

Robot Programming with Lisp

1. Introduction, Setup

Gayane Kazhoyan

Institute for Artificial Intelligence Universität Bremen

14th October, 2014

Outline

Introduction

Assignment

General Info

Language: English (and German)

• Lecturer: Gaya (PhD student at IAI)

Correspondence: gaya@cs.uni-bremen.de, no StudIP messages please

Course number: 03-BE-710.98d

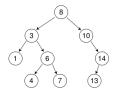
• Credits: 4 ECTS (2 SWS)

• Course type: practical course

Dates: Tuesdays, 14:15 - 15:45

• Location: TAB Building, Room 2.63 (Bibliothek)

Course content


Common Lisp

Robot Operating System (ROS)

Artificial Intelligence

Robot platform

Common Lisp

- Full-featured industry standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code
- Best choice for symbolic processing (AI, theorem proving, etc.)
- Good choice for writing domain-specific programming languages (e.g., robot programming languages :)

Applications using / written in dialects of Lisp: Emacs, AutoCAD, Mirai, Google ITA, DART, Maxima, AI and robotics frameworks, ...

Artificial Intelligence topics

- Tree search algorithms
- Symbolic reasoning
- Application: general problem solver

ROS

- Meta-Operating System for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Middleware for communication of the components of a robotic system
- Powerful build system (based on CMake), with a strong focus on integration and documentation
- Language-independent architecture (C++, Python, Lisp, Java, JavaScript, ...)
- According to ROS 2014 Community Metrics Report,
 - About 1 million pageviews of wiki.ros.org a month
 - About 3.5 million downloads of .deb packages a month
- De facto standard in modern robotics

TortugaBot

- 2 controllable wheels
- 2.5D vision sensor
- Asus Eee PC with bluetooth
- Optional basket in the top part

Rough schedule

- Introduction, Setup
- Lisp basics
- Functional programming
- OOP
- ROS, ASDF, roslisp
- roslisp, actionlib, turtlesim
- tf

- TortugaBot, navigation
- Collision avoidance
- Project scenario
- Project
- Lab visit, project
- The big day: competition

Software requirements

Bringing a personal laptop is encouraged.

OS:	Ubuntu 14.04 LTS (other Ubuntu versions might work but with no guarantee)
IDE:	Emacs 24
Version control:	Git
Packaging system:	ROS
Lisp software:	SBCL compiler, ASDF build system, Emacs plugin for Common Lisp

Introduction

Assignment

Homework assignments and the project

- Homework assignments will mostly consist of filling in the missing gaps in the already existing code.
- That code will be hosted on GitHub (https://github.com).
- The code you write should be uploaded to GitHub as well.
 (Private server space is also available but GitHub is preferred.)
- ullet Course final grade = 50 points homework + 50 points final project.
- To participate in the project you need at least 20 points from the homeworks, otherwise it's a fail.
- This week's assignment will not be evaluated.

Bottom line

You will learn / improve your skills in the following:

- Linux
- Git
- Emacs
- Functional programming
- Common Lisp, of course
- ROS (for future roboticists)

...and get to play with a real little robot!

Outline

Introduction

Assignment

Assignment goals

Set up your working environment Set up your GitHub account

Get comfortable with Emacs

Task 1: Install Ubuntu 14.04

- Find out your processor architecture (32 vs. 64 bit).
 Hint: in Windows, holding the Windows Key press R, type dxdiag, press Enter and find the info you need.
- Download Ubuntu 14.04 installation .iso: http://www.ubuntu.com/download/desktop
- Burn the .iso onto a DVD or create a boot USB.
 Hint: for a bootable USB, in Windows use the Universal USB installer: http://www.pendrivelinux.com/ universal-usb-installer-easy-as-1-2-3/; and in Linux you could, e.g., use the unetbootin.
- Install Ubuntu 14.04 (aka Trusty).
 Dual boot installation with default settings is a one click thing.

Task 2: Install ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/indigo/Installation/Ubuntu

In short, it boils down to executing the following in the terminal (hint: to open a fresh terminal press <Ctrl>+<Alt>+t):

- Add ROS repositories to your sources list:
 sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu trusty main" > /etc/apt/sources.list.d/ros-latest.list'
- Add their key to your trusted public keys:

 $\verb|wget| \verb| https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -0 - | sudo apt-key add -0$

- Update your Debian package index:
 - sudo apt-get update
- The version of ROS distributed with Ubuntu 14.04 is ROS Indigo.
 Install the desktop package. Say <No> if asked about hddtemp.
- Install the workspace management tools:

sudo apt-get install python-rosinstall && sudo apt-get install python-wstool ${\bf Introduction}$

Assignment

Task 3: Setup ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/indigo/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

- Setup rosdep:
 sudo rosdep init && rosdep update
- Initialize the ROS environment for this particular terminal: source /opt/ros/indigo/setup.bash
- Create a directory where the code you'll write will be stored (the name ros_ws and the location ~ can be changed):
 mkdir -p ~/ros_ws/src
- Initialize the workspace:
 - cd ~/ros_ws && catkin_make
- Update your bash startup script and make sure it worked:

echo -e "\n# ROS\nsource \$HOME/ros_ws/devel/setup.bash\n" >> ~/.bashrc && tail ~/.bashrc && source ~/.bashrc Introduction Assignment

Task 4: Git and GitHub

• Create an account on GitHub if you don't have one yet and request a private repository student discount for it:

 $\verb|https://github.com/join| https://education.github.com/discount_requests/new|$

- Create a new empty repository called lisp_course_material in your GitHub account and make it private once possible.
- Add gaya- (mind the dash!) as a collaborator to that repo.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src && git clone https://github.com/code-iai/lisp_course_material.git && ll

• Define a remote target with the address of your new GitHub repo:

cd lisp_course_material && git remote add my-repo https://github.com/YOUR_GITHUB_USERNAME/lisp_course_material.git

• Upload the files to your new GitHub repo:

git push -u my-repo master

Introduction

Assignment

Task 5: Install the IDE

- Install the editor itself (Emacs), the Common Lisp compiler (SBCL), the linker (ASDF) and the Emacs Common Lisp plugin (Slime):
- If ros-indigo-roslisp-repl can't be found do the following:
 - Open the file with your repositories list:
 sudo gedit /etc/apt/sources.list.d/ros-latest.list
 - Comment out the single line and add another line, then save and close:
 #deb http://packages.ros.org/ros/ubuntu precise main
 deb http://packages.ros.org/ros-shadou-fixed/ubuntu precise main
 - Update the package index and try to install again:
 sudo apt-get update && sudo apt-get install ros-indigo-roslisp-repl
 - Once succeeded, change the file back to how it was before:
 sudo gedit /etc/apt/sources.list.d/ros-latest.list
 - Update the package index again:
 sudo apt-get update
- Start the editor (after compilation is finished you'll see the Lisp shell) :

Introduction

Assignment

Task 6: Get familiar with Emacs

The following notation is used in Emacs for keyboard shortcuts:

• C for <Ctrl>

SPC for <Space>

• M for <Alt>

- RET for <Enter>
- for when two keys are pressed together (e.g. C-x for <Ctrl>+x)

The basic shortcuts you will need are listed below:

- C-x C-f opens a file
- C-x 3 or C-x 2 opens a new tab, C-x 0 closes it, C-x 1 maximizes
- C-x o switches between tabs
- C-x b switches buffers, C-x C-b lists all open buffers, C-x k kills
- C-g cancels a command half-way, C-x C-c yes exits Emacs

Open the file with your first assignment and follow the instructions:

Task 7: Get familiar with Git

- Once done editing orc-battle.lisp, setup colorful output for Git
 and check what's new in your local repo (the one on your hard drive):
 - git config --global color.ui true & cd ROS_WORKSPACE/src/lisp_course_material & git status color.ui true & cd ROS_WORKSPACE/src/lisp_course_material & color.ui true & cd ROS_WORKSPACE/src/lisp_course_material & cd ROS_WORKSPACE/src/lisp_cour
- To see which exactly lines changed ask for the diff:
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use
- \bullet If you deleted some files, to remove them from the index use $_{\mbox{\scriptsize git\ add\ -u}}$
- Once you're sure the changes are final, commit locally: git commit -vm "A meaningful commit message."
- Finally, to upload your local commits to the GitHub server, push the changes upstream:

git push # or git push my-repo master

Links

• Emacs cheat sheet:

 $\verb|http://www.ic.unicamp.br/~helio/disciplinas/MC102/Emacs_Reference_Card.pdf| \\$

• Git reference book:

http://git-scm.com/book/de

Info summary

Assignment:

- Due: 20.10, Monday (not evaluated)
- Solution: will be available on the Git repo (git pull origin master)

Next class:

• Date: 21.10

Time: 14:15 (14:00 - 14:15 for questions)

Place: same room (TAB 2.63)

Lecturer: Georg Bartels (substitute for two weeks).

Thanks for your attention!