
Artificial
Intelligence

Robot Programming with Lisp
3. Functional Programming:

Functions, Lexical Scope and Closures

Gayane Kazhoyan

Institute for Artificial Intelligence
Universität Bremen

19th April, 2016

Artificial
Intelligence

Outline

Background

Theory

Organizational

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
2

Artificial
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);

• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure;

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
3

Artificial
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure;

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
4

Artificial
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;

• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure;

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
5

Artificial
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure;

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
6

Artificial
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;

• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure;

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
7

Artificial
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure;

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
8

Artificial
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure;

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
9

Artificial
Intelligence

Functional Programming
Pure functional programming concepts include:

• no program state (e.g. no global variables);
• referential transparency, i.e. a function called twice with same
arguments always generates the same output;

• functions don’t have side effects;
• avoid mutable data, i.e. once created, data structure values don’t
change (immutable data);

• heavy usage of recursions, as opposed to iterative approaches;
• functions as first class citizens, as a result, higher-order functions
(simplest analogy: callbacks);

• lazy evaluations, i.e. only execute a function call when its result is
actually used;

• usage of lists as a main data structure;
Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
10

Artificial
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
11

Artificial
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
12

Artificial
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
13

Artificial
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
14

Artificial
Intelligence

Popular Languages

• Scheme: 1975, latest release in 2013, introduced many core functional
programming concepts that are widely accepted today

• Common Lisp: 1984, latest release (SBCL) in 2016, successor of
Scheme, possibly the most influential, general-purpose, widely-used
Lisp dialect

• Erlang: 1986, latest release in 2016, focused on concurrency and
distributed systems, supports hot patching, used within AWS

• Haskell: 1990, latest release in 2010, purely functional, in contrast to
all others in this list

• Racket: 1994, latest release in 2016, focused on writing
domain-specific programming languages

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
15

Artificial
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2015, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2016, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2016, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2016, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
16

Artificial
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2015, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2016, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2016, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2016, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
17

Artificial
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2015, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2016, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2016, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2016, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
18

Artificial
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2015, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2016, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2016, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2016, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
19

Artificial
Intelligence

Popular Languages [2]

• OCaml: 1996, latest release in 2015, very high performance,
static-typed, one of the first inherently object-oriented functional
programming languages

• Scala: 2003, latest release in 2016, compiled to JVM code,
static-typed, object-oriented, Java-like syntax {}

• Clojure: 2007, latest release in 2016, compiled to JVM code and
JavaScript, therefore mostly used in Web, seems to be fashionable in
the programming subculture at the moment

• Julia: 2012, latest release in 2016, focused on high-performance
numerical and scientific computing, means for distributed computation,
strong FFI support, Python-like syntax

Conclusion: functional programming becomes more and more popular.
Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
20

Artificial
Intelligence

Outline

Background

Theory

Organizational

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
21

Artificial
Intelligence

Defining a Function

Signature
CL-USER>
(defun my-cool-function-name (arg-1 arg-2 arg-3 arg-4)
"This function combines its 4 input arguments into a list

and returns it."
(list arg-1 arg-2 arg-3 arg-4))

Optional Arguments
CL-USER> (defun optional-arguments (arg-1 arg-2 &optional arg-3 arg-4)

(list arg-1 arg-2 arg-3 arg-4))
CL-USER> (optional-arguments 1 2 3 4)
(1 2 3 4)
CL-USER> (optional-arguments 1 2 3)
(1 2 3 NIL)
CL-USER> (optional-arguments 304)
invalid number of arguments: 1

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
22

Artificial
Intelligence

Defining a Function [2]

Key Arguments
CL-USER>
(defun specific-optional (arg-1 arg-2 &key arg-3 arg-4)
"This function demonstrates how to pass a value to

a specific optional argument."
(list arg-1 arg-2 arg-3 arg-4))

SPECIFIC-OPTIONAL

CL-USER> (specific-optional 1 2 3 4)
unknown &KEY argument: 3

CL-USER> (specific-optional 1 2 :arg-4 4)
(1 2 NIL 4)

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
23

Artificial
Intelligence

Defining a Function [3]

Unlimited Number of Arguments
CL-USER> (defun unlimited-args (arg-1 &rest args)

(format t "Type of args is ~a.~%" (type-of args))
(cons (list arg-1) args))

UNLIMITED-ARGS

CL-USER> (unlimited-args 1 2 3 4)
Type of args is CONS.
(1 2 3 4)

CL-USER> (unlimited-args 1)
Type of args is NULL.
(1)

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
24

Artificial
Intelligence

Multiple Values

list vs. values
CL-USER> (defvar *some-list* (list 1 2 3))

SOME-LIST
CL-USER> *some-list*
(1 2 3)
CL-USER> (defvar *values?* (values 1 2 3))

VALUES?
CL-USER> *values?*
1
CL-USER> (values 1 2 3)
1
2
3
CL-USER> *
1
CL-USER> //
(1 2 3)

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
25

Artificial
Intelligence

Multiple Values [2]

Returning Multiple Values!
CL-USER> (defvar *db* '((Anna 1987) (Bob 1899) (Charlie 1980)))

(defun name-and-birth-year (id)
(values (first (nth (- id 1) *db*))

(second (nth (- id 1) *db*))))
NAME-AND-BIRTH-YEAR

CL-USER> (name-and-birth-year 2)
BOB
1899

CL-USER> (multiple-value-bind (name year) (name-and-birth-year 2)
(format t "~a was born in ~a.~%" name year))

BOB was born in 1899.
NIL

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
26

Artificial
Intelligence

Function Designators
Similar to C pointers or Java references

Designator of a Function
CL-USER> (describe '+)
COMMON-LISP:+
[symbol]

+ names a special variable:
+ names a compiled function:
CL-USER> #'+
CL-USER> (symbol-function '+)
#<FUNCTION +>
CL-USER> (describe #'+)
#<FUNCTION +>
[compiled function]

Lambda-list: (&REST NUMBERS)
Declared type: (FUNCTION (&REST NUMBER) (VALUES NUMBER &OPTIONAL))
Derived type: (FUNCTION (&REST T) (VALUES NUMBER &OPTIONAL))
Documentation: ...
Source file: SYS:SRC;CODE;NUMBERS.LISP

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
27

Artificial
Intelligence

Higher-order Functions

Function as Argument
CL-USER> (funcall #'+ 1 2 3)
CL-USER> (apply #'+ '(1 2 3))
6
CL-USER> (defun transform-1 (num) (/ 1.0 num))
TRANSFORM-1
CL-USER> (defun transform-2 (num) (sqrt num))
TRANSFORM-2
CL-USER> (defun print-transformed (a-number a-function)

(format t "~a transformed with ~a becomes ~a.~%"
a-number a-function (funcall a-function a-number)))

PRINT-TRANSFORMED
CL-USER> (print-transformed 4 #'transform-1)
4 transformed with #<FUNCTION TRANSFORM-1> becomes 0.25.
CL-USER> (print-transformed 4 #'transform-2)
4 transformed with #<FUNCTION TRANSFORM-2> becomes 2.0.
CL-USER> (sort '(2 6 3 7 1 5) #'>)
(7 6 5 3 2 1)

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
28

Artificial
Intelligence

Higher-order Functions [2]

Function as Return Value
CL-USER> (defun give-me-some-function ()

(case (random 5)
(0 #'+)
(1 #'-)
(2 #'*)
(3 #'/)
(4 #'values)))

GIVE-ME-SOME-FUNCTION

CL-USER> (give-me-some-function)
#<FUNCTION ->

CL-USER> (funcall (give-me-some-function) 10 5)
5

CL-USER> (funcall (give-me-some-function) 10 5)
2

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
29

Artificial
Intelligence

Anonymous Functions

lambda
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6)) #'>)
The value (3 4) is not of type NUMBER.
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6))

(lambda (x y)
(> (length x) (length y))))

((1 2 3 4) (6 3 6) (3 4))
CL-USER> (sort '((1 2 3 4) (3 4) (6 3 6)) #'> :key #'car)
((6 3 6) (3 4) (1 2 3 4))

CL-USER> (defun random-generator-a-to-b (a b)
(lambda () (+ (random (- b a)) a)))

RANDOM-GENERATOR-A-TO-B
CL-USER> (random-generator-a-to-b 5 10)
#<CLOSURE (LAMBDA () :IN RANDOM-GENERATOR-A-TO-B) {100D31F90B}>
CL-USER> (funcall (random-generator-a-to-b 5 10))
9

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
30

Artificial
Intelligence

The let Environment

let
CL-USER> (let ((a 1)

(b 2))
(values a b))

1
2
CL-USER> (values a b)
The variable A is unbound.

CL-USER> (defvar some-var 'global)
(let ((some-var 'outer))

(let ((some-var 'inter))
(format t "some-var inner: ~a~%" some-var))

(format t "some-var outer: ~a~%" some-var))
(format t "global-var: ~a~%" some-var)

?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
31

Artificial
Intelligence

The let Environment

let
CL-USER> (let ((a 1)

(b 2))
(values a b))

1
2
CL-USER> (values a b)
The variable A is unbound.

CL-USER> (defvar some-var 'global)
(let ((some-var 'outer))

(let ((some-var 'inter))
(format t "some-var inner: ~a~%" some-var))

(format t "some-var outer: ~a~%" some-var))
(format t "global-var: ~a~%" some-var)

some-var inner: INTER
some-var outer: OUTER
global-var: GLOBAL

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
32

Artificial
Intelligence

The let Environment [2]

let*
CL-USER> (let ((a 4)

(a^2 (expt a 2)))
(values a a^2))

The variable A is unbound.

CL-USER> (let* ((a 4)
(a^2 (expt a 2)))

(values a a^2))
4
16

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
33

Artificial
Intelligence

Lexical Variables

In Lisp, non-global variable values are, when possible, determined at
compile time. They are bound lexically, i.e. they are bound to the
code they’re defined in, not to the run-time state of the program.

Riddle
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
34

Artificial
Intelligence

Lexical Variables

In Lisp, non-global variable values are, when possible, determined at
compile time. They are bound lexically, i.e. they are bound to the
code they’re defined in, not to the run-time state of the program.

Riddle
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104

This is one single let block, therefore lexical-var is the same every-
where in the block.

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
35

Artificial
Intelligence

Lexical Variables [2]

Lexical scope with lambda and defun
CL-USER> (defun return-x (x)

(let ((x 304))
x))

(return-x 3)
?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
36

Artificial
Intelligence

Lexical Variables [2]

Lexical scope with lambda and defun
CL-USER> (defun return-x (x)

(let ((x 304))
x))

(return-x 3)
304

lambda-s and defun-s create lexical local variables per default.

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
37

Artificial
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
38

Artificial
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
; Evaluation aborted on #<UNBOUND-VARIABLE LEXICAL-VAR {100AA9C403}>.

CL-USER> (let ((another-var 304)
(another-lambda (lambda () (+ another-var 100))))

(setf another-var 4)
(funcall another-lambda))

?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
39

Artificial
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let* ((lexical-var 304)

(some-lambda (lambda () (+ lexical-var 100))))
(setf lexical-var 4)
(funcall some-lambda))

104
CL-USER> lexical-var
; Evaluation aborted on #<UNBOUND-VARIABLE LEXICAL-VAR {100AA9C403}>.

CL-USER> (let ((another-var 304)
(another-lambda (lambda () (+ another-var 100))))

(setf another-var 4)
(funcall another-lambda))

; caught WARNING:
; undefined variable: ANOTHER-VAR
; Evaluation aborted on #<UNBOUND-VARIABLE ANOTHER-VAR {100AD51473}>.

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
40

Artificial
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let ((other-lambda (lambda () (+ other-var 100))))

(setf other-var 4)
(funcall other-lambda))

?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
41

Artificial
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let ((other-lambda (lambda () (+ other-var 100))))

(setf other-var 4)
(funcall other-lambda))

; caught WARNING:
; undefined variable: OTHER-VAR
104
CL-USER> other-var
4
CL-USER> (describe 'other-var)
COMMON-LISP-USER::OTHER-VAR
[symbol]

OTHER-VAR names an undefined variable:
Value: 4

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
42

Artificial
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let ((some-var 304))

(defun some-fun () (+ some-var 100))
(setf some-var 4)
(funcall #'some-fun))

?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
43

Artificial
Intelligence

Lexical Variables [3]

More Examples
CL-USER> (let ((some-var 304))

(defun some-fun () (+ some-var 100))
(setf some-var 4)
(funcall #'some-fun))

104

;; Alt-. on DEFUN brings you to "defboot.lisp"
(defmacro-mundanely defun (&environment env name args &body body)
(multiple-value-bind (forms decls doc) (parse-body body)

(let* ((lambda-guts `(,args ...))
(lambda `(lambda ,@lambda-guts)) ...

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
44

Artificial
Intelligence

Closures
Counter
CL-USER> (defun increment-counter ()

(let ((counter 0))
(incf counter)))

(increment-counter)
(increment-counter)

1
CL-USER> (defun increment-counter-closure ()

(let ((counter 0))
(lambda () (incf counter))))

INCREMENT-COUNTER-CLOSURE
CL-USER> (let ((function-object (increment-counter-closure)))

(format t "counting: ~a ~a~%"
(funcall function-object) (funcall function-object)))

counting: 1 2

Closure is a function that, in addition to its specific functionality, also
encloses its lexical environment (environment as in, e.g., terminal
environment variables).
Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
45

Artificial
Intelligence

Closures [2]

Counter Again
CL-USER> (defun increment-counter-lambda ()

(let ((counter 0))
(lambda (counter) (incf counter))))

INCREMENT-COUNTER-LAMBDA
CL-USER> (let ((function-object (increment-counter-lambda)))

(format t "counter: ~a~%" (funcall function-object 0))
(format t "once more: ~a~%" (funcall function-object 0)))

counter: 1
once more: 1
CL-USER> (let ((function-object (increment-counter-closure)))

(format t "counter: ~a~%" (funcall function-object))
(setf counter 0)
(format t "counter: ~a~%" (funcall function-object)))

counter: 1
counter: 2

Encapsulation!
Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
46

Artificial
Intelligence

Lexical Variables [4]

Riddle #2
CL-USER> (let ((lex 'initial-value))

(defun return-lex ()
lex)

(defun return-lex-arg (lex)
(return-lex))

(format t "return-lex: ~a~%"
(return-lex))

(format t "return-lex-arg: ~a~%"
(return-lex-arg 'new-value))

(format t "return-lex again: ~a~%"
(return-lex)))

?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
47

Artificial
Intelligence

Lexical Variables [4]

Riddle #2
CL-USER> (let ((lex 'initial-value))

(defun return-lex ()
lex)

(defun return-lex-arg (lex)
(return-lex))

(format t "return-lex: ~a~%"
(return-lex))

(format t "return-lex-arg: ~a~%"
(return-lex-arg 'new-value))

(format t "return-lex again: ~a~%"
(return-lex)))

; caught STYLE-WARNING:
; The variable LEX is defined but never used.
return-lex: INITIAL-VALUE
return-lex-arg: INITIAL-VALUE
return-lex again: INITIAL-VALUE

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
48

Artificial
Intelligence

Dynamic Variables

Riddle #3
CL-USER> (defvar dyn 'initial-value)
CL-USER> (defun return-dyn ()

dyn)
CL-USER> (defun return-dyn-arg (dyn)

(return-dyn))
CL-USER>
(format t "return-dyn: ~a~%"

(return-dyn))
(format t "return-dyn-arg: ~a~%"

(return-dyn-arg 'new-value))
(format t "return-dyn again: ~a~%"

(return-dyn))
?

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
49

Artificial
Intelligence

Dynamic Variables

Riddle #3
CL-USER> (defvar dyn 'initial-value)
CL-USER> (defun return-dyn ()

dyn)
CL-USER> (defun return-dyn-arg (dyn)

(return-dyn))
CL-USER>
(format t "return-dyn: ~a~%"

(return-dyn))
(format t "return-dyn-arg: ~a~%"

(return-dyn-arg 'new-value))
(format t "return-dyn again: ~a~%"

(return-dyn))
return-dyn: INITIAL-VALUE
return-dyn-arg: NEW-VALUE
return-dyn again: INITIAL-VALUE

defvar and defparameter create dynamically-bound variables.
Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
50

Artificial
Intelligence

Currying

Back to Generators
CL-USER> (let ((x^10-lambda (lambda (x) (expt x 10))))

(dolist (elem '(2 3))
(format t "~a^10 = ~a~%" elem (funcall x^10-lambda elem))))

2^10 = 1024
3^10 = 59049
;; The following only works with roslisp_repl. Otherwise do first:
;; (pushnew #p"/.../alexandria" asdf:*central-registry* :test #'equal)
CL-USER> (asdf:load-system :alexandria)
CL-USER> (dolist (elem '(2 3))

(format t "~a^10 = ~a~%"
elem (funcall (alexandria:curry #'expt 10) elem)))

2^10 = 100
3^10 = 1000
CL-USER> (dolist (elem '(2 3))

(format t "~a^10 = ~a~%"
elem (funcall (alexandria:rcurry #'expt 10) elem)))

2^10 = 1024
3^10 = 59049
Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
51

Artificial
Intelligence

Guidelines

• Don’t use global variables! Only for constants.
• If your function generates side-effects, name it correspondingly (either
foo! which is preferred, or foof as in setf, or nfoo as in nconc)

• Use Ctrl-Alt-\ on a selected region to fix indentation
• Try to keep the brackets all together:

This looks weird in Lisp
(if condition

do-this
do-that
)

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
52

Artificial
Intelligence

Links

• Alexandria documentation:
http://common-lisp.net/project/alexandria/draft/alexandria.html

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
53

http://common-lisp.net/project/alexandria/draft/alexandria.html

Artificial
Intelligence

Outline

Background

Theory

Organizational

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
54

Artificial
Intelligence

Info Summary

• Assignment code: REPO/assignment_3/src/...
• Assignment points: 10 out of 50
• Assignment due: 26.04, Tuesday, 08:00 AM German time
• Next class: 26.04, 16:15

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
55

Artificial
Intelligence

Q & A

Thanks for your attention!

Background Theory Organizational

Gayane Kazhoyan

19th April, 2016

Robot Programming with Lisp
56

	Background
	Theory
	Organizational

