

Robot Programming with Lisp 1. Introduction, Setup

Gayane Kazhoyan

Institute for Artificial Intelligence University of Bremen

18th October, 2018

General Info

- Lecturer: Gaya (PhD student at IAI)
- Tutor: Arthur (HiWi at IAI)
- Correspondence: gaya@cs.uni-bremen.de, artnie91@cs.uni-bremen.de
- Dates: Thursdays, 14:15 15:45, 16:15 17:45
- Language: English and German
- Credits: 6 ECTS (4 SWS)
- Course type: practical course
- Course number: 03-BE-710.98d
- Location: TAB Building, Room 0.36 EG

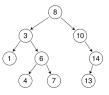
Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			2

Introduction

Course Content

Organizational

Assignment


Introduction	Course Content	Organizational	Assignment
Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Rob	ot Programming with Lisp
18 th October, 2018			3

Artificial Intelligence

Robot Operating System (ROS)

Robot platform

Introduction

Course Content

Organizational

Assignment

Gayane Kazhoyan 18th October, 2018 Robot Programming with Lisp 4

• Full-featured industry-standard programming language

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
toth Ostalian ooto			5

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Robo	ot Programming with Lisp

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing

	1
Introd	luction

Course Content

Organizational

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code

ntroduction

Course Content

Organizational

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code
- Best choice for symbolic processing (AI, theorem proving, etc.)

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October 2018			9

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code
- Best choice for symbolic processing (AI, theorem proving, etc.)
- Good choice for writing domain-specific programming languages (e.g., robot programming languages)

- Full-featured industry-standard programming language
- Means for functional programming
- Means for imperative programming
- Means for OOP
- Fast prototyping through read-eval-print loop and dynamic typing
- Compiles into machine code
- Best choice for symbolic processing (AI, theorem proving, etc.)
- Good choice for writing domain-specific programming languages (e.g., robot programming languages)

Applications using / written in dialects of Lisp:

Emacs, AutoCAD, Grammarly, Mirai (Gollum animation), Google ITA (airplane ticket price planner AI), DART (DARPA logistics AI), Maxima (computer algebra system), AI and robotics frameworks, ...

Gayane Kazhoyan 18th October, 2018

• Middleware for communication of the components of a robotic system

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			12

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Rot	oot Programming with Lisp
18 th October, 2018			13

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Powerful build system (based on CMake), with a strong focus on integration and documentation

Introd	luction

Course Content

Organizational

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Powerful build system (based on CMake), with a strong focus on integration and documentation
- Language-independent architecture (C++, Python, Lisp, Java, JavaScript, ...)

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Rc	bot Programming with Lisp
18 th October, 2018			15

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Powerful build system (based on CMake), with a strong focus on integration and documentation
- Language-independent architecture (C++, Python, Lisp, Java, JavaScript, ...)
- According to ROS 2018 Community Metrics Report,
 - More than 1.6 million unique pageviews of wiki.ros.org a month
 - More than 16 million downloads of .deb packages a month

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			16

- Middleware for communication of the components of a robotic system
- "Meta-Operating System" for programming robotics software (configuring, starting / stopping, logging etc. software components)
- Powerful build system (based on CMake), with a strong focus on integration and documentation
- Language-independent architecture (C++, Python, Lisp, Java, JavaScript, ...)
- According to ROS 2018 Community Metrics Report,
 - More than 1.6 million unique pageviews of wiki.ros.org a month
 - More than 16 million downloads of .deb packages a month
- De facto standard in modern robotics

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			17

- 2 controllable wheels
- 2D laser scanner
- Optional 2.5D vision sensor
- Asus Eee PC with bluetooth
- Optional basket in the top part
- PlayStation joystick

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			18

• ROS supports a number of languages: C++, Python, Lisp and Java

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp 19
18 th October, 2018			15

- ROS supports a number of languages: C++, Python, Lisp and Java
- Lisp is good for rapid prototyping

Location of the	and the second second
Introd	luction

Course Content

Organizational

- ROS supports a number of languages: C++, Python, Lisp and Java
- Lisp is good for rapid prototyping
- It is more suitable for symbolic reasoning and AI

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			21

- ROS supports a number of languages: C++, Python, Lisp and Java
- Lisp is good for rapid prototyping
- It is more suitable for symbolic reasoning and AI
- There are existing robot programming languages in Lisp that automate decision making

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			22

Introduction, Setup

- Lisp basics
- Functional programming
- 00P
- ROS, ROS Lisp API (roslisp)
- roslisp, 2D world of turtlesim
- coordinate frames, tf

TortugaBot, navigation

versität Bremen

- Collision avoidance
- Project scenario
- Project implementation
- The big day: competition

Software requirements

Bringing a *personal laptop* is encouraged.

OS:	Ubuntu 16.04 (18.04 or 14.04 with manual setting up)
IDE:	Emacs 24+
Version control:	Git
Packaging system:	ROS
Lisp software:	SBCL compiler, ASDF build system, Emacs plugin for Common Lisp

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			24

You will learn / improve your skills in the following:

- Linux
- Git
- Emacs
- Functional programming
- Common Lisp, of course
- ROS (for future roboticists)

...and get to play with a real little robot!

Introduction

Course Content

Organizational

Assignment

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		F	Robot Programming with Lisp
18 th October, 2018			26

• Course final grade: 100 points = 50 homework + 50 group project.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		R	obot Programming with Lisp
18 th October, 2018			27

- Course final grade: 100 points = 50 homework + 50 group project.
- To participate in the project you need at least 25 points from the homeworks, otherwise it's a fail.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		R	obot Programming with Lisp
18 th October, 2018			28

- Course final grade: 100 points = 50 homework + 50 group project.
- To participate in the project you need at least 25 points from the homeworks, otherwise it's a fail.
- Final grade: 50 of 100 points 4.0, 100 of 100 points 1.0.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October 2018			29

Homework assignments

• Homework assignments will mostly consist of filling in the missing gaps in already existing code.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Ro	bot Programming with Lisp
18 th October, 2018			30

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			31

Homework assignments

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).

	Intro	oductio	n
--	-------	---------	---

Course Content

Organizational

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).
- Homework is due in one week.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			33

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).
- Homework is due in one week.
- Solutions are discussed in the tutorial.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October 2018			34

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).
- Homework is due in one week.
- Solutions are discussed in the tutorial.
- Can get 60 of 50 points in homework (can skip one homework).

- Homework assignments will mostly consist of filling in the missing gaps in already existing code.
- That code will be hosted on GitLab.
- The code you write should be uploaded to GitLab (https://gitlab.informatik.uni-bremen.de/).
- Homework is due in one week.
- Solutions are discussed in the tutorial.
- Can get 60 of 50 points in homework (can skip one homework).
- Bonus points for very good homework solutions.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Rol	oot Programming with Lisp
19th October 2019			36

• Emacs cheat sheet:

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

• Git reference book:

http://git-scm.com/book/de

• Lisp books:

http://landoflisp.com/, http://www.paulgraham.com/onlisp.html, http://www.gigamonkeys.com/book/

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			37

Next class:

- Date: 25.10
- Time: 14:15 (14:00 14:15 for questions)
- Place: same room (TAB 0.36)

Assignment:

- Due: 24.10, Wednesday, 23:59
- Points: 3 points
- For questions: write an email to Arthur or Gaya

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			38

Introduction

Course Content

Organizational

Assignment

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			39

Assignment goals

Set up your working environment

Get comfortable with Emacs

Introduction

Course Content

Organizational

Assignment

Gayane Kazhoyan 18th October, 2018 Robot Programming with Lisp 40

Task 1: Install Ubuntu 16.04

• Find out your processor architecture (32 vs. 64 bit). *Hint*: unless your computer is very old, it's most likely 64 bit.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			41

Task 1: Install Ubuntu 16.04

- Find out your processor architecture (32 vs. 64 bit). *Hint*: unless your computer is very old, it's most likely 64 bit.
- Download Ubuntu 16.04 installation .iso (ubuntu-16.04.5-desktop-amd64.iso) http://releases.ubuntu.com/16.04/

Introduction

Course Content

Organizational

Assignment

Task 1: Install Ubuntu 16.04

- Find out your processor architecture (32 vs. 64 bit). *Hint*: unless your computer is very old, it's most likely 64 bit.
- Download Ubuntu 16.04 installation .iso (ubuntu-16.04.5-desktop-amd64.iso) http://releases.ubuntu.com/16.04/
- Create a boot USB with the .iso (or burn a DVD). Hint: for a bootable USB, in Windows use the Universal USB installer: http://www.pendrivelinux.com/ universal-usb-installer-easy-as-1-2-3/; and in Linux you could, e.g., use the Startup Disk Creator or unetbootin.

Task 1: Install Ubuntu 16.04

- Find out your processor architecture (32 vs. 64 bit). *Hint*: unless your computer is very old, it's most likely 64 bit.
- Download Ubuntu 16.04 installation .iso (ubuntu-16.04.5-desktop-amd64.iso) http://releases.ubuntu.com/16.04/
- Create a boot USB with the .iso (or burn a DVD). Hint: for a bootable USB, in Windows use the Universal USB installer: http://www.pendrivelinux.com/ universal-usb-installer-easy-as-1-2-3/; and in Linux you could, e.g., use the Startup Disk Creator or unetbootin.
- Install Ubuntu 16.04 (aka Xenial).

Dual boot installation with default settings is a one click thing.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Ro	oot Programming with Lisp
18 th October, 2018			44

45

Task 1: Install Ubuntu: FAQ

 How do I boot from USB / CD? You should enter either "Boot Menu" or "BIOS Menu" during reboot

https://www.desertcrystal.com/bootkeys

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp

18th October, 2018

Task 1: Install Ubuntu: FAQ

- How do I boot from USB / CD? You should enter either "Boot Menu" or "BIOS Menu" during reboot https://www.desertcrystal.com/bootkeys
- Windows 8+ doesn't let me into "BIOS Menu"! You should restart into the "Boot Options Menu" of your Windows: hold down "Shift" while pressing "Restart".

http://www.makeuseof.com/tag/how-to-access-the-bios-on-a-windows-8-computer/

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp

Task 1: Install Ubuntu: FAQ

- How do I boot from USB / CD? You should enter either "Boot Menu" or "BIOS Menu" during reboot https://www.desertcrystal.com/bootkeys
- Windows 8+ doesn't let me into "BIOS Menu"! You should restart into the "Boot Options Menu" of your Windows: hold down "Shift" while pressing "Restart".
 http://www.makeuseof.com/tag/how-to-access-the-bios-on-a-vindows-8-computer/
- My BIOS supports UEFI, Ubuntu won't install! It should work but if you can't get it to run turn off the UEFI mode: restart into the "Boot Options Menu" of your Windows, choose "Troubleshoot", then "UEFI Firmware Settings"

http://www.makeuseof.com/tag/how-to-access-the-bios-on-a-windows-8-computer/

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			47

Task 1: Install Ubuntu: FAQ

- How do I boot from USB / CD? You should enter either "Boot Menu" or "BIOS Menu" during reboot https://www.desertcrystal.com/bootkeys
- Windows 8+ doesn't let me into "BIOS Menu"! You should restart into the "Boot Options Menu" of your Windows: hold down "Shift" while pressing "Restart".
 http://www.makeuseof.com/tag/how-to-access-the-bios-on-a-vindows-8-computer/
- My BIOS supports UEFI, Ubuntu won't install!
 It should work but if you can't get it to run turn off the UEFI mode: restart into the "Boot Options Menu" of your Windows, choose "Troubleshoot", then "UEFI Firmware Settings"

http://www.makeuseof.com/tag/how-to-access-the-bios-on-a-windows-8-computer/

• It still doesn't work!

Write an email to Arthur or Gaya

	-		
Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			48

Task 2: Install ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

• Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu xenial main" > /etc/apt/sources.list.d/ros-latest.list'

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Ro	bot Programming with Lisp
with a sub-			49

Task 2: Install ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

• Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu xenial main" > /etc/apt/sources.list.d/ros-latest.list'

• Add their key to your trusted public keys:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365ED9FF1F717815A3895523BAEEE01FA116

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			50

Task 2: Install ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

• Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu xenial main" > /etc/apt/sources.list.d/ros-latest.list'

• Add their key to your trusted public keys:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

• Update your Debian package index:

sudo apt-get update

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			51

Task 2: Install ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu xenial main" > /etc/apt/sources.list.d/ros-latest.list'

• Add their key to your trusted public keys:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

• Update your Debian package index:

sudo apt-get update

• The version of ROS distributed with Ubuntu 16.04 is **ROS Kinetic**. Install the **desktop** package. Say <No> if asked about hddtemp.

sudo apt-get install ros-kinetic-desktop

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			52

Task 2: Install ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal (*hint*: to open a fresh terminal press <Ctrl>+<Alt>+t):

Add ROS repositories to your sources list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu xenial main" > /etc/apt/sources.list.d/ros-latest.list'

• Add their key to your trusted public keys:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

• Update your Debian package index:

sudo apt-get update

• The version of ROS distributed with Ubuntu 16.04 is **ROS Kinetic**. Install the **desktop** package. Say <No> if asked about hddtemp.

sudo apt-get install ros-kinetic-desktop

• Install the workspace management tools:

sudo apt-get install python-rosinstall python-wstool Introduction Course Content

Organizational

Assignment

Task 3: Setup ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp

Task 3: Setup ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

• Initialize the ROS environment for this particular terminal:

source /opt/ros/kinetic/setup.bash

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
with a second			55

Task 3: Setup ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

- Initialize the ROS environment for this particular terminal: source /opt/ros/kinetic/setup.bash
- Create a directory where the code you'll write will be stored (the name ros_ws and the location ~ can be changed):
 mkdir -p ~/ros_ws/src

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			56

Task 3: Setup ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

- Initialize the ROS environment for this particular terminal: source /opt/ros/kinetic/setup.bash
- Create a directory where the code you'll write will be stored (the name ros_ws and the location ~ can be changed):
 mkdir -p ^/ros_ws/src
- Initialize the workspace:

cd ~/ros_ws && catkin_make

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Rob	ot Programming with Lisp
18 th October, 2018			57

Task 3: Setup ROS

Consult the official installation instructions for troubleshooting: http://wiki.ros.org/kinetic/Installation/Ubuntu

In short, it boils down to executing the following in the terminal:

• Setup rosdep:

sudo rosdep init && rosdep update

- Initialize the ROS environment for this particular terminal: source /opt/ros/kinetic/setup.bash
- Create a directory where the code you'll write will be stored (the name ros_ws and the location ~ can be changed):
 mkdir -p ^/ros_ws/src
- Initialize the workspace:

cd ~/ros_ws && catkin_make

• Update your bash startup script and make sure it worked:

 echo -e "\n# ROS\nsource \$HOME/ros_vs/devel/setup.bash\n" >> 7/.bashrc &k tail 7/.bashrc kk source 7/.bashrc

 Introduction
 Course Content
 Organizational
 Assignment

Gayane Kazhoyan 18th October, 2018

Task 4: Git and GitLab

 \bullet Log into university GitLab with your LDAP / TZI account:

https://gitlab.informatik.uni-bremen.de/

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp

Task 4: Git and GitLab

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		R	obot Programming with Lisp
with a subserve			60

Task 4: Git and GitLab

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" tab add "Arthur Niedzwiecki" and "G. Kazhoyan" as collaborators. "Project Access" should be master.

Introduction

Course Content

Organizational

Assignment

Task 4: Git and GitLab

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" tab add "Arthur Niedzwiecki" and "G. Kazhoyan" as collaborators. "Project Access" should be master.
- Install Git:

sudo apt-get install git

Introduction Course Content

Organizational

Task 4: Git and GitLab

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" tab add "Arthur Niedzwiecki" and "G. Kazhoyan" as collaborators. "Project Access" should be master.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://gitlab.informatik.uni-bremen.de/lisp-course/lisp_course_exercises.git && ll

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			63

Task 4: Git and GitLab

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" tab add "Arthur Niedzwiecki" and "G. Kazhoyan" as collaborators. "Project Access" should be master.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://gitlab.informatik.uni-bremen.de/lisp-course/lisp_course_exercises.git && ll

• Define a remote target with the address of your new GitLab repo:

cd lisp_course_exercises

git remote add my-repo https://gitlab.informatik.uni-bremen.de/YOUR_GITLAB_USERNAME/lisp_course_exercises.git

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October 2018			64

Task 4: Git and GitLab

- Log into university GitLab with your LDAP / TZI account: https://gitlab.informatik.uni-bremen.de/
- Click on "+ New Project", call the project lisp_course_exercises and make sure it is private.
- Once created, in "Members" tab add "Arthur Niedzwiecki" and "G. Kazhoyan" as collaborators. "Project Access" should be master.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://gitlab.informatik.uni-bremen.de/lisp-course/lisp_course_exercises.git && ll

• Define a remote target with the address of your new GitLab repo:

cd lisp_course_exercises

git remote add my-repo https://gitlab.informatik.uni-bremen.de/YOUR_GITLAB_USERNAME/lisp_course_exercises.git

• Upload the files to your new GitLab repo:

git push -u my-repo ma	ster		
Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Rob	ot Programming with Lisp
18 th October, 2018			65

• Create an account on GitHub and get a student discount:

https://education.github.com/

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
with a second			66

• Create an account on GitHub and get a student discount:

https://education.github.com/

• Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.

- Create an account on GitHub and get a student discount: https://education.github.com/
- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \rightarrow "Collaborators" add "Arthur Niedzwiecki" and "Gayane Kazhoyan" as collaborators.

Introduction

Course Content

Organizational

69

Task 4 (alternative): Git and GitHub

- Create an account on GitHub and get a student discount: https://education.github.com/
- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \rightarrow "Collaborators" add "Arthur Niedzwiecki" and "Gayane Kazhoyan" as collaborators.
- Install Git:

sudo apt-get install git

Introduction Course Content Organizational Assignment Gavane Kazhovan Robot Programming with Liso

- Create an account on GitHub and get a student discount: https://education.github.com/
- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \rightarrow "Collaborators" add "Arthur Niedzwiecki" and "Gayane Kazhoyan" as collaborators.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://github.com/lisp-course/lisp_course_exercises.git && ll

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			70

- Create an account on GitHub and get a student discount: https://education.github.com/
- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \rightarrow "Collaborators" add "Arthur Niedzwiecki" and "Gayane Kazhoyan" as collaborators.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

git clone https://github.com/lisp-course/lisp_course_exercises.git && ll

• Define a remote target with the address of your new GitHub repo:

cd lisp_course_exercises

git remote add my-repo https://github.com/YOUR_GITHUB_USERNAME/lisp_course_exercises.git

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			71

- Create an account on GitHub and get a student discount: https://education.github.com/
- Click on "Start a project", call the project lisp_course_exercises. Once you get student discount, make the project private.
- In project "Settings" \rightarrow "Collaborators" add "Arthur Niedzwiecki" and "Gayane Kazhoyan" as collaborators.
- Install Git:

sudo apt-get install git

• Download the course material into your ROS workspace:

roscd && cd ../src

18th October, 2018

git clone https://github.com/lisp-course/lisp_course_exercises.git && ll

• Define a remote target with the address of your new GitHub repo:

cd lisp_course_exercises

git remote add my-repo https://github.com/YOUR_GITHUB_USERNAME/lisp_course_exercises.git

• Upload the files to your new GitHub repo:

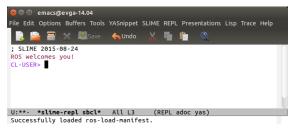
git push -u my-repo master Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp

Universität Bremen

Task 5: Install the IDE

• Install the editor itself (Emacs), the Common Lisp compiler (SBCL), the linker (ASDF) and the Emacs Common Lisp plugin (Slime):

sudo apt-get install ros-kinetic-roslisp-repl


Introduction	Course Content	Organizational	Assignment
Gavane Kazhovan			Robot Programming with Lisp

Universität Bremen

Task 5: Install the IDE

- Install the editor itself (Emacs), the Common Lisp compiler (SBCL), the linker (ASDF) and the Emacs Common Lisp plugin (Slime): sudo apt-get install ros-kinetic-roslisp-repl
- Start the editor (after compilation is finished you'll see the Lisp shell): roslisp_repl &

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			74

Task 6: Get familiar with Emacs

The following notation is used in Emacs for keyboard shortcuts:

C for <Ctrl>M for <Alt>

- SPC for <Space>
- RET for <Enter>
- - for when two keys are pressed together (e.g. C-x for <Ctrl>+x)

The basic shortcuts you will need are listed below:

- C-x C-f opens a file
- C-x 3 or C-x 2 opens a new tab, C-x 0 closes it, C-x 1 maximizes
- C-x o switches between tabs
- C-x b switches buffers, C-x C-b lists all open buffers, C-x k kills
- C-g cancels a command half-way, C-x C-c yes exits Emacs

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
19th October 2019			75

Task 6: Get familiar with Emacs

The following notation is used in Emacs for keyboard shortcuts:

C for <Ctrl>M for <Alt>

- SPC for <Space>
- RET for <Enter>
- - for when two keys are pressed together (e.g. C-x for <Ctrl>+x)

The basic shortcuts you will need are listed below:

- C-x C-f opens a file
- C-x 3 or C-x 2 opens a new tab, C-x 0 closes it, C-x 1 maximizes
- C-x o switches between tabs
- C-x b switches buffers, C-x C-b lists all open buffers, C-x k kills
- C-g cancels a command half-way, C-x C-c yes exits Emacs

Open the file with your first assignment and follow the instructions:

ROS_WORKSPACE/src/lisp_co	urse_exercises/assignment_1/src/ord	-battle.lisp	
Introduction	Course Content	Órganizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

Introduction	Course Content	Organizational	Assignment
Gavane Kazhovan			Bobot Programming with Lisp

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

• To see which exactly lines changed ask for the diff (q to exit): $g_{\text{it diff}}$

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Ro	bot Programming with Lisp
18 th October, 2018			78

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

- To see which exactly lines changed ask for the diff (q to exit): $g_{\text{it diff}}$
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use $_{\rm git \ add}$.

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

- To see which exactly lines changed ask for the diff (q to exit): $g_{\text{it diff}}$
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use $_{\rm git\ add}$.
- If you deleted some files, to remove them from the index use $_{\rm git \ add \ -u}$

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			80

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

- To see which exactly lines changed ask for the diff (q to exit): $g_{\text{it diff}}$
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use $_{\rm git\ add}$.
- If you deleted some files, to remove them from the index use $_{\rm git \ add \ -u}$
- Once you're sure the changes are final, commit locally:

git commit -m "A meaningful commit message."

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			81

• Once done editing orc-battle.lisp, check what's new in your local repo (the one on your hard drive):

cd ROS_WORKSPACE/src/lisp_course_exercises && git status

- To see which exactly lines changed ask for the diff (q to exit): $g_{\text{it diff}}$
- The red files are the new untracked ones, the green ones are already in the Git index. To add new files to the index use $_{\rm git\ add}$.
- If you deleted some files, to remove them from the index use $_{\rm git \ add \ -u}$
- Once you're sure the changes are final, commit locally: git commit -m "A meaningful commit message."
- Finally, to upload your local commits to the GitLab server, push the changes upstream:

git push $\# \mbox{ or git push my-repo master}$

Introduction

Course Content

Organizational

Assignment

Gayane Kazhoyan 18th October, 2018

83

If you decided to go for Ubuntu 14.04

• Download the latest version of the Lisp compiler:

https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/

Introduction	Course Content	Organizational	Assignment
Gavane Kazhovan			Robot Programming with Lisp

18th October, 2018

84

If you decided to go for Ubuntu 14.04

• Download the latest version of the Lisp compiler:

https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/

• You will most likely need the x86-64 version (NOT arm64):

 ${\tt https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/sbcl-1.3.1-x86-64-linux-binary.tar.bz2/download}$

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp

18th October, 2018

If you decided to go for Ubuntu 14.04

- Download the latest version of the Lisp compiler: https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/
- You will most likely need the x86-64 version (NOT arm64): https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/sbcl-1.3.1-x86-64-linux-binary.tar.bz2/download
- Extract the archive you just downloaded. In Nautilus, the file browser of Ubuntu, it will be "right click \rightarrow Extract Here".

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
with a subserve			85

If you decided to go for Ubuntu 14.04

- Download the latest version of the Lisp compiler: https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/
- You will most likely need the x86-64 version (NOT arm64): https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/sbcl-1.3.1-x86-64-linux-binary.tar.bz2/download
- Extract the archive you just downloaded. In Nautilus, the file browser of Ubuntu, it will be "right click \rightarrow Extract Here".
- In terminal go to the place you just extracted files to, e.g.:

cd /Downloads/sbcl-1.3.1-x86-64-linux

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
18 th October, 2018			86

If you decided to go for Ubuntu 14.04

- Download the latest version of the Lisp compiler: https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/
- You will most likely need the x86-64 version (NOT arm64): https://sourceforge.net/projects/sbcl/files/sbcl/1.3.1/sbcl-1.3.1-x86-64-linux-binary.tar.bz2/download
- Extract the archive you just downloaded. In Nautilus, the file browser of Ubuntu, it will be "right click \rightarrow Extract Here".
- In terminal go to the place you just extracted files to, e.g.: ^{cd} /Downloads/sbcl-1.3.1-x86-64-linux
- Install the compiler:

sh install.sh

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan		Rot	oot Programming with Lisp
18 th October, 2018			87

If you decided to go for Ubuntu 18.04

• The name of the ROS distribution will be not "kinetic" but "melodic". Follow the official instructions on ROS webpage for installing ROS melodic.

ntrodu	

If you decided to go for Ubuntu 18.04

- The name of the ROS distribution will be not "kinetic" but "melodic". Follow the official instructions on ROS webpage for installing ROS melodic.
- The current version of "roslisp-repl" might not work for you. So you will either have to wait a week or two for the update that fixes the problems, or install the REPL from source. Write an email to Gaya if you decide to do that.

Introduction	Course Content	Organizational	Assignment
Gayane Kazhoyan			Robot Programming with Lisp
19th October 2019			89

Thanks for your attention!

Introduction

Course Content

Organizational

Assignment

Gayane Kazhoyan 18th October, 2018 Robot Programming with Lisp 90