

י))) (((' (((


- Measurement principle: send out wave pulses, wait for the echo, and compute distance by time of flight
- Same principle used by bats, dolphins, RADAR and the police...

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

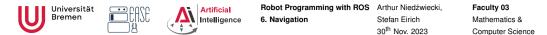
Robot Sensing - Laser scanners

6. Navigation

- Principle: send beam of light, beam hits target, measure time between beam transmission and reception of backscatter
- Rotating mirror deflects beam \rightarrow 2D Scanner
- If the round trip time is *t*, the distance is $d = (c \cdot t)/2$.
- Time *t* is very short \rightarrow use phase difference instead


 Robot Programming with ROS
 Arthur Niedźwiecki,

 6. Navigation
 Stefan Eirich

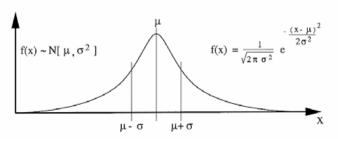

 30th Nov. 2023
 30th Nov. 2023

Faculty 03 Mathematics & Computer Science


Robot Sensing - Typical Laser Range Scanner

- Scanning angle: 180 degrees
- Resolution: 0.25deg, 0.5deg, or 1deg.
- Typical detection range: 30m (max. 80m)
- Data Received: Angle + Distance
- Normally used for:
 - · Making maps of the environment
 - Localization of the robot
 - Tracking of objects or people
- In some circles, it is known as LIDAR (LIght Detection And Ranging)

Robot Sensing


Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Sensing - Issue: Sensor Noise

- Anything that obscures a signal.
- External noise
 - Part of the environment, e.g. temperature, electromagnetic interference, sun light, gravitational flux, or ...

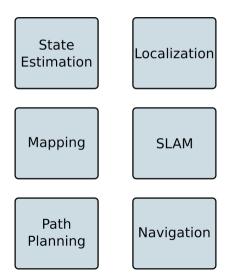
6. Navigation

- Internal noise
 - White noise (uniform), e.g. thermal noise
- Often estimated with a Normal distribution

Universität	0200	A: Artificial	Robot Programming with ROS	Arthur Niedźwiecki,	Faculty 03
Universität Bremen	EASE 2	Artificial Intelligence	6. Navigation	Stefan Eirich 30 th Nov. 2023	Mathematics & Computer Science

Outline

2 Hardware


3 Conceptualization

4 ROS Navigation Stack

6 Organizational

Concepts

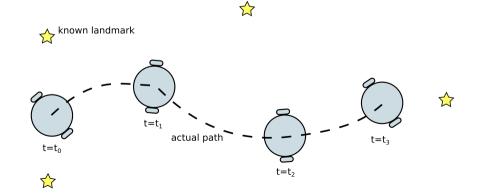
Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Concepts - State Estimation

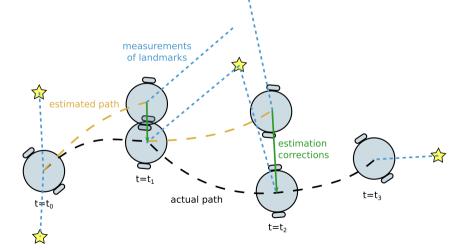
System Model

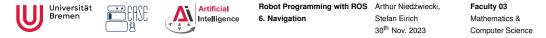
6. Navigation

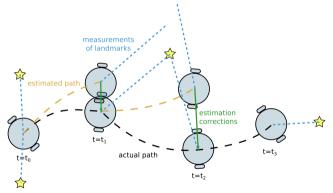
State Estimation


Computation of an estimate $\hat{x}(t)$ of the internal state x(t) of a system from observations of the system's inputs u(t) and outputs y(t).

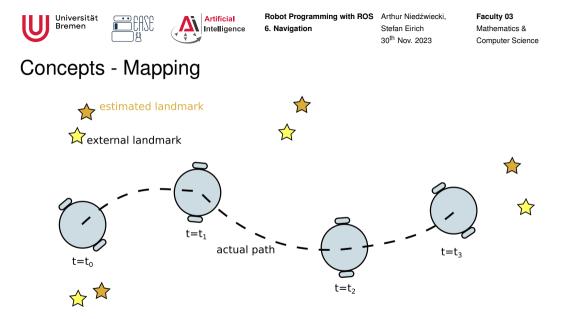
Robot Programming with ROSArthur Niedźwiecki,6. NavigationStefan Eirich


Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

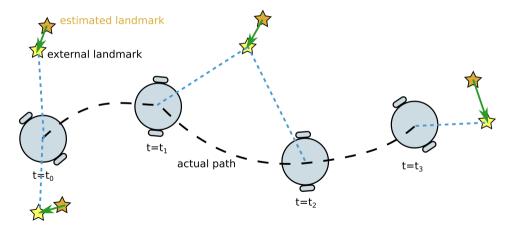

Concepts - Localization



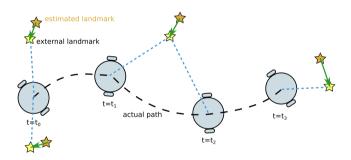
Concepts - Localization



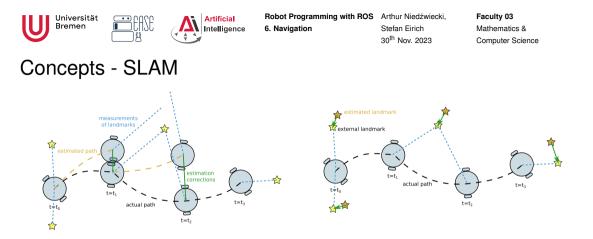
Concepts - Localization


Localization

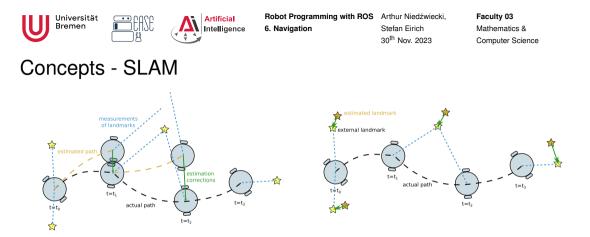
Estimation of the robot's location in the world, given some known external landmarks.


Universität	0200	ATTIFICIAL	Robot Programming with ROS	Arthur Niedźwiecki,	Faculty 03
Universität Bremen	EASE	Artificial Intelligence	6. Navigation	Stefan Eirich 30 th Nov. 2023	Mathematics &
				30" 1000. 2023	Computer Science

Concepts - Mapping


	Universität	0200	A 3	Artificial	Robot Programming with ROS	Arthur Niedźwiecki,	Faculty 03
U	Bremen	EASE		Intelligence	6. Navigation	Stefan Eirich	Mathematics &
		L 18				30 th Nov. 2023	Computer Science

Concepts - Mapping


Mapping

Estimation of external landmarks in the world, given the robot's location is known.

Simultaneous Localization and Mapping

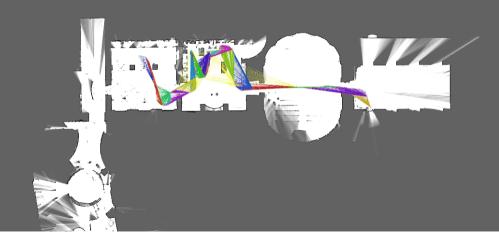
Estimation of the locations of the robot and the external landmarks, at the same time.

SLAM is a **chicken-or-egg** problem

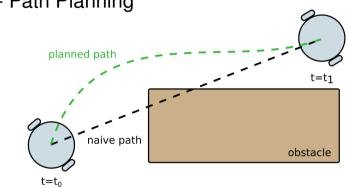
- Known landmarks are needed for localization
- Known robot is needed for mapping

Concepts - SLAM

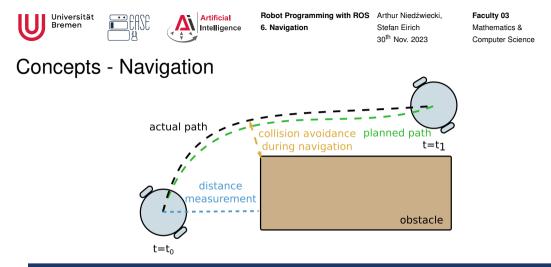
Problem Definition of SLAM


- Given:
 - The robot's control inputs: $u_{1:T} = \{u(1), u(2), ..., u(T)\}$
 - The robot's measurements: $y_{1:T} = \{y(1), y(2), \dots, y(T)\}$
- Wanted:
 - Environment map m
 - The robot's path $x_{1:T} = \{x(1), x(2), ..., x(T)\}$

Robot Programming with ROSArthur Niedźwiecki,6. NavigationStefan Eirich


Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Concepts - SLAM


https://google-cartographer-ros.readthedocs.io/en/latest/_images/demo_2d.gif

Path Planning

Compute a sequence of valid configurations that moves the robot from the source to destination. https://en.wikipedia.org/wiki/Motion_planning

Navigation

Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.

Concepts

State Estimation	Localization
Mapping	SLAM
Path Planning	Navigation

Universität	0200	A: Artificial	Robot Programming with ROS	Arthur Niedźwiecki,	Faculty 03
Universität Bremen	EASE 2	Artificial Intelligence	6. Navigation	Stefan Eirich 30 th Nov. 2023	Mathematics & Computer Science

Outline

2 Hardware

3 Conceptualization

4 ROS Navigation Stack

6 Organizational

30th Nov. 2023

Faculty 03 Mathematics & Computer Science

Software in ROS

- Mapping
 - Gmapping: http://wiki.ros.org/gmapping
- Localization
 - AMCL: http://wiki.ros.org/amcl
- SLAM
 - slam toolbox: http://wiki.ros.org/slam_toolbox
 - Carthographer: https://google-cartographer-ros.readthedocs.io
- Navigation:
 - move_base: http://wiki.ros.org/move_base
 - move_base_flex: http://wiki.ros.org/move_base_flex

Courses and Literature

- Another brief overview slide deck: https://www.dis.uniroma1.it/~nardi/Didattica/CAI/matdid/ robot-programming-ROS-introduction-to-navigation.pdf
- Very good course on SLAM from Uni Freiburg: http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/
- Online programming course: http://www.theconstructsim.com/ construct-learn-develop-robots-using-ros/robotigniteacademy_ learnros/ros-courses-library/

```
ros-courses-ros-navigation-in-5-days/
```

Universität	0000	ATtificial	Robot Programming with ROS	Arthur Niedźwiecki,	Faculty 03
Bremen	EEASE	Artificial Intelligence	6. Navigation	Stefan Eirich	Mathematics &
	L 18			30 th Nov. 2023	Computer Science

Autonomous Driving

- Waymo: https://www.youtube.com/watch?v=hA_-MkUONfw
- Why autonomous driving stalls: https://www.youtube.com/watch?v=4sCK-a33Nkk
- Pros and cons: https://www.youtube.com/watch?v=G2OU_lzsMdE

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Robot Navigation (2019)

6. Navigation

Universität	0200	A: Artificial	Robot Programming with ROS	Arthur Niedźwiecki,	Faculty 03
Universität Bremen	EASE 2	Artificial Intelligence	6. Navigation	Stefan Eirich 30 th Nov. 2023	Mathematics & Computer Science

Outline

2 Hardware

- 3 Conceptualization
- 4 ROS Navigation Stack

5 Organizational

6. Navigation

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Assignment and dates

• Assignment 6:

 $\verb+https://github.com/artnie/rpwr-assignments$

- Grades: 8 points for this assignment
- Due: 06.12., 23:59 AM German time
- Next class: 07.12., 14:00

6. Navigation

Stefan Eirich 30th Nov. 2023 Faculty 03 Mathematics & Computer Science

Evaluation

Thanks for your attention!

Special thanks to the IAI team for the content of this lecture!

https://forms.gle/iZyKqLCxsrwBU3XZ6