
The RoboEarth Language: Representing and Exchanging Knowledge about
Actions, Objects, and Environments

Moritz Tenorth, Alexander Clifford Perzylo, Reinhard Lafrenz and Michael Beetz
Department of Informatics, Technische Universität München

{tenorth,perzylo,lafrenz,beetz}@cs.tum.edu

Abstract
The community-based generation of content has
been tremendously successful in the World Wide
Web – people help each other by providing in-
formation that could be useful to others. We are
trying to transfer this approach to robotics in or-
der to help robots acquire the vast amounts of
knowledge needed to competently perform every-
day tasks. RoboEarth is intended to be a web com-
munity by robots for robots to autonomously share
descriptions of tasks they have learned, object mod-
els they have created, and environments they have
explored. In this paper, we report on the formal lan-
guage we developed for encoding this information
and present our approaches to solve the inference
problems related to finding information, to deter-
mining if information is usable by a robot, and to
grounding it on the robot platform.

1 Introduction
The Web 2.0 has changed the way how web content is gener-
ated. Instead of professional content providers, it is now often
the users who fill web sites with text and images, forming a
community of people helping each other by providing infor-
mation they consider useful to others. The free encyclope-
dia Wikipedia grew up to millions of articles, sites like cook-
ing.com or epicurious.com collect tens of thousands of cook-
ing recipes, and ehow.com and wikihow.com offer instructions
for all kinds of everyday tasks. “Crowdsourcing” the genera-
tion of web sites made it possible to create much more content
in shorter time with shared effort.

In our research, we are trying to make use of this idea to im-
prove the performance of our robots. On the one hand, we are
working towards enabling the robots to use the large amount
of information that can already be found on the Web to ac-
complish their tasks, for instance by translating written in-
structions from web pages into robot plans [Tenorth, Nyga,
and Beetz, 2010]. On the other hand, we are working towards
establishing a similar “World Wide Web for Robots”, a web-
based community in which robots can exchange knowledge
among each other. Understanding information intended for
humans is still challenging and rather costly, but once a robot
has done it, it can share this newly gained information with

other robots, which then do not have to go through the diffi-
cult conversion process again. We aim to speed up the time-
consuming knowledge acquisition process by enabling robots
to profit from tasks other robots have already learned, object
models they have created, and environments they have ex-
plored.

If such information is to be autonomously generated and
used by robots, that is, without human intervention, it has to
be represented in a machine-understandable format. In this re-
spect, we have much in common with the Semantic Web [Lee,
Hendler, and Lassila, 2001], in which computers exchange
information between each other: The meaning of the content
needs to be represented explicitly, separately from platform-
specific aspects, it has to be described in terms of logical ax-
ioms that a computer can understand, and these logical ax-
ioms need to be well-defined, for example in an ontology.
Such an explicit representation of the semantics is important
to enable a robot to understand the content, i.e. to set differ-
ent pieces of information into relation. Only when it knows
the semantics of the exchanged information, a robot can de-
cide if an object model can be useful to perform a given task,
can choose a model among different alternatives, and deter-
mine if it has all required sensors for using it.

In this paper, we describe our approach to creating a se-
mantic representation language for the RoboEarth system.
The main contributions are (1) a semantic representation lan-
guage for actions, objects, and environments; (2) the infras-
tructure for using this representation to reason about the ap-
plicability of information in a given context and to check if
all required robot capabilities are available; (3) mechanisms
for creating and uploading shared knowledge. These techni-
cal contributions are validated by an experiment on a physi-
cal robot that performed a serving task based on information
retrieved using the described methods. In particular, the rep-
resentation language provides techniques for:

• Representation of actions and their parameters, positions
of objects in the environment, and object recognition
models

• Meta-information about the data to be exchanged (types,
file formats, units of measure, coordinate frames)

• Requirements on components a robot needs to have in
order to make use of a piece of information



Figure 2: Overview of the RoboEarth system: A central database provides information about actions, objects, and environments.
The robot can up- and download information and determine if it can use it based on a semantic model of its own capabilities.

Figure 1: The Amigo robot performs a mobile manipulation
task based on task descriptions, object recognition models
and a semantic environment map which it has autonomously
downloaded from the RoboEarth database.

• Robot self-models that describe the robot’s configura-
tion and capabilities
• Methods for matching requirement specifications to a

robot’s capabilities to identify missing components

RoboEarth has high demands regarding the expressiveness
and the level of semantic annotations of the exchanged in-
formation: First, the platform is to be used by heterogeneous
robots, i.e. no assumptions about available capabilities can
be made. Second, the robots shall exchange the information
autonomously without human intervention, which means that
the language has to be expressive enough to provide the robot
with all information needed to select information, adapt it,
and reason about its applicability. These two aspects have not
been tackled in prior work, which focused on the representa-
tion of actions or objects, but not on additional information
that is needed for the autonomous exchange of information.
Hierarchical Task Networks (HTN [Erol, Hendler, and Nau,
1994]) and related plan languages are similar to the action

representation used in RoboEarth, but focus on the descrip-
tion of the task itself, i.e. its sub-actions, goals, and order-
ing constraints. XABSL [Loetzsch, Risler, and Jüngel, 2006],
mainly used in the RoboCup soccer context, describes ac-
tions in terms of hierarchical finite state machines. Automa-
tionML [Drath et al., 2008] is a standard for describing task
information and spatial configurations, mainly used in indus-
trial applications. The FIPA [O’Brien and Nicol, 1998] stan-
dard primary deals with the definition of communication stan-
dards for software agents. Object description formats like the
proprietary DXF [Rudolph, Stürznickel, and Weissenberger,
1993] or the open Collada [Arnaud and Barnes, 2006] stan-
dard describe objects using meshes and textures, but without
further specifying semantic properties. We are not aware of
any other system that integrates task descriptions with spa-
tial information, semantic information about object types, and
meta-information about the exchanged data.

The rest of the paper is organized as follows: We start with
an overview of the RoboEarth system and briefly introduce an
example scenario that is used over the course of the following
actions. We then describe the representations of actions, ob-
ject models, and semantic environment maps, before we elab-
orate on the matching between action requirements and robot
capabilities. Afterwards, we explain how the robot communi-
cates with the RoboEarth database, and how it makes use of
the downloaded information during task execution. We fin-
ish with a description of the experiments we performed and a
discussion of the system’s capabilities.

2 The RoboEarth system
This work presented in this article is part of the RoboEarth
project [Waibel et al., 2011] which targets at building a
“World Wide Web for Robots”. Like Wikipedia, RoboEarth
is to provide a platform for sharing knowledge about actions,
objects, and environments between robots. The project cov-
ers different aspects like the generation and execution of task
descriptions, object recognition methods, learning, the real-
ization of the central web-based knowledge store. Parts of
RoboEarth have been released as ROS packages1. In this pa-
per, we focus on the methods for representing and reasoning

1Available at http://www.ros.org/wiki/roboearth



about the exchanged knowledge (available in the packages
re comm and re ontology).

Figure 2 illustrates how knowledge can be exchanged via
RoboEarth: On the left is the central RoboEarth knowl-
edge base, containing descriptions of actions (called “action
recipes”), objects, and environments. These pieces of infor-
mation are provided by different robots with different sens-
ing, acting and processing capabilities. Therefore, all of them
have different requirements on capabilities a robot must have
in order to use them, visualized by the differently shaped jig-
saw pieces. The RoboEarth language thus provides methods
for explicitly describing these required capabilities and for
matching them against capabilities available on the robot.
Each robot has a self-model consisting of a description of
its kinematic structure, including the positions of sensors
and actuators, a semantic model that describes the mean-
ing of the robot’s parts (e.g. that certain joints form a grip-
per), and a set of software components like object recognition
systems. We use the Semantic Robot Description Language
(SRDL [Kunze, Roehm, and Beetz, 2011]) to describe these
components and the capabilities they provide, and to match
them against the requirements specified for action recipes.
Section 6 explains the process in more detail. The robot can
query the RoboEarth knowledge base using interface meth-
ods that perform information encoding and communication
(see Section 7).

The representation language is realized as an extension of
the KNOWROB [Tenorth and Beetz, 2009] knowledge base,
which we also use for grounding the downloaded descrip-
tions on the robot (Section 8). In KNOWROB, knowledge is
described in Description Logic using the Web Ontology Lan-
guage (OWL). OWL distinguishes between classes, instances
of these classes, and properties that can either be described
for single instances or for whole classes of things. Classes are
arranged in a hierarchical structure, called an ontology, allow-
ing multiple inheritance. KNOWROB’s ontology is derived
from the OpenCyc ontology [Matuszek et al., 2006] and itself
serves as the basis for the RoboEarth ontology. We extended
the KNOWROB ontology with concepts that are especially
required for the exchange of knowledge: Meta-information
about the data to be exchanged like units, coordinate systems,
its resolution, algorithms that were used for creating data, and
requirements that are needed for interpreting it.

For the sake of clarity, we will present most of the
language constructs in terms of graphical visualizations
instead of source code. A more detailed description of
the language capabilities can be found in a related tech-
nology report [Tenorth and Beetz, 2010], a formal spec-
ification of the language elements in the ontology at
http://ias.cs.tum.edu/kb/roboearth.owl.

In the following sections, we will explain the operation on
an example task on which the system’s capabilities have been
demonstrated: serving a drink to a patient in bed in a hospital
room. The robot first needs to find a bottle in the environment,
pick it up, move to the patient and hand over the bottle.

3 Actions and tasks
Action specifications, called “recipes”, are described in terms
of classes of actions that are arranged in a taxonomic struc-
ture. Figure 3 shows a small excerpt; in total, there are cur-
rently about 130 action classes. Users of the system can eas-
ily extend the set of actions by deriving new action classes
from the existing ones. These classes form the vocabulary for
describing actions, and each of them can be described by a
set of properties: For instance, an action of type Movement-
TranslationEvent can have the properties fromLocation and
toLocation. Such a specification of classes by their properties
is called a “class restriction” in OWL.

Figure 3: Small excerpt from the RoboEarth action ontology
that describes different kinds of actions in terms of a taxo-
nomic structure.

Actions can be arranged in a hierarchy describing the compo-
sition of complex actions from more basic ones, in addition to
the generalization hierarchy in Figure 3. As an example, the
action PuttingSomethingSomewhere for transporting an ob-
ject from one position to another involves picking up an ob-
ject, moving to the goal position, and putting the object down
again. These sub-actions are described in the following OWL
code example:
Class: PuttingSomethingSomewhere
SubClassOf:

Movement-TranslationEvent
TransportationEvent
subAction some PickingUpAnObject
subAction some CarryingWhileLocomoting
subAction some PuttingDownAnObject
orderingConstraints value SubEventOrdering1
orderingConstraints value SubEventOrdering2

The ordering of subActions in a task can be specified by par-
tial ordering constraints which describe the relative pair-wise
ordering between the actions.
Individual: SubEventOrdering1
Types:

PartialOrdering-Strict
Facts:

occursBeforeInOrdering PickingUpAnObject
occursAfterInOrdering CarryingWhileLocomoting

Individual: SubEventOrdering2
Types:

PartialOrdering-Strict
Facts:

occursBeforeInOrdering CarryingWhileLocomoting
occursAfterInOrdering PuttingDownAnObject

Figure 4 visualizes an action recipe for serving a drink to a pa-
tient in bed. In this picture, action classes are represented as
blocks, properties of these classes are listed inside the block,
and ordering constraints among the actions are shown as ar-
rows between the blocks. There are three levels of hierarchy:
The recipe for the ServeADrink action includes the Grasp-
Bottle action that, by itself, is defined by an action recipe
(shown on the right side) consisting of single actions. Both
recipes consist of a sequence of actions that are described as
task-specific subclasses of generic actions, like Reaching or
Translation, with additional parameters, like the toLocation
or the objectActedOn.



Figure 4: Representation of a “serving a drink” task, called
“action recipe” in the RoboEarth terminology, which is com-
posed of five sub-actions that themselves can be described by
another action recipe.

The action recipe further lists dependencies on components
that have to be available on the robot in order to success-
fully perform the task. In this example, there is a list of object
recognition models that are necessary for the robot to recog-
nize all objects involved in the task. There are additional de-
pendencies inherited from higher-level action classes: Reach-
ing, for example, depends on an arm motion capability, Trans-
lation actions require a moving base and navigation capabili-
ties.

4 Object models
Object models in RoboEarth describe classes of objects by
their semantic properties, including information on how to
recognize and how to articulate them. Figure 5 exemplarily
shows a model of a cabinet in a hospital room. In the upper
part, there is an instance of an object recognition model that
includes links to pictures and a CAD model file as well as
information about the creation time and the algorithms the
model can be used with. The ontology already provides class
descriptions for several thousands of objects, but can easily be
extended by the user – a process that can also be automated
using information from the Internet [Pangercic, Haltakov, and
Beetz, 2011].

This model refers to a description of the object IkeaExpe-
ditShelf2x2 which has articulated parts, namely doors con-
nected to the frame via hinges. By estimating the kinemat-
ics of these doors [Sturm, Stachniss, and Burgard, 2011], the
robot can determine the poses of the hinges with respect to the
body of the cabinet. These poses are stored using an object-

Figure 5: Object model representation. The object model in-
stance refers to binary data for a model as well as to a detailed
description of the object class to be exchanged. In this case,
the model describes a cabinet composed of several articulated
doors connected with hinges to the cabinet’s frame.

internal coordinate system so that the information can also be
applied to a different cabinet of the same type. If such a cab-
inet has been recognized using the model ObjModelExpedit-
Shelf2x2, the relative coordinates are transformed into global
map coordinates based on the pose where the cabinet body
was detected. In addition to this explicit representation of co-
ordinate frames, all numeric values can be annotated with the
unit of measure provided by the extensive QUDT ontology2.
If a user specifies the unit the results are to be returned in,
values in compatible units are transparently converted, e.g.
lengths from meters to feet.

The set of object models the robot can currently recognize
is explicitly represented in the robot’s knowledge base and
can be used to decide if some kind of object can be recog-
nized. If not, the robot can download a suitable model from
RoboEarth, add its OWL description to its knowledge base,
and send the recognition model (in the above example the
linked CAD model file) to the perception system.

5 Environment models
There are various kinds of environment maps (topological
and metric maps, two- and three-dimensional maps, maps
created using different sensors like 2D laser scanners, tilting
lasers or cameras, etc) that can be exchanged via RoboEarth.
The language provides several classes to describe the types
and properties of environment maps. Maps like occupancy
grids are usually exchanged as a “black box”: The robot
knows which kind of map it is and which environment is de-
scribed, but cannot perform reasoning about the content of
the map. “Semantic maps”, which consist of localized object
instances (Figure 6), are a different case: They can be com-
pletely described in OWL, loaded into the knowledge base
and reasoned about. The robot can for instance use such a

2http://qudt.org/



map to locate objects described in a recipe, or update the
map with other objects it has recognized. If there are multiple
maps describing the same environment, the system retrieves
all of them.

Figure 6: Environment model representation. The map F360-
Containers links a binary file for the localization map and fur-
ther contains several objects detected in the environment. Ob-
ject poses are linked via a SemanticMapPerception instance
to be able to describe poses that change over time.

6 Matching requirements to capabilities
In order to find out if the robot is able to execute a recipe and,
if not, whether it can be enabled to do so by downloading
additional information, the system matches the requirements
of the action recipe to the robot’s capability model. Although
this procedure cannot guarantee successful task execution, the
robot can determine whether something is definitely missing
and if that missing part can be provided by RoboEarth.

The matching process is realized using the Semantic Robot
Description Language (SRDL [Kunze, Roehm, and Beetz,
2011]) and visualized in Figure 7. The robot first queries for
an action recipe and, together with the query, sends a descrip-
tion of its own capabilities to the inference engine, which then
checks whether all requirements of the recipe are available
on the robot. At first sight, the robot may find the Environ-
mentMap to be missing, as it is neither available on the robot
nor in the RoboEarth database. Knowing that both a 2DLaser-
ScannerMap and a 3DLaserScannerMap are specializations
of an EnvironmentMap, the system can infer that they can be
used to fulfill the dependency. It recursively checks their de-
pendencies and finally selects the 2DLaserScannerMap as its
dependencies are available on the robot. The matching pro-
cess is continued recursively until the system finds a com-
bination of action recipes, object- and environment models
that fits the robot and does not have any unmet dependen-
cies. This example is very simplified in that it only requires
knowledge about the sub-class hierarchy, while the matching
procedure also supports checking other properties of or rela-
tions between objects – everything that can be expressed in
terms of OWL class restrictions.

7 Interface to the RoboEarth database
Once the missing pieces of information have been deter-
mined, they can be searched in the RoboEarth knowledge

Plan: FetchingWater

Actions:

- find water bottle

- move to water bottle

- pick up water bottle

Requirements:

- EnvironmentMap

- Navigation

- ObjectRecognition

Request plan:

FetchingWater

Capabilities:

Navigation

ObjectRecognition

Sensors:

HokuyoLaser

StereoCamera

RoboEarth knowledge base

3DLaserScannerMap

requires: TiltingLaserScanner

2DLaserScannerMap

requires: LaserScanner

Plan: FetchingWater

Actions:

- find water bottle

- move to water bottle

- pick up water bottle

Requirements:

- EnvironmentMap

- Navigation

- ObjectRecognition

Request plan:

FetchingWater

Capabilities:

Navigation

ObjectRecognition

Sensors:

HokuyoLaser

StereoCamera

RoboEarth knowledge base

3DLaserScannerMap

requires: TiltingLaserScanner

2DLaserScannerMap

requires: LaserScanner

Plan: FetchingWater

Actions:

- find water bottle

- move to water bottle

- pick up water bottle

Requirements:

- EnvironmentMap

- Navigation

- ObjectRecognition

Request plan:

FetchingWater

Capabilities:

Navigation

ObjectRecognition

Sensors:

HokuyoLaser

StereoCamera

RoboEarth knowledge base

3DLaserScannerMap

requires: TiltingLaserScanner

2DLaserScannerMap

requires: LaserScanner

LaserScanner

2DLaserScanner 3DLaserScanner

TiltingLaserScannerSick LMS 200 Hokuyo

Ontology

EnvironmentMap

2DLaserScannerMap 3DLaserScannerMap

Plan: FetchingWater

Actions:

- find water bottle

- move to water bottle

- pick up water bottle

Requirements:

- EnvironmentMap

- Navigation

- ObjectRecognition

RoboEarth knowledge base

3DLaserScannerMap

requires: TiltingLaserScanner

2DLaserScannerMap

requires: LaserScanner

Plan: FetchingWater

Actions:

- find water bottle

- move to water bottle

- pick up water bottle

Requirements:

- Navigation

- ObjectRecognition

- EnvironmentMap
2DLaserScannerMap

requires: LaserScanner

Figure 7: Matching requirements of action recipes against
robot capabilities to determine which further information is
still missing and has to be downloaded. The matching be-
comes more flexible by taking the robot’s knowledge into
account and selecting the 2DLaserScannerMap to fulfill the
general requirement on an EnvironmentMap.

base. A communication module provides methods for up-
and downloading information using HTTP requests and en-
capsulates the communication with the web-based RoboEarth
knowledge base. The communication package further pro-
vides methods to update existing knowledge, for instance an
environmental map with updated object positions or an im-
proved action recipe. There are different possibilities to send
queries to the knowledge base: If the identifier of an action
recipe, object model or environment map is known, e.g. be-
cause another recipe refers to it, this item can directly be ac-
cessed. Otherwise, queries are send as a logical specification
of the properties a recipe or model needs to have. For exam-
ple, the robot may search for a recipe that describes a Serving
task with a Bottle as objectActedOn, and get all recipes for
specializations of such a task as result.



8 Executing action recipes
Having downloaded information from RoboEarth, the robot
has to ground the abstractly specified instructions. The action
recipes need to be translated into calls to executable program
code. Similar to HTN planning, which distinguishes primitive
and compound tasks, we also de-compose complex tasks into
more and more basic actions until we reach the level at which
the actions are available as executable primitives. There is in-
tentionally no fixed level of granularity at which this transi-
tion takes place. The system thus supports large, monolithic
implementations of functionality, in which the threshold be-
tween primitives and recipes is at a rather high level, as well
as setups with a large number of small components. Due
to the hierarchical structure of recipes, the same high-level
recipe can be executed in different setups by downloading
more detailed action recipe until all actions in the recipe are
available as primitives on the robot.

There are currently two options for executing action
recipes: First, the rather simple RoboEarth executive compo-
nent can be used, which uses mappings from action classes
to action primitives that are specified using the provided-
ByMotionPrimitive property. For the scenario in the exper-
iment, only three primitives were needed: move gripper,
open gripper and navigate. The second option is an ex-
porter that creates action plans in the CRAM plan language
(CPL, [Beetz, Mösenlechner, and Tenorth, 2010]) which can
be executed by the CRAM executive. This allows to profit
from CRAM’s sophisticated techniques for failure monitor-
ing and recovery, and especially for determining action pa-
rameters like locations where objects shall be placed. Such
locations are usually described using abstract specifications
like ’in reach of the patient’, and need to be translated into
actual metric positions. This conversion requires sophisti-
cated reasoning methods that include geometric and kine-
matic information, which are provided by the CRAM sys-
tem [Mösenlechner and Beetz, 2011].

9 Evaluation
This paper describes a system for representing, exchanging
and reasoning about high-level task descriptions, object mod-
els, and semantic environment maps in a common seman-
tic framework. A quantitative evaluation of such a system
is hardly possible: Most task-related performance measures,
like the execution time, rather describe the performance of ex-
ternal factors like the hardware of the executing robots than
the representation language. However, the system can be eval-
uated on qualitative criteria: Is the representation expressive
enough to encode all important kinds of information? Are all
of the necessary reasoning tasks supported? Which level of
autonomy can be reached?

In a recent experiment, we have demonstrated that the lan-
guage and inference methods can be used to exchange in-
formation about mobile manipulation tasks. This experiment
was implemented and successfully demonstrated to the pub-
lic during a workshop of the RoboEarth project in Eindhoven
in January 2011. Figure 1 shows the course of actions per-
formed by the robot. A video of the experiment can be found
at http://www.youtube.com/watch?v=RUJrZJyqftU.

The task the robot performed was to serve a drink to a
patient in a hospital room. During the experiment, the robot
downloaded the action recipe and matched it against its capa-
bilities to determine which pieces of information are missing
(as described in Section 6). It downloaded these missing com-
ponents from RoboEarth, namely recognition models for all
objects in the task, and a semantic environment map of the
hospital room. During execution, the robot perceived the ob-
jects using the downloaded models and thereby grounded the
symbols described in the recipe in object perceptions in the
environment.

The experiment shows that the system is able to encode
the information required for mobile pick-and-place tasks. The
Amigo robot completely autonomously downloaded the ac-
tion recipe, determined which information was missing, addi-
tionally downloaded these pieces of information, and thereby
enabled itself to perform the task. All these reasoning tasks
were performed autonomously using the methods described
in this paper.

10 Discussion and conclusions
In this paper, we discussed the requirements to a formal lan-
guage for representing robot knowledge with the intention of
exchanging information, and presented our approach to real-
izing such a language. The language allows to describe ac-
tions, object recognition and articulation models, as well as
semantic environment maps, and provides methods to reason
about these pieces of information. Using the language, robots
can autonomously decide if they lack important capabilities
to perform an action, and if so, see whether they can down-
load software that enables them to do that.

The language and the accompanying reasoning methods
have successfully been used to exchange tasks, object models,
and environment information on a physical mobile manipula-
tion robot and execute the abstractly described task. This ex-
periment showed that the presented methods enable a robot to
download the information needed to perform a mobile manip-
ulation task, including descriptions of the actions to perform,
models of the objects to manipulate, and a description of the
environment, from the RoboEarth database on the Internet.
The current system is still limited regarding the exchange
of low-level information like motion trajectories, forces or
accelerations. Currently, they need to be determined by the
downloading robot using motion planning components based
on symbolic constraints in the recipe, which can be a limiting
factor for actions that require dexterous manipulation.

Acknowledgments
This work is supported in part by the EU FP7 Project
RoboEarth (grant number 248942).

References
[Arnaud and Barnes, 2006] Arnaud, R. and M.C. Barnes

(2006). COLLADA: sailing the gulf of 3D digital content
creation. AK Peters, Ltd.

[Beetz, Mösenlechner, and Tenorth, 2010] Beetz, Michael,
Lorenz Mösenlechner, and Moritz Tenorth (2010). CRAM



– A Cognitive Robot Abstract Machine for Everyday
Manipulation in Human Environments. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
pp. 1012–1017, Taipei, Taiwan.

[Drath et al., 2008] Drath, R., A. Luder, J. Peschke, and
L. Hundt (2008). AutomationML-the glue for seamless au-
tomation engineering. In Emerging Technologies and Fac-
tory Automation, 2008. ETFA 2008. IEEE International
Conference on, pp. 616–623. IEEE.

[Erol, Hendler, and Nau, 1994] Erol, K., J. Hendler, and D.S.
Nau (1994). Htn planning: Complexity and expressivity.
In Proceedings of the National Conference on Artificial In-
telligence, pp. 1123–1123. John Wiley & Sons LTD.

[Kunze, Roehm, and Beetz, 2011] Kunze, Lars, Tobias
Roehm, and Michael Beetz (2011). Towards semantic
robot description languages. In IEEE International
Conference on Robotics and Automation (ICRA),
pp. 5589–5595, Shanghai, China.

[Lee, Hendler, and Lassila, 2001] Lee, T.B., J. Hendler, and
O. Lassila (2001). The Semantic Web. Scientific Ameri-
can 284(5): 34–43.

[Loetzsch, Risler, and Jüngel, 2006] Loetzsch, M.,
M. Risler, and M. Jüngel (2006). XABSL – A Prag-
matic Approach to Behavior Engineering. In Proceedings
of IEEE/RSJ International Conference of Intelligent
Robots and Systems (IROS), pp. 5124–5129.

[Matuszek et al., 2006] Matuszek, C., J. Cabral, M. Wit-
brock, and J. DeOliveira (2006). An introduction to the
syntax and content of Cyc. Proceedings of the 2006
AAAI Spring Symposium on Formalizing and Compiling
Background Knowledge and Its Applications to Knowl-
edge Representation and Question Answering pp. 44–49.

[Mösenlechner and Beetz, 2011] Mösenlechner, Lorenz and
Michael Beetz (2011). Parameterizing Actions to have the
Appropriate Effects. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), San Fran-
cisco, CA, USA.

[O’Brien and Nicol, 1998] O’Brien, P.D. and R.C. Nicol
(1998). FIPA – towards a standard for software agents.
BT Technology Journal 16(3): 51–59.

[Pangercic, Haltakov, and Beetz, 2011] Pangercic, Dejan,
Vladimir Haltakov, and Michael Beetz (2011). Fast and
robust object detection in household environments using
vocabulary trees with sift descriptors. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), Workshop on Active Semantic Perception and
Object Search in the Real World, San Francisco, CA,
USA.

[Rudolph, Stürznickel, and Weissenberger, 1993] Rudolph,
D., T. Stürznickel, and L. Weissenberger (1993). Der
DXF-Standard. Rossipaul.

[Sturm, Stachniss, and Burgard, 2011] Sturm, J., C. Stach-
niss, and W. Burgard (2011). A probabilistic framework
for learning kinematic models of articulated objects. Jour-
nal on Artificial Intelligence Research (JAIR) 41: 477–626.

[Tenorth and Beetz, 2009] Tenorth, Moritz and Michael
Beetz (2009). KnowRob – Knowledge Processing for
Autonomous Personal Robots. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pp. 4261–4266.

[Tenorth and Beetz, 2010] Tenorth, Moritz and Michael
Beetz (2010). Deliverable D5.2: The RoboEarth Language
– Language Specification. Technical report D5.2, FP7-
ICT-248942 RoboEarth.

[Tenorth, Nyga, and Beetz, 2010] Tenorth, Moritz, Daniel
Nyga, and Michael Beetz (2010). Understanding and Exe-
cuting Instructions for Everyday Manipulation Tasks from
the World Wide Web. In IEEE International Conference
on Robotics and Automation (ICRA), pp. 1486–1491, An-
chorage, AK, USA.

[Waibel et al., 2011] Waibel, Markus, Michael Beetz,
Raffaello D’Andrea, Rob Janssen, Moritz Tenorth,
Javier Civera, Jos Elfring, Dorian Gálvez-López, Kai
Häussermann, J.M.M. Montiel, Alexander Perzylo, Björn
Schießle, Oliver Zweigle, and René Molengraft (2011).
RoboEarth - A World Wide Web for Robots. Robotics &
Automation Magazine 18(2): 69–82.


