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Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);

• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure; ....
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Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
11



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
12



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
13



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
14



Artificial 
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
15



Artificial 
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2015, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2016, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2016, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2016, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.
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Defining a Function

Signature
CL-USER>
(defun my-cool-function-name (arg-1 arg-2 arg-3 arg-4)
"This function combines its 4 input arguments into a list

and returns it."
(list arg-1 arg-2 arg-3 arg-4))

Optional Arguments
CL-USER> (defun optional-arguments (arg-1 arg-2 &optional arg-3 arg-4)

(list arg-1 arg-2 arg-3 arg-4))
CL-USER> (optional-arguments 1 2 3 4)
(1 2 3 4)
CL-USER> (optional-arguments 1 2 3)
(1 2 3 NIL)
CL-USER> (optional-arguments 304)
invalid number of arguments: 1
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Defining a Function [2]

Key Arguments
CL-USER>
(defun specific-optional (arg-1 arg-2 &key arg-3 arg-4)
"This function demonstrates how to pass a value to

a specific optional argument."
(list arg-1 arg-2 arg-3 arg-4))

SPECIFIC-OPTIONAL

CL-USER> (specific-optional 1 2 3 4)
unknown &KEY argument: 3

CL-USER> (specific-optional 1 2 :arg-4 4)
(1 2 NIL 4)
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Defining a Function [3]

Unlimited Number of Arguments
CL-USER> (defun unlimited-args (arg-1 &rest args)

(format t "Type of args is ~a.~%" (type-of args))
(cons (list arg-1) args))

UNLIMITED-ARGS

CL-USER> (unlimited-args 1 2 3 4)
Type of args is CONS.
(1 2 3 4)

CL-USER> (unlimited-args 1)
Type of args is NULL.
(1)
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Multiple Values

list vs. values
CL-USER> (defvar *some-list* (list 1 2 3))

*SOME-LIST*
CL-USER> *some-list*
(1 2 3)
CL-USER> (defvar *values?* (values 1 2 3))

*VALUES?*
CL-USER> *values?*
1
CL-USER> (values 1 2 3)
1
2
3
CL-USER> *
1
CL-USER> //
(1 2 3)
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Multiple Values [2]

Returning Multiple Values!
CL-USER> (defvar *db* '((Anna 1987) (Bob 1899) (Charlie 1980)))

(defun name-and-birth-year (id)
(values (first (nth (- id 1) *db*))

(second (nth (- id 1) *db*))))
NAME-AND-BIRTH-YEAR

CL-USER> (name-and-birth-year 2)
BOB
1899

CL-USER> (multiple-value-bind (name year) (name-and-birth-year 2)
(format t "~a was born in ~a.~%" name year))

BOB was born in 1899.
NIL
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Function Designators
Similar to C pointers or Java references

Designator of a Function
CL-USER> (describe '+)
COMMON-LISP:+
[symbol]

+ names a special variable:
+ names a compiled function:
CL-USER> #'+
CL-USER> (symbol-function '+)
#<FUNCTION +>
CL-USER> (describe #'+)
#<FUNCTION +>
[compiled function]

Lambda-list: (&REST NUMBERS)
Declared type: (FUNCTION (&REST NUMBER) (VALUES NUMBER &OPTIONAL))
Derived type: (FUNCTION (&REST T) (VALUES NUMBER &OPTIONAL))
Documentation: ...
Source file: SYS:SRC;CODE;NUMBERS.LISP
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Higher-order Functions

Function as Argument
CL-USER> (funcall #'+ 1 2 3)
CL-USER> (apply #'+ '(1 2 3))
6
CL-USER> (defun transform-1 (num) (/ 1.0 num))
TRANSFORM-1
CL-USER> (defun transform-2 (num) (sqrt num))
TRANSFORM-2
CL-USER> (defun print-transformed (a-number a-function)

(format t "~a transformed with ~a becomes ~a.~%"
a-number a-function (funcall a-function a-number)))

PRINT-TRANSFORMED
CL-USER> (print-transformed 4 #'transform-1)
4 transformed with #<FUNCTION TRANSFORM-1> becomes 0.25.
CL-USER> (print-transformed 4 #'transform-2)
4 transformed with #<FUNCTION TRANSFORM-2> becomes 2.0.
CL-USER> (sort '(2 6 3 7 1 5) #'>)
(7 6 5 3 2 1)
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Higher-order Functions [2]

Function as Return Value
CL-USER> (defun give-me-some-function ()

(case (random 5)
(0 #'+)
(1 #'-)
(2 #'*)
(3 #'/)
(4 #'values)))

GIVE-ME-SOME-FUNCTION

CL-USER> (give-me-some-function)
#<FUNCTION ->

CL-USER> (funcall (give-me-some-function) 10 5)
5

CL-USER> (funcall (give-me-some-function) 10 5)
2
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Anonymous Functions

lambda
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6)) #'>)
The value (3 4) is not of type NUMBER.
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6))

(lambda (x y)
(> (length x) (length y))))

((1 2 3 4) (6 3 6) (3 4))
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6)) #'> :key #'car)
((6 3 6) (3 4) (1 2 3 4))

CL-USER> (defun random-generator-a-to-b (a b)
(lambda () (+ (random (- b a)) a)))

RANDOM-GENERATOR-A-TO-B
CL-USER> (random-generator-a-to-b 5 10)
#<CLOSURE (LAMBDA () :IN RANDOM-GENERATOR-A-TO-B) {100D31F90B}>
CL-USER> (funcall (random-generator-a-to-b 5 10))
9
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The let Environment

let
CL-USER> (let ((a 1)

(b 2))
(values a b))

1
2
CL-USER> (values a b)
The variable A is unbound.

CL-USER> (defvar some-var 'global)
(let ((some-var 'outer))

(let ((some-var 'inter))
(format t "some-var inner: ~a~%" some-var))

(format t "some-var outer: ~a~%" some-var))
(format t "global-var: ~a~%" some-var)

?
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some-var inner: INTER
some-var outer: OUTER
global-var: GLOBAL

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
32



Artificial 
Intelligence

The let Environment [2]

let*
CL-USER> (let ((a 4)

(a^2 (expt a 2)))
(values a a^2))

The variable A is unbound.

CL-USER> (let* ((a 4)
(a^2 (expt a 2)))

(values a a^2))
4
16
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Lexical Variables

In Lisp, non-global variable values are, when possible, determined at
compile time. They are bound lexically, i.e. they are bound to the
code they’re defined in, not to the run-time state of the program.

Riddle
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

?
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Riddle
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104

This is one single let block, therefore lexical-var is the same every-
where in the block.
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Lexical Variables [2]

Lexical scope with lambda and defun
CL-USER> (defun return-x (x)

(let ((x 304))
x))

(return-x 3)
?
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Lexical Variables [2]

Lexical scope with lambda and defun
CL-USER> (defun return-x (x)

(let ((x 304))
x))

(return-x 3)
304

lambda-s and defun-s create lexical local variables per default.
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Lexical Variables [3]

More Examples
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
?
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More Examples
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(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
; Evaluation aborted on #<UNBOUND-VARIABLE LEXICAL-VAR {100AA9C403}>.

CL-USER> (let ((another-var 304)
(another-lambda (lambda () (+ another-var 100))))

(setf another-var 4)
(funcall another-lambda))

?
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Lexical Variables [3]

More Examples
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
; Evaluation aborted on #<UNBOUND-VARIABLE LEXICAL-VAR {100AA9C403}>.

CL-USER> (let ((another-var 304)
(another-lambda (lambda () (+ another-var 100))))

(setf another-var 4)
(funcall another-lambda))

; caught WARNING:
; undefined variable: ANOTHER-VAR
; Evaluation aborted on #<UNBOUND-VARIABLE ANOTHER-VAR {100AD51473}>.
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Lexical Variables [3]

More Examples
CL-USER> (let ((other-lambda (lambda () (+ other-var 100))))

(setf other-var 4)
(funcall other-lambda))

?
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Lexical Variables [3]

More Examples
CL-USER> (let ((other-lambda (lambda () (+ other-var 100))))

(setf other-var 4)
(funcall other-lambda))

; caught WARNING:
; undefined variable: OTHER-VAR
104
CL-USER> other-var
4
CL-USER> (describe 'other-var)
COMMON-LISP-USER::OTHER-VAR
[symbol]

OTHER-VAR names an undefined variable:
Value: 4
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Lexical Variables [3]

More Examples
CL-USER> (let ((some-var 304))

(defun some-fun () (+ some-var 100))
(setf some-var 4)
(funcall #'some-fun))

?
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Lexical Variables [3]

More Examples
CL-USER> (let ((some-var 304))

(defun some-fun () (+ some-var 100))
(setf some-var 4)
(funcall #'some-fun))

104

;; Alt-. on DEFUN brings you to "defboot.lisp"
(defmacro-mundanely defun (&environment env name args &body body)
(multiple-value-bind (forms decls doc) (parse-body body)

(let* ((lambda-guts `(,args ...))
(lambda `(lambda ,@lambda-guts)) ...
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Closures
Counter
CL-USER> (defun increment-counter ()

(let ((counter 0))
(incf counter)))

(increment-counter)
(increment-counter)

1
CL-USER> (defun increment-counter-closure ()

(let ((counter 0))
(lambda () (incf counter))))

INCREMENT-COUNTER-CLOSURE
CL-USER> (let ((function-object (increment-counter-closure)))

(format t "counting: ~a ~a~%"
(funcall function-object) (funcall function-object)))

counting: 1 2

Closure is a function that, in addition to its specific functionality, also
encloses its lexical environment (environment as in, e.g., terminal
environment variables).
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Closures [2]

Counter Again
CL-USER> (defun increment-counter-lambda ()

(let ((counter 0))
(lambda (counter) (incf counter))))

INCREMENT-COUNTER-LAMBDA
CL-USER> (let ((function-object (increment-counter-lambda)))

(format t "counter: ~a~%" (funcall function-object 0))
(format t "once more: ~a~%" (funcall function-object 0)))

counter: 1
once more: 1
CL-USER> (let ((function-object (increment-counter-closure)))

(format t "counter: ~a~%" (funcall function-object))
(setf counter 0)
(format t "counter: ~a~%" (funcall function-object)))

counter: 1
counter: 2

Encapsulation!
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Lexical Variables [4]

Riddle #2
CL-USER> (let ((lex 'initial-value))

(defun return-lex ()
lex)

(defun return-lex-arg (lex)
(return-lex))

(format t "return-lex: ~a~%"
(return-lex))

(format t "return-lex-arg: ~a~%"
(return-lex-arg 'new-value))

(format t "return-lex again: ~a~%"
(return-lex)))

?
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Lexical Variables [4]

Riddle #2
CL-USER> (let ((lex 'initial-value))

(defun return-lex ()
lex)

(defun return-lex-arg (lex)
(return-lex))

(format t "return-lex: ~a~%"
(return-lex))

(format t "return-lex-arg: ~a~%"
(return-lex-arg 'new-value))

(format t "return-lex again: ~a~%"
(return-lex)))

; caught STYLE-WARNING:
; The variable LEX is defined but never used.
return-lex: INITIAL-VALUE
return-lex-arg: INITIAL-VALUE
return-lex again: INITIAL-VALUE
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Dynamic Variables

Riddle #3
CL-USER> (defvar dyn 'initial-value)
CL-USER> (defun return-dyn ()

dyn)
CL-USER> (defun return-dyn-arg (dyn)

(return-dyn))
CL-USER>
(format t "return-dyn: ~a~%"

(return-dyn))
(format t "return-dyn-arg: ~a~%"

(return-dyn-arg 'new-value))
(format t "return-dyn again: ~a~%"

(return-dyn))
?
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Dynamic Variables

Riddle #3
CL-USER> (defvar dyn 'initial-value)
CL-USER> (defun return-dyn ()

dyn)
CL-USER> (defun return-dyn-arg (dyn)

(return-dyn))
CL-USER>
(format t "return-dyn: ~a~%"

(return-dyn))
(format t "return-dyn-arg: ~a~%"

(return-dyn-arg 'new-value))
(format t "return-dyn again: ~a~%"

(return-dyn))
return-dyn: INITIAL-VALUE
return-dyn-arg: NEW-VALUE
return-dyn again: INITIAL-VALUE

defvar and defparameter create dynamically-bound variables.
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Currying

Back to Generators
CL-USER> (let ((x^10-lambda (lambda (x) (expt x 10))))

(dolist (elem '(2 3))
(format t "~a^10 = ~a~%" elem (funcall x^10-lambda elem))))

2^10 = 1024
3^10 = 59049
;; The following only works with roslisp_repl. Otherwise do first:
;; (pushnew #p"/.../alexandria" asdf:*central-registry* :test #'equal)
CL-USER> (asdf:load-system :alexandria)
CL-USER> (dolist (elem '(2 3))

(format t "~a^10 = ~a~%"
elem (funcall (alexandria:curry #'expt 10) elem)))

2^10 = 100
3^10 = 1000
CL-USER> (dolist (elem '(2 3))

(format t "~a^10 = ~a~%"
elem (funcall (alexandria:rcurry #'expt 10) elem)))

2^10 = 1024
3^10 = 59049
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Guidelines

• Don’t use global variables! Only for constants.
• If your function generates side-effects, name it correspondingly (either
foo! which is preferred, or foof as in setf, or nfoo as in nconc)

• Use Ctrl-Alt-\ on a selected region to fix indentation
• Try to keep the brackets all together:

This looks weird in Lisp
(if condition

do-this
do-that
)
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Links

• Alexandria documentation:
http://common-lisp.net/project/alexandria/draft/alexandria.html
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Info Summary

• Assignment code: REPO/assignment_3/src/...
• Assignment points: 10 out of 50
• Assignment due: 26.04, Tuesday, 08:00 AM German time
• Next class: 26.04, 16:15
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Q & A

Thanks for your attention!
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