

Institute for Artificial Intelligence Faculty 03 Mathematics &

Computer Science

Robot Programming with ROS

6. Navigation

Arthur Niedźwiecki 21th May. 2025

Outline

2 Hardware

3 Conceptualization

4 ROS Navigation Stack

6 Organizational

Faculty 03

Mathematics &

Computer Science

Faculty 03 Mathematics & Computer Science

Autonomous Driving (2005)

https://youtu.be/7a6GrKqOxeU

Faculty 03 Mathematics & Computer Science

Mobile Manipulation (2012)

Outline

2 Hardware

- 3 Conceptualization
- 4 ROS Navigation Stack

6 Organizational

Faculty 03

Mathematics &

Computer Science

Faculty 03 Mathematics & Computer Science

Robot Capabilities

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Wheeled Locomotion

Goal: Bring the robot to a desired pose (x, y, θ) : \Rightarrow 3 DOF (typically, with **non-holonomic constraints**)

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Wheel Types

Fixed wheel

Off-centered orientable wheel

Centered orientable wheel

Swedish wheel:omnidirectional property

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Ackerman steering

- Car-like steering
- + Robust
- + Outer wheels moves on a circle of different radius than inner wheel
- But hard to control (parking!)

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Differential-Drive

- + Turns on spot
- + Good choice for round robots
- + Parking is easier
- Cannot move sidewards

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Turnable wheels

- + Omnidirectional (can drive forwards, sideways and turn)
- On change of direction, requires 'reconfiguration' of its wheels.
- \rightarrow Controllers should not oscillate

PR2: Double wheel construction to reduce friction while turning the wheel

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Omniwheels

- + Omnidirectional (can drive forwards, sideways and turn)
- Wheels have free rollers at 90°
- + Three wheels are enough
- Hard to make them run smooth

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Mecanum-Wheels

- + Omnidirectional (can drive forwards, sideways and turn)
- Wheels have free rollers at 45°
- + No reconfiguration is involved
- Depending on wheels, requires flat ground

$\textbf{Linearity} \Rightarrow$

A (linear) combination of cartesian movements can be achieved with the linear combination of the respective wheel velocities.

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Issue: Dead Reckoning

Dead Reckoning

"In navigation, dead reckoning is the process of calculating one's current position by using a previously determined position, or fix, and advancing that position based upon known or estimated speeds over elapsed time and course." https://en.wikipedia.org/wiki/Dead_reckoning

Faculty 03 Mathematics & Computer Science

Robot Locomotion - Issue: Dead Reckoning

Dead Reckoning

"In navigation, dead reckoning is the process of calculating one's current position by using a previously determined position, or fix, and advancing that position based upon known or estimated speeds over elapsed time and course."

tl;dr: calculating position based on estimating direction and distance traveled (instead of using landmarks)

Faculty 03 Mathematics & Computer Science

Faculty 03 Mathematics & Computer Science

Robot Sensing - Time-of-Flight Sensors

י))) (((' (((

- Measurement principle: send out wave pulses, wait for the echo, and compute distance by time of flight
- Same principle used by bats, dolphins, RADAR and the police...

Faculty 03 Mathematics & Computer Science

Robot Sensing - Laser scanners

- Principle: send beam of light, beam hits target, measure time between beam transmission and reception of backscatter
- Rotating mirror deflects beam \rightarrow 2D Scanner
- If the round trip time is *t*, the distance is $d = (c \cdot t)/2$.
- Time *t* is very short \rightarrow use phase difference instead

Faculty 03 Mathematics & Computer Science

Robot Sensing - Typical Laser Range Scanner

- Scanning angle: 180 degrees
- Resolution: 0.25deg, 0.5deg, or 1deg.
- Typical detection range: 30m (max. 80m)
- Data Received: Angle + Distance
- Normally used for:
 - · Making maps of the environment
 - Localization of the robot
 - Tracking of objects or people
- In some circles, it is known as LIDAR (LIght Detection And Ranging)

Faculty 03 Mathematics & Computer Science

Robot Sensing

Faculty 03 Mathematics & Computer Science

Robot Sensing - Issue: Sensor Noise

- Anything that obscures a signal.
- External noise
 - Part of the environment, e.g. temperature, electromagnetic interference, sun light, gravitational flux, or ...
- Internal noise
 - White noise (uniform), e.g. thermal noise
- Often estimated with a Normal distribution

Outline

2 Hardware

3 Conceptualization

4 ROS Navigation Stack

5 Organizational

Faculty 03 Mathematics & Computer Science

Concepts

Faculty 03 Mathematics & Computer Science

Concepts - State Estimation

System Model

State Estimation

Computation of an estimate $\hat{x}(t)$ of the internal state x(t) of a system from observations of the system's inputs u(t) and outputs y(t).

Faculty 03 Mathematics & Computer Science

Concepts - Localization

Faculty 03 Mathematics & Computer Science

Concepts - Localization

Faculty 03 Mathematics & Computer Science

Concepts - Localization

Localization

Estimation of the robot's location in the world, given some known external landmarks.

Mapping

Estimation of external landmarks in the world, given the robot's location is known.

t=t₂

t=t₂

 $t=t_1$

t=to

actual path

Simultaneous Localization and Mapping

Estimation of the locations of the robot and the external landmarks, at the same time.

SLAM is a **chicken-or-egg** problem

- Known landmarks are needed for localization
- Known robot is needed for mapping

Faculty 03 Mathematics & Computer Science

Concepts - SLAM

Problem Definition of SLAM

- Given:
 - The robot's control inputs: $u_{1:T} = \{u(1), u(2), ..., u(T)\}$
 - The robot's measurements: $y_{1:T} = \{y(1), y(2), \dots, y(T)\}$
- Wanted:
 - Environment map m
 - The robot's path $x_{1:T} = \{x(1), x(2), ..., x(T)\}$

Faculty 03 Mathematics & Computer Science

Concepts - SLAM

https://google-cartographer-ros.readthedocs.io/en/latest/_images/demo_2d.gif

Concepts - Path Planning

Path Planning

Compute a sequence of valid configurations that moves the robot from the source to destination. https://en.wikipedia.org/wiki/Motion_planning

Navigation

Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.

Faculty 03 Mathematics & Computer Science

Concepts

State Estimation	Localization
Mapping	SLAM
Path Planning	Navigation

Outline

2 Hardware

3 Conceptualization

4 ROS Navigation Stack

5 Organizational

Faculty 03 Mathematics & Computer Science

Software in ROS

- SLAM, Mapping, Localization
 - slam toolbox:

https://docs.ros.org/en/jazzy/p/slam_toolbox/

https:

//roboticsbackend.com/ros2-nav2-generate-a-map-with-slam_toolbox/

- Navigation, Path Planning:
 - nav2: https://docs.nav2.org/

Faculty 03 Mathematics & Computer Science

Courses and Literature

- Very good course on SLAM from Uni Freiburg: http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/
- Nav2 Online Tutorials:

https://docs.nav2.org/tutorials/index.html
https://roboticsbackend.com/ros2-nav2-tutorial/
https://ros2-industrial-workshop.readthedocs.io/en/latest/_source/
navigation/ROS2-Navigation.html

• Mapping with SLAM: https:

//roboticsbackend.com/ros2-nav2-generate-a-map-with-slam_toolbox/

Robot Programming with BOS Arthur Niedźwiecki 6. Navigation

21th May, 2025

Faculty 03 Mathematics & Computer Science

Autonomous Driving right now

Wavmo:

https://www.youtube.com/watch?v=hA_-MkUONfw

- Why autonomous driving stalls: https://www.youtube.com/watch?v=4sCK-a33Nkk
- Pros and cons: https://www.youtube.com/watch?v=G20U_lzsMdE

Faculty 03 Mathematics & Computer Science

Robot Navigation (2019)

Outline

2 Hardware

- 3 Conceptualization
- 4 ROS Navigation Stack

5 Organizational

36

Faculty 03 Mathematics & Computer Science

Schedule

18	19	20 Deadline 3	21Lecture Navigation	²² Group ass	23 gnment 4 —	24
25	26	27 Deadline 4	28 Praktikum 1	29	30	31
1	2	3	4	5	6	7

June 2025							
SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	
1	2	3	4 Praktikum 2	5	6	7	
8	9	10	11 Praktikum 3 with deputy	12	13	14	
15	16	17	18 Praktikum 4 + presentations	19	20	21	
22	23	24	25	26	27	28	
29	30	1	2	3	4	5	
6	7	8	9	10	11	12	

July 2025							
SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	
29	30	1	2 Presentation	3	4	5	
6	7	8	9	10	11	12	

Faculty 03 Mathematics & Computer Science

Assignment and dates

Form groups on StudIP > RPWR Course > Participants > Groups

- **Group** Assignment 4: with 4 people per group https://github.com/artnie/rpwr-assignments
- Grade: 15 points
- Due in one week: 27.05., 23:59 German time
- Submit with group number and name of participants.

Tutorium here after lunch at 14:15

Praktikum begins next week: 28.05., 12:15

Thanks for your attention!

Special thanks to the IAI team for the content of this lecture!