Robot Programming with ROS

4. Motors and Kinematics

Arthur Niedźwiecki, Stefan Eirich $09^{\text {th }}$ Nov. 2023

Overview

(1) What makes a robot?

Links and joints
(2) Actuators
(3) Robot Arms
(4) Gripper
(5) Mobile Bases

Wheeled locomotion
(6) Robot Kinematics

Forward and Inverse Kinematics
(7) Representation Of The Environment

8 Organizational

Overview

(1) What makes a robot?

Links and joints
(2) Actuators
(3) Robot Arms
(4) Gripper
(5) Mobile Bases

Wheeled locomotion
(6) Robot Kinematics

Forward and Inverse Kinematics
(7) Representation Of The Environment
(8) Organizational

Artificial Intelligence

What makes a robot?

A Robot is an electro-mechanical device, composed of a collection of bodies (links), which are combined by joints. A robot is equipped with actuators (motors), that can move neighbouring links relative to each other by exerting forces.

What makes a robot?

A Robot is an electro-mechanical device, composed of a collection of bodies (links), which are combined by joints. A robot is equipped with actuators (motors), that can move neighbouring links relative to each other by exerting forces.

Robots are equipped with control programs that are designed to accomplish tasks by moving the body of the robot in a task-driven way.

The control software will be addressed in subsequent modules.

Basic Principles

- Position the End effector (Move the end effector in the room)
- Touch objects (Manipulation)
- Exercise a force on the ground relative to itself (Move in the plane)

Artificial
Intelligence

Robot Programming with ROS

Arthur Niedźwiecki,

Links

Rigid body with visual and collision features and known inertia properties.

```
<link name=" ${name}">
    <visual>
        <geometry>
            <box size="${base_length} ${base_width} ${
                base_height}" />
        </geometry>
        <material name="LightGrey">
            <color rgba="0.7 0.7 0.7 1.0"/>
        </material>
    </visual>
    <collision>
        <geometry>
            <box size="${base_length} ${base_width} ${
                base_height}" />
            </geometry>
    </collision>
    <inertial>
            <origin xyz="0 0 0.5" rpy="0 0 0"/>
            <mass value="100"/>
            <inertia ixx="100" ixy="0" ixz="0" iyy="100" iyz
            ="0" izz="100"/>
    </inertial>
</link>
```

Artificial Intelligence

Robot Programming with ROS

Arthur Niedźwiecki,

Joints

- Two type of joints: revolute (rotary motion) and prismatic (linear motion)
- Classical industrial application: high stiffness in links and joints
- Advantage: position accuracy
- Disadvantage: may lead to high forces exerted by robot \rightarrow danger!
- Note: link deflection under load or joint play might reduce precision in the real-world

One translational degree of freedom

amesontal

(c) (i)()

Source: https://en.wikipedia.org/w/index.php?title= CC BY-SA 4.0:
https://creativecomons.org/licenses/by-sa/4.0/

One rotary degree of freedom

Public Doma

Source: https://en.wikipedia.org/w/index.php?title=Revolute_ Jointzoldid=1000911780
B-SA 4.0: https://creativeconmons.org/licenses/by-sa/4.0 Public Domain
Source: https://en.wikipedia.org/w/Index.php?title=Revolute ointzoldid=1000911780
CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

Articial
Intelligence

Robot Programming with ROS Arthur Niedźwiecki,
4. Motors and Kinematics Stefan Eirich
$09^{\text {th }}$ Nov. 2023

Faculty 03

Joints

```
<joint name="\$\{prefix\}shoulder_lift_joint" type="continuous">
    <parent link="\$\{prefix\}base_link" />
    <child link = "\$\{prefix\}upper_arm_link"/>
    <origin \(x y z=" 000 " r p y=" 000 " />\)
    <axis xyz="0 0 1"/>
    <limit lower="\$\{shoulder_lift_lower_limit\}" upper="\$\{shoulder_lift_upper_limit\}"
            effort="150.0" velocity="3.15" / >
    <dynamics damping="1.0" friction="100.0" />
</joint>
```


Artificial Intelligence

Non-classical approach: soft robots

- Impedance control

Summary

- Basic principles of robotics
- Description of links and joints

Artificia Intelligence

Mathematics \& Computer Science

Overview

1 What makes a robot?
 Links and joints

(2) Actuators

(3) Robot Arms
(4) Gripper
(5) Mobile Rases

Wheeled locomotion
(6) Robot Kinematics

Forward and Inverse Kinematics
(7) Representation Of The Environment

8 Organizational

Artificial Intelligence

Brushed DC Motor

- cheap
- used in toys
- turns without motor controller
- commutation with brushes (may wear out)

Artificial Intelligence

Brushless DC Motor

- cheap as well
- used e.g. in CD-ROM drives
- electronic commutation necessary (with sensors or sensorless)
- coils can be inside or outside (better cooling when outside)

Stepper Motor

- very standardized
- strong at low speeds
- used in printers
- moves repeatably
- feed-forward by nature
- "looses steps" when friction/inertia/... is too high
- ... or is moving at its resonance frequency

© (1) ()

Stepper_motor\&oldid=1013297392 ,
CC BY-SA 4.0:
https://creativecommons.org/licenses/by-sa/4.0/

Artificial Intelligence

Mathematics \& Computer Science

Overview

1 What makes a robot?
 Links and joints

(2) Actuators

(3) Robot Arms
(4) Gripper
(5) Mobile Bases

Wheeled locomotion
(6) Robot Kinematics

Forward and Inverse Kinematics
(7) Representation Of The Environment

8 Organizational

Artificial
Intelligence

Robot Programming with ROS

Arthur Niedźwiecki,

Robot Arm

Sequence of links connected by joints and moved relative to each other by actuators.

Artificial
Intelligence

Robot Programming with ROS Arthur Niedźwiecki,

Stefan Eirich
$09^{\text {th }}$ Nov. 2023

Faculty 03

Mathematics \&
Computer Science

Robot Arm

```
<xacro:macro name="simple_arm" params=" prefix parent .origin joint_limited:=true">
    <joint name=" shoulder_pan_joint" type=" continuous">
        <parent link="${parent}"/>
            <child link = "${prefix}base_link"/>
            <xacro:insert_block name=" origin"/>
            <axis xyz="0-1 0"/>
            <limit lower="${shoulder_pan_lower_limit}" upper="${shoulder_pan_upper_limit}" effort=" 150.0" velocity="3.15
            "/>
            <dynamics damping="1.0" friction="100.0"/>
    </joint>
<link name="${prefix}base_link">
    <visual>
            <origin xyz="0 0 0" rpy="0 0 ${base_correction}"/>
            <geometry>
            <sphere radius="${base_radius}"/>
            /geometry>
            <material name="LightGrey">
            <color rgba="0.7 0.7 0.7 1.0"/>
            /material>
        </visual>
        <collision>
            <origin xyz="0 0 0" rpy="0 0 ${base_correction}"/>
            <geometry>
                <sphere radius="${base_radius}" />
            </geometry>
        </collision>
        <xacro:sphere_inertial radius="${base_radius}" mass="${base_mass}">
            <origin xyz="0.0 0.0 0.0" rpy="0 0 0"/>
        /xacro:sphere_inertial>
    </link>
[...]
</xacro:macro>
</robot>
```

Artificia
Intelligence

Robot Programming with ROS

Arthur Niedźwiecki,

Robot Arm

Artificia Intelligence

Mathematics \& Computer Science

Overview

1 What makes a robot?
 Links and joints

(2) Actuators
(3) Robot Arms
(4) Gripper
(5) Mobile Bases

Wheeled locomotion
(6) Robot Kinematics

Forward and Inverse Kinematics
(7) Representation Of The Environment
(8) Organizational

Artificial
Intelligence

Gripper

Touch objects and interact with the environment.

Overview

1 What makes a robot?
 Links and joints

(2) Actuators
(3) Robot Arms
(4) Gripper
(5) Mobile Bases

Wheeled locomotion
(6) Robot Kinematics

Forward and Inverse Kinematics
(7) Representation Of The Environment

8 Organizational

Artificial
Intelligence

Wheeled Locomotion

Goal: Bring the robot to a desired pose (x, y, θ) :
(position in \mathbf{x}-axis, position in \mathbf{y}-axis, angle with x -axis)
$\Rightarrow 3$ Degrees of Freedom (DOF)

Artificial Intelligence

Wheeled Locomotion

Goal: Bring the robot to a desired pose (x, y, θ) :
(position in \mathbf{x}-axis, position in \mathbf{y}-axis, angle with x -axis)
$\Rightarrow 3$ Degrees of Freedom (DOF)

Artificial Intelligence

Robot Programming with ROS

Arthur Niedźwiecki,

Wheel Types

Fixed wheels

Video

Robodoc9
Source: https://en.wikipedia.org/u/index.php?title=0mni_uheel\&oldid=1013193962 CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

Artificial
Intelligence

Ackerman steering

- Car-like steering
+ Robust
+ Outer wheels moves on a circle of different radius than inner wheel
- But hard to control (parking!)

Artificial Intelligence

Differential-Drive

+ Turns on spot
+ Good choice for round robots
+ Parking is easier
- Cannot move sidewards

Patrik
Source: https://en.wikipedia.org/w/index.php?title=Differential_wheeled_robotkoldid=100082551 CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

Right: © (1)()
Patrik
Source:
Source: https://en.wikipedia.org/u/index.php?title=Differential_wheeled_robot\&oldid=1000825516 CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

Turnable wheels

+ Omnidirectional (can drive forwards, sideways and turn)
- On change of direction, requires 'reconfiguration' of its wheels.
\rightarrow Controllers should not oscillate

[^0]PR2: Double wheel construction to reduce friction while turning the wheel

"Omniwheels"

+ Omnidirectional (can drive forwards, sideways and turn)
- Wheels have free rollers at 90°
+ Three wheels are enough
- Hard to make them run smooth

Artificial Intelligence

Mecanum-Wheels

+ Omnidirectional (can drive forwards, sideways and turn)
- Wheels have free rollers at 45°
+ No reconfiguration is involved
- Depending on wheels, requires flat ground

Institute for Artificial Intelligence, University of Bremen CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

Mrmw
Source: https://en.wikipedia.org/w/index.php?title=Mecanum_wheelkoldid=1012482690 CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

Linearity \Rightarrow

Artificial Intelligence

Faculty 03

Mathematics \&
Computer Science

Mobile Base

```
<xacro:simple_robot_base name="base_link">
</xacro:simple_robot_base>
<xacro:omni_wheel name="omni_wheel_fl" parent="base_link">
    <origin xyz="${0.5*base_length} ${0.5*base_width + 0.5*wheel_thickness}
        ${-0.5*base_height}" rpy="${pi/2} 0 0"/>
</xacro:omni_wheel>
<xacro:omni_wheel name="omni_wheel_fr" parent="base_link">
    <origin xyz="${0.5* base_length} ${-0.5*base_width - 0.5*wheel_thickness }
        ${-0.5*base_height}" rpy="${pi/2} 0 0"/>
</xacro:omni_wheel>
<xacro:omni_wheel name="omni_wheel_bl" parent="base_link">
    <origin xyz="${-0.5*base_length} ${0.5*base_width + 0.5* wheel_thickness}
        ${-0.5*base_height}" rpy="${pi/2} 0 0"/>
</xacro:omni_wheel>
<xacro:omni_wheel name="omni_wheel_br" parent="base_link">
    <origin xyz="${-0.5*\mathrm{ base_length }} ${-0.5*\mathrm{ base_width - 0.5*wheel_thickness }}
```

Bremen

Artificial Intelligence

Robot Programming with ROS Arthur Niedźwiecki,

4. Motors and Kinematics Stefan Eirich $09^{\text {th }}$ Nov. 2023

Mobile Base

Summary

- Actuation of robot arms
- Wheeled locomotion

Artificial Intelligence

Mathematics \& Computer Science

Overview

1 What makes a robot?
 Links and joints

(2) Actuators
(3) Robot Arms
(4) Gripper
(5) Mobile Bases

Wheeled locomotion
(6) Robot Kinematics

Forward and Inverse Kinematics
(7) Representation Of The Environment
(8) Organizational

Kinematics

- Joint Space
- Task Space (Workspace)
- Forward Kinematics
- Inverse Kinematics

Artificial Intelligence

Configuration Space

Configuration

The configuration of a robot is a complete specification of the positions of every point of the robot.
"How can we represent the configuration?"

Configuration Space

Degrees of Freedom

The number of degrees of freedom is the minimum number of independent parameters needed to represent the configuration of the robot.

It is equivalently called the mobility of the robot.

Configuration Space

Degrees of Freedom

The number of degrees of freedom is the minimum number of independent parameters needed to represent the configuration of the robot.

It is equivalently called the mobility of the robot.

Configuration Space

If the robot has n degrees of freedom, the n-dimensional space containing all possible configurations of the robot is called the configuration space.

The robot's configuration is usually expressed in terms of joint variables, so the configuration space is also called the joint space.

Artificia Intelligence

Arthur Niedźwiecki,
Stefan Eirich
$09^{\text {th }}$ Nov. 2023

Configuration Space vs. Task Space

[^1]How can we get the configuration/joint trajectory to do this?

Configuration Space vs. Task Space

Institute for Artificial Intelligence, University of Bremen
CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

- The robot interacts with objects and obstacles which are better defined by an external set of coordinates (e.g., ($\mathbf{x}, \mathbf{y}, \mathbf{z}$) coordinates in a global frame.)

Configuration Space vs. Task Space

[^2]- The robot interacts with objects and obstacles which are better defined by an external set of coordinates (e.g., ($\mathbf{x}, \mathbf{y}, \mathbf{z}$) coordinates in a global frame.)
- The part interacting with environments such as obstacles and objects is called the end-effector.

Configuration Space vs. Task Space

(i)() Institute for Artificial Intelligence, University of Bremen

CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

- The robot interacts with objects and obstacles which are better defined by their coordinates (e.g., ($\mathbf{x}, \mathbf{y}, \mathbf{z}$) Euclidean 3D coordinates in a world frame.)
- The part interacting with environments such as obstacles and objects is called the end-effector.
- It is useful to attach a coordinate frame to the end-effector and command the pose of the end-effector in the world/object frame.

Task Space aka Operational Space

Operational Space

Given a robot with a reference frame attached to its end-effector, the operational space is the set of all positions and/or orientations achievable by the end-effector frame.

Required degrees of freedom

How many degrees of freedom do we need?

Required degrees of freedom

How many degrees of freedom do we need? (It depends on the task!)

- pointing a camera: 2 DOF
- placing an object (only position is important): 3 DOF
- placing an object (position and orientation): 6 DOF
- imitating a human arm: 7 DOF (from shoulder ball joint)

Robot kinematics

Joint Angle

Transformation
Cartesian Coordinates

Artificial Intelligence

Forward Kinematics

Forward Kinematics Problem

Given an open-chain robot arm with a prescribed task frame, the goal is to determine the task frame's position and orientation as a function of the joint values.

Forward Kinematics

Forward Kinematics Problem

Given an open-chain robot arm with a prescribed task frame, the goal is to determine the task frame's position and orientation as a function of the joint values.

For a given set ofjoint angles there will usually exist a unique end-effector position

Artificial Intelligence

Inverse Kinematics

Inverse Kinematics Problem

Given a desired position and orientation of the end-effector frame, one seeks to determine the set of joint angles that achieves this desired end-effector configuration.

Given: $(x, y, z, \alpha, \beta, \gamma)$

Inverse Kinematics

Inverse Kinematics Problem

Given a desired position and orientation of the end-effector frame, one seeks to determine the set of joint angles that achieves this desired end-effector configuration.

nstitute for Artificial Intelligence, University of Bremen
For a particular endi-effector position and orientation, there may exist multiple solutions, or even none at all. (e.g., elbow-up and elbow-down configurations)

Artificial Intelligence

Mathematics \&
Computer Science

Kinematics - An Example

- Forward kinematics :

$$
\binom{x_{\text {tcp }}}{y_{\text {tcp }}}=\binom{L_{1} \cos q_{1}+L_{2} \cos \left(q_{1}+q_{2}\right)}{L_{1} \sin q_{1}+L_{2} \sin \left(q_{1}+q_{2}\right)}
$$

Artificia Intelligence

Kinematics - An Example

Figure: Two links planar manipulator

- Forward kinematics :

$$
\binom{x_{t c p}}{y_{t c p}}=\binom{L_{1} \cos q_{1}+L_{2} \cos \left(q_{1}+q_{2}\right)}{L_{1} \sin q_{1}+L_{2} \sin \left(q_{1}+q_{2}\right)}
$$

- Inverse kinematics :

$$
\begin{aligned}
& \alpha=\cos ^{-1}\left(\frac{x_{\text {top }}^{2}+y_{\text {tcp }}^{2}+L_{1}^{2}-L_{2}^{2}}{2 L_{1} \sqrt{x_{t c p}^{2}+y_{t c p}^{2}}}\right), \beta=\cos ^{-1}\left(\frac{\left(L_{1}^{2}+L_{2}^{2}-x_{\text {top }}^{2}-y_{\text {tcp }}^{2}\right.}{2 L_{1} L_{2}}\right) \\
& q_{1}=\tan ^{-1} \frac{y_{t c p}}{x_{\text {top }}}-\alpha, q_{2}=\pi-\beta \\
& q_{1}=\tan ^{-1} \frac{y_{t c p}}{x_{\text {tcp }}}+\alpha, q_{2}=\pi+\beta
\end{aligned}
$$

Overview

(1) What makes a robot?
 Links and joints

(2) Actuators
(3) Robot Arms
(4) Gripper
5. Mobile Bases

Wheeled locomotion
6 Robot Kinematics
Forward and Inverse Kinematics
(7) Representation Of The Environment
(8) Organizational

The Representation Of The Environment

Summary

- Configuration and task space
- Robot kinematics

Overview

1 What makes a robot?
 Links and joints

(2) Actuators
(3) Robot Arms
(4) Gripper
(5) Mobile Bases

Wheeled locomotion
(6) Robot Kinematics

Forward and Inverse Kinematics
(7) Representation Of The Environment

8 Organizational

Discord

Follow this to our Discord server. Link open until 15.11.23

Assignment and dates

- Assignment 4:
https://github.com/artnie/rpwr-assignments
- Grades: 8 points for this assignment
- Due: 15.11., 23:59 AM German time
- Next class: 16.11., 14:00

Artificial Intelligence

Evaluation
Thanks for your attention!
Special thanks to the IAI team for the content of this lecture!

https://forms.gle/iZyKqLCxsrwBU3XZ6

[^0]: cc) (())() Institute for Artificial Intelligence, University of Bremen

 CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

[^1]: (c) (7)(2) Institute for Artificial Intelligence, University of Bremen

 CC BY-SA 4.0: https://creativecommons.org/licenses/by-sa/4.0/

[^2]: cc) (()) Institute for Artificial Intelligence, University of Bremen

 CC BY-SA 4.0: https://ereativecommons.org/licenses/by-sa/4.0/

