
Automated Alignment of Specifications of Everyday Manipulation Tasks

Moritz Tenorth
Institute for Artificial Intelligence & TZI∗

University of Bremen, Germany
tenorth@cs.uni-bremen.de

Johannes Ziegltrum
Technische Universität München,

Germany
johannes.ziegltrum@mytum.de

Michael Beetz
Institute for Artificial Intelligence & TZI∗

University of Bremen, Germany
beetz@cs.uni-bremen.de

Abstract— Recently, there has been growing interest in en-
abling robots to use task instructions from the Internet and to
share tasks they have learned with each other. To competently
use, select and combine such instructions, robots need to be able
to find out if different instructions describe the same task, which
parts of them are similar and which ones differ. In this paper,
we investigate techniques for automatically aligning symbolic
task descriptions. We propose to adapt and extend established
algorithms for sequence alignment that are commonly used
in bioinformatics in order to make them applicable to robot
action specifications. The extensions include methods for the
comparison of complex sequence elements, for taking the
semantic similarity of actions into account, and for aligning
descriptions at different levels of granularity. We evaluate the
algorithm on two large datasets of observations of human
everyday tasks and show that they are able to align action
sequences performed by different subjects in very different
ways.

I. INTRODUCTION

Over the past years, there has been increasing work
investigating how robots can be instructed to do novel tasks.
The approaches include understanding directions given by
humans [1], using natural-language instructions from the In-
ternet [2], or building a Web-based platform on which robots
can exchange tasks among each other [3]. One problem that
needs to be solved is the translation from natural language
into parametrizations of robot actions. Another one, that we
address in this paper, is how to compare instructions to find
out if they describe the same task, if parts of them are
similar, or which parts are different. Comparing the action
sequences in these instructions is challenging because many
tasks can be described in various different ways, at different
levels of detail, using different verbs for the same actions
and different names for the same objects. For instance, the
instructions “stir the egg with a fork” or “beat the egg in a
bowl” can describe the same action if both occur in a similar
task context. In addition to different ways of describing a
task, there are also different ways of performing a tasks –
an egg, for example, can be beaten using a fork, a spoon, or
a whisk.

As part of the ROBOEARTH project [3], we are working
on a Web-based knowledge base of robot task instructions.
The vision of the project is a “Wikipedia for robots” through
which information about actions, objects and environment
maps can be shared between robots. In this context, reason-
ing about instructions is important both in the Web-based
knowledge base and on the robots that search for information.

∗The Centre for Computing Technologies (TZI).

The knowledge base should be able to find similar tasks
and to eliminate or merge duplicate descriptions of the same
task. If several tasks share common sub-sequences, these
are probably important, and introducing a separate, reusable
description for these sequences may be beneficial. A robot
that is to use the database needs to select among the results
and possibly merge several instructions given for a task.

In this paper, we present methods for comparing and
aligning formal task descriptions in order to determine which
parts match and which parts differ. We propose to adapt and
extend algorithms for sequence alignment that are commonly
used in the field of bio-informatics for aligning sequences
of nucleobases to match DNA strings, or sequences of
amino acids to compare proteins. Compared to robot actions,
applications in bioinformatics have different requirements
though: While robot action sequences are rather short, DNA
sequences can become extremely long, but are of simpler
structure. Their elements are usually considered as atomic
entities and are described by single letters (A, C, G, T).
Everyday tasks, in contrast, have a complex structure that
relates action classes to the involved objects, tools and loca-
tions, and can also be hierarchically structured and composed
of sub-actions. We therefore introduce different extensions to
account for this more complex structure and present results
how the algorithms can be applied to the comparison of
action sequences in everyday manipulation tasks.

The main contributions of this paper are (1) the pro-
posal to apply and extend sequence alignment algorithms
for reasoning about robot action descriptions; extensions of
these algorithms to account for (2) the complex structure of
robot actions when comparing sequence elements, to include
(3) background knowledge about the semantic similarity of
actions and objects for more flexible matching, and to handle
(4) action descriptions at different levels of abstraction.

II. RELATED WORK

Sequence analysis is one of the central research topics
in the field of bioinformatics and deals with the structural
analysis, comparison and matching of sequence of proteins
or nucleobases [4], [5]. Current software programs [6]
can perform search for and matching between common
subsequences on extremely large data sets. However, the
considered elements are usually quite simple, e.g. the four
atomic nucleobases, as oppposed to complex robot action
specifications. Similar things hold for string matching algo-
rithms [7] and the computation of string edit distances [8]
– related algorithms in computer science that also consider

only simple elements and that use constant costs for the
insertion, deletion, and replacement of characters. In the
area of action recognition, there is research on aligning
annotations, like scripts of movies, with video sequences [9],
[10]. Again, the actions are considered atomic, and no deeper
reasoning about their properties is performed. In robotics
and AI, the focus has mostly been on the generation of
action sequences using planning [11] or on understanding
and executing instructions [1], [2], but much less on the
problem of aligning and merging instructions that are already
given.

III. ACTION REPRESENTATION

In this work, we compare action sequences represented in
the formal ROBOEARTH language [12]. In previous work,
we have shown how such descriptions can be generated
from natural-language task instructions found on web pages
like wikihow.com [2], and also how they can be created
by action recognition and segmentation methods applied
to observations of human manipulation tasks [13], so we
assume these descriptions to be given.

The ROBOEARTH language provides a formal, expressive,
and flexible specification of robot action plans in terms of
abstract action classes. These descriptions of action schemata
specify the abstract structure of actions as well as the
relations to the manipulated objects and the respective lo-
cations. Complementary to this class-level representation is
the description of observed actions as instances of these
classes that inherit all the properties described at the class
level. For instance, observations of human activities would
be described as a set of action instances, while robot plans
are stored as abstract action schemata. The action speci-
fications in the ROBOEARTH language are represented in
terms of Description Logic in the Web Ontology Language
(OWL) [14]. The ontology of actions we use is part of
the KNOWROB ontology [15] and currently contains class
descriptions of more than 130 actions commonly observed
in human everyday activities, e.g. in household tasks. These
classes serve as the building blocks for describing complex
tasks.

Our action representation makes strong use of hierarchical
structures: On the one hand, the action ontology arranges
action classes in a hierarchy of more and more specialized
classes (e.g. stating that PickingUpAnObject is a special-
ization of ActionOnObject). On the other hand, there is
also a temporal hierarchy describing the composition of
complex actions from sub-actions. For example, the action
PuttingSomethingSomewhere for transporting an object from
one position to another involves the sub-actions of picking
up the object, moving to the goal position, and putting the
object down again. An example of the description of sub-
actions is given in the following OWL fragment:

Class : Pu t t ingSometh ingSomewhere
SubClassOf :

Movement - T r a n s l a t i o n E v e n t
T r a n s p o r t a t i o n E v e n t
s u b A c t i o n some Pick ingUpAnObjec t
s u b A c t i o n some Car ry ingWhi l eLocomot ing
s u b A c t i o n some Put t ingDownAnObjec t

Action plans derive task-specific action classes from the
abstract classes in the ontology and specify their properties
like the objectActedOn or the fromLocation:

Class : PutCupToTable
SubClassOf :

Pu t t ingSometh ingSomewhere
ob j ec tAc t edOn some Cup
f r o m L o c a t i o n some Cupboard
t o L o c a t i o n some E a t i n g T a b l e

These constructs can be used to describe hierarchical robot
plans that are composed of several actions which interact
with different objects, and to specify further action properties
like constraints on the motions to perform. Information about
the action hierarchies from the robot’s ontology is used
to compute similarities between actions and objects and
to translate between descriptions at different levels of the
composition hierarchy.

IV. SEQUENCE ALIGNMENT ALGORITHMS

When comparing sequences, one needs to take both the
order, the type and the properties of the sequence elements
into account. Two sequence elements at a given position
can thereby either be equal in both sequences (match), or
unequal (mismatch), or an element exists in only one of
the sequences, but not in the other (insertion/gap). Given
that a cost can be computed for the match between two
single elements, the problem of aligning two sequences
can be formulated as finding the minimal set of atomic
transformations that are needed to translate one sequence
into the other.

This alignment problem is very common in bioinformatics,
which has led to the development of efficient algorithms
based on Dynamic Programming for computing the optimal
alignment between two sequences. The two main algorithms
are the Needleman-Wunsch algorithm [4] and the Smith-
Waterman algorithm [5]. The former computes a global
alignment of two complete sequences, while the latter tries
to find the optimal local alignment, i.e. the best alignment
of a subsequence, and ignores non-matching parts before or
after that sequence. In order to apply these algorithms to the
alignment of robot action specifications, different extensions
are required to account for their more complex structure and
the fact that actions can not only be strictly equal or not, but
also similar to some degree. These extensions are described
in more detail in Section V.

A. Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm progressively com-
putes the optimal global alignment of two sequences from
the alignments of sub-sequences. Let x and y be sequences
of length n and m, respectively, while xi is the ith symbol in
x, and yj the jth symbol in y. The algorithm computes the
optimal alignment score for all prefixes of both sequences in
a matrix F . The entry F (i, j) contains the optimal solution
for the alignment of the sub-sequences x0...xi and y0...yj .
After the algorithm has been executed, the optimal alignment
score can thus be found in the field F (n,m). The algorithm
consists of three main steps:

Fig. 1. Computing the cost of an alignment score based on the comparison
of the current sequence elements and the neighboring matrix elements.

a) Matrix initialization: The matrix is initialized in
such a way that the first row and first column correspond
to an alignment of sequence x with only gaps in sequence
y and vice versa. The element F (0, 0), corresponding to an
alignment of the two first sequence elements, is initialized
with zero, while the other fields are set as follows (with gap
costs d):

F (0, 0) = 0 (1)
F (i, 0) = −i · d (2)
F (0, j) = −j · d (3)

b) Recursive computation of alignment scores: The
other alignment scores can be computed from the matching
cost S(xi, yj) of the sequence elements xi and yj and from
the neighboring matrix elements that contain the alignment
scores of the preceding part of the sequence. Any field
F (i, j) can be reached by either from the upper left F (i −
1, j−1), the left F (i−1, j), or the top F (i, j−1) (Figure 1),
and its value can be computed as

F (i, j) = max

 F (i− 1, j − 1) + S(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d

(4)

c) Traceback: Each field F (i, j) contains a pointer to
the field from which it has been reached. Once the matrix has
been completely built up, these pointers can be tracked back
from the final element to the origin to reconstruct the path
corresponding to the optimal alignment of the two sequences.

B. Smith-Waterman algorithm

The Smith-Waterman algorithm computes the optimal
alignment between sub-sequences. It introduces the addi-
tional condition that F (i, j) = 0 if all three alignment
options yield a negative score:

F (i, j) = max

0
F (i− 1, j − 1) + S(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d

(5)

As a result, there is no longer a path leading through the
whole matrix because paths are finished once their score falls
to zero. The optimal alignment score can therefore be found
anywhere in the matrix, so the algorithm needs to search
for the largest matrix element and track its path to the next
zero-entry. Multiple optimal local alignments may exist [5].

V. EXTENSIONS FOR ALIGNING ACTION SEQUENCES

The sequence alignment algorithms were developed for
aligning DNA sequences consisting of nucleobases that are
commonly represented as single letters A, C, G, and T. In or-
der to apply these algorithms to action sequences, they need
to be extended to the complex structure of robot action that
are usually not atomic, but composed of a type and several

properties. Furthermore, actions can also match partially and
can be described at different levels of abstraction. We have
therefore modified the algorithms to make them applicable
to the alignment of robot action sequences.

A. Accounting for complex sequence elements

Action sequences often differ only in parts, for example
if a different tool is used for an action. Not all parts are
equally important, the action type and the main object are
normally more relevant than e.g. the location where the
action is performed. This should be taken into account when
comparing two actions, so we compute the match value by
a weighted combination of the matches of their components.
Assume an action acti is described by its type ai and a set
of n role-value pairs:

acti = 〈ai, 〈p1i , o1i 〉, . . . 〈pni , oni 〉〉 (6)

The match between two actions can then be computed by the
weighted match values of the action types plus the weighted
sum of the matches between the respective roles pki and
values oki (e.g. objects or locations):

sim(acti,actj) = (7)

α · sim(ai,aj) +

n∑
k=1

βk · sim(pki , p
k
j) + γk · sim(oki , o

k
j)

The weighting parameters α, βk and γk determine the
influence of the individual components. For example, the
roles pki are often correlated with the action types aki (e.g.
“take” and “from”) and should therefore have less influence.
For the experiments, we empirically chose the parameters
α = 0.3, β1 = 0.5, γ1 = 0.6 (for the objectActedOn as
the most important object the action is performed on), and
βk = 0.1, γk = 0.3 for all other properties and values. This
weights the three main components (action, first and second
object) with a factor of 0.3, while the preposition’s weight is
0.1. The resulting values are normalized to the range [−1, 1]
to be compatible with the costs for match and mismatch.

B. Semantic similarity computation

The computation of how well two descriptions match
should further take knowledge about the actions and objects
into account: If a similar action is performed on a similar
object, it should not be treated as a complete mismatch.
Based on the ontology of action classes, the system can
compute the similarity between concepts by their closeness in
the ontology. The “WUP similarity” was originally proposed
by Wu and Palmer in [16]. For two concepts in an ontology, it
defines a similarity value in the interval [0; 1], considering the
depth of the concepts and the depth of their lowest common
super-concept (LCS):

wupSim(C1, C2) =
depth(LCS(C1, C2))

1
2
(depth(C1) + depth(C2))

(8)

The reflexive case is defined as wupSim(C,C) = 1. The
computation is illustrated in Figure 2, showing a snippet of
our ontology. Concepts in the ontology can have multiple

Fig. 2. Computation of the WUP similarity metric. The similarity of the
concepts wupSim(CoffeeCup and SodaGlass) is computed as 0.5.

super-concepts – the WUP similarity computes the minimum
of all these distances since it considers the lowest common
super-concept (LCS). The structure of the ontology therefore
influences the similarity values. In our experiments, the
KNOWROB ontology, though not specifically created for this
problem, yielded very reasonable results. In order to increase
the weight of higher similarities, we use the wupSim to the
power of three for computing the alignment costs.

C. Hierarchical structure analysis

Actions can be described at different levels of abstraction
and different granularity. Instructions often mix different
levels to describe parts that are quite common, like fetching
items from the refrigerator, on a coarse level, while using
more details for parts that are more specific to the action at
hand and therefore potentially more difficult. The proposed
algorithm employs information about sub-action relations
from the KNOWROB ontology (see Section III) to expand all
action descriptions to the most detailed level before perform-
ing the alignment. It remembers the association between the
actions in the original and the expanded sequences and can
therefore translate them back to the original level of detail
after the matching.

VI. EXPERIMENTS

We evaluated the algorithms on two data sets of observa-
tions of humans performing everyday manipulation activities
like setting a table or preparing simple meals. These datasets
provide realistic data of complex object manipulation tasks
and contain sufficient variability to give a realistic impression
of how the algorithms handle uncertain and noisy data. Part
of the variability results from the different ways how different
subjects performed the activities, more variability has been
introduced because different people have labeled the data in
slightly different ways. The data we used for evaluation as
well as the source code and the complete results can be found
online1.

A. Evaluation data sets

We used the TUM Kitchen data set [17] and the CMU
MMAC data set [18] for evaluation. The former provides data
of 20 table setting episodes performed by different subjects in
a kitchen environment. The latter consists of observations of
different subjects making brownies (16 episodes) and scram-
bled eggs (17 episodes). Both datasets come with manually
created labels that annotate which actions are performed with
which properties, e.g. the object that is manipulated or the

1https://github.com/knowrob/action_alignment

location from which an object is picked up. We used those
labels for our experiments and excluded aspects like the
segmentation and classification of the motions which are not
the focus of this paper.

The annotations of the TUM data set describe only the
type of the action, but are very fine-grained and therefore
well usable to test the matching using hierarchical abstrac-
tion. The CMU data set provides more complex labels in the
form “verb [object1 [preposition object2]]”. This struc-
tured format can easily be converted into the representation
in the ROBOEARTH language. The ’object1’ is implicitly
considered the objectActedOn of the action verb, the relation
between the action and ’object2’ is determined depending on
the ’preposition’.

B. Similarities of action sequences

In a first experiment, we computed the pair-wise alignment
scores of the 16 sequences of making brownies and the 17
sequences of making scrambled eggs (called ’eggs’ in the
data) from the CMU data set. While both tasks are different,
they share common sub-sequences like cracking eggs into
a bowl and stirring them. Each of the sequences has been
performed by a different subject with minimal instructions
on how to do the task. The different ways how the subjects
performed the task result in much variability between the
sequences, which also differ quite significantly in length
(from 39 to 107 actions for making brownies, from 44 to 127
for making eggs). The algorithm thus needs to compute the
optimal alignment between each pair of the 33 sequences that
each consist of 39–127 elements that are each composed of
the action type, the objectActedOn, and another prepositional
relation (e.g. from, to, on, etc). The matching costs between
these sequence elements are determined based on a weighted
sum (Eq. 7) of the semantic similarities (Eq. 8).

Figure 3 shows the alignment scores that have been
computed using the WUP-similarity in the form of a matrix.
The diagonal, corresponding to the alignment of a sequence
with itself, is always one, so a perfect self-alignment could
be found. The algorithm can well distinguish between the
activities, indicated by the clearly visible blocks in the upper
left and lower right, despite significant differences in how
they are performed by the different subjects, and despite
common parts in both activities (cracking eggs, mixing
ingredients in a bowl). The alignment scores for BroS13,
EggS13, EggS16, and EggS20 are lower than the others,
visible as the lighter-gray cross in the darker blocks, which is
because they are about twice as long as the other sequences
and therefore differ substantially.

C. Alignment with and without semantic similarities

Quantitatively comparing alignments is difficult: First of
all, there is no gold-standard alignment. For example, if a
sub-sequence is matched to a gap in the other sequence,
it does not matter if a non-matching action is put before
or after that gap. Apart from that, the decision if actions
are sufficiently similar to be matched needs to be done
on a case-by-case basis. We therefore present qualitative

Fig. 3. Matrix of the similarities between all 33 action sequences for making brownies and scrambled eggs. The clearly visible blocks indicate that actions
inside one activity are more similar to each other than across activities.

results. Figure 4 shows part of a global alignment of the
sequences EggS20 and EggS25 without (left) and with
similarity-based matching (right). For improved readability,
the figure uses natural-language labels instead of the formal
representation. One can see that the matching became more
flexible, associating beat egg with fork and stir small-bowl
with fork. A better alignment of one action can also lead
to a better alignment of the neighboring actions. In this
example, the action switch-on stove can be matched because
the correspondence between the two other actions was found.
On the other hand, the more flexible matching can also lead
to mis-alignments depending on how the similarities are
weighted. The impact of incidental mis-alignments versus
a globally better alignment has to be traded off for each
scenario. We found that the improvement achieved by a
similarity-based comparison strongly depends on how much
variability is in the annotations. The brownie-sequences have
been annotated by a different person than the eggs-sequences
and are labeled more consistently, which can also be seen
by the darker upper left block in Figure 3. As a result, there
are very much fewer differences between the hard and the
similarity-based matching.

D. Hierarchical abstraction

Since the available data sets were all annotated at a fixed
level of abstraction, we synthetically created test data at
a coarser level. The abstraction can best be shown in the
TUM data set, because it is annotated at a more detailed
level than the CMU data and therefore leaves more room
for abstraction. The following sub-action relations were read
from the KNOWROB ontology:

PuttingSomethingSomewhere PickingUpAnObject
- PickingUpAnObject - Reaching
- CarryingWhileLocomoting - TakingSomething
- PuttingDownAnObject PuttingDownAnObject

- LoweringAnObject
- ReleasingGraspOfSth

Using these relations, the system can flexibly convert be-
tween annotations and align sequences that have been anno-
tated at different levels of abstraction. In the example below,
we have created an abstracted version of the annotations

for the right hand in sequence 0-7 of the TUM data set
(right side), and aligned it with the right-hand annotations
of sequence 0-11 (left side). The abstracted labels are on
either the medium level (PickingUpAnObject and Putting-
DownAnObject) or the most abstract one (PuttingSomething-
Somewhere).

CarryingWhileLocomoting - CarryingWhileLocomoting
Reaching - PickingUpAnObject

TakingSomething - ()
CarryingWhileLocomoting - CarryingWhileLocomoting

LoweringAnObject - PuttingDownAnObject
ReleasingGraspOfSth - ()

CarryingWhileLocomoting - CarryingWhileLocomoting
Reaching - PuttingSomethingSomewhere

TakingSomething - ()
CarryingWhileLocomoting - ()

LoweringAnObject - ()
ReleasingGraspOfSth - ()

CarryingWhileLocomoting - CarryingWhileLocomoting
Reaching - PuttingSomethingSomewhere

CarryingWhileLocomoting - |
Reaching - |

TakingSomething - ()
CarryingWhileLocomoting - ()

LoweringAnObject - ()
ReleasingGraspOfSth - ()

CarryingWhileLocomoting - CarryingWhileLocomoting
[...]

While the sequences on the left and on the right side are
substantially different, the system is able to align them
based on its knowledge about the composition of actions
from sub-actions.

E. Discovery of frequent sub-sequences

If the system detects that some actions are regularly per-
formed after each other, for example the sequence of walking
to the refrigerator, opening the door, taking some object out,
and closing the door, it could make use of this observation to
automatically perform an abstraction. In the context of the
ROBOEARTH knowledge repository, creating a specialized
“action recipe” for such a sequence will allow to re-use it
in other contexts. Similar to the global alignment, the local
alignment profits as well from a more flexible matching
based on semantic similarities. For example, the optimal
local alignment found by the Smith-Waterman algorithm for
the sequences EggS55 and EggS06 is:

Fig. 4. Alignment without (left) and with WUP similarity-based matching (right). Using this more flexible matching approach, the system can find the
correspondence between non-equal action descriptions.

none - none
walk to fridge - walk to fridge
open fridge - open fridge

Such a short subsequence is of quite limited use. Using
the WUP similarity-based matching, the system is able to
generate much longer and more meaningful alignments:

none - none
walk to fridge - walk to fridge
open fridge - open fridge
open egg-box - |

take egg from egg-box - take egg from fridge
close egg-box - |
close fridge - close fridge

walk to counter - walk to counter

VII. CONCLUSIONS

In this paper, we presented extensions to sequence align-
ment algorithms to make them applicable to the alignment
of robot action specifications. We adapted the methods for
comparing sequence elements to account for the complex
relational structure of action specifications and included
semantic similarity measures to achieve more flexible match-
ing. Knowledge about the hierarchical structure of actions
can be exploited to align sequences described at different
levels of granularity. We evaluated the methods on two
large real-world datasets of observations of making brownies,
making an omelette, and setting a table. The system was
able to align the sequences and to determine common sub-
sequences as well as parts that differ between the examples.

In our current work, we are integrating the presented
methods into the ROBOEARTH system to find duplicates
in action descriptions and merge similar descriptions of the
same task. In a related project, we have investigated methods
for learning expressive action models that can also represent
the dependency structure between the actions [19]. While
those models are more expressive than the sequence-based
models of this paper, their complexity is also much higher.
We plan to bring these approaches together to see whether
both can profit from each other.

ACKNOWLEDGMENTS
This work is supported in part by the EU FP7 Projects RoboEarth
(grant number 248942) and RoboHow (grant number 288533).

REFERENCES

[1] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to
parse natural language commands to a robot control system,” in
Proc. of the 13th International Symposium on Experimental Robotics
(ISER), June 2012.

[2] M. Tenorth, D. Nyga, and M. Beetz, “Understanding and Executing
Instructions for Everyday Manipulation Tasks from the World Wide
Web,” in IEEE International Conference on Robotics and Automation
(ICRA), Anchorage, AK, USA, May 3–8 2010, pp. 1486–1491.

[3] M. Waibel, M. Beetz, R. D’Andrea, R. Janssen, M. Tenorth, J. Civera,
J. Elfring, D. Gálvez-López, K. Häussermann, J. Montiel, A. Perzylo,
B. Schießle, O. Zweigle, and R. van de Molengraft, “RoboEarth -
A World Wide Web for Robots,” Robotics & Automation Magazine,
vol. 18, no. 2, pp. 69–82, 2011.

[4] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443 –
453, 1970.

[5] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
197, 1981.

[6] S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
and D. Lipman, “Gapped blast and psi-blast: a new generation of
protein database search programs,” Nucleic acids research, vol. 25,
no. 17, pp. 3389–3402, 1997.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, String
Matching. MIT Press, 2009, ch. 32, pp. 906–932, in Introduction to
Algorithms, Second Edition.

[8] V. I.Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet Physics Doklady, vol. 10, no. 8, 1966,
pp. 707–710.

[9] O. Duchenne, I. Laptev, J. Sivic, F. Bach, and J. Ponce, “Automatic an-
notation of human actions in video,” in 2009 IEEE 12th International
Conference on Computer Vision, September 2009, pp. 1491–1498.

[10] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning re-
alistic human actions from movies,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2008, pp. 1–8.

[11] D. McDermott, “Robot Planning,” AI Magazine, vol. 13, no. 2, pp.
55–79, 1992.

[12] M. Tenorth, A. C. Perzylo, R. Lafrenz, and M. Beetz, “The RoboEarth
language: Representing and Exchanging Knowledge about Actions,
Objects, and Environments,” in IEEE International Conference on
Robotics and Automation (ICRA), St. Paul, MN, USA, May 14–18
2012.

[13] M. Beetz, M. Tenorth, D. Jain, and J. Bandouch, “Towards Automated
Models of Activities of Daily Life,” Technology and Disability, vol. 22,
no. 1-2, pp. 27–40, 2010.

[14] W3C, OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax. World Wide Web Consortium, 2009,
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027.

[15] M. Tenorth, “Knowledge processing for autonomous robots,”
Ph.D. dissertation, Technische Universität München, 2011.
[Online]. Available: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:
de:bvb:91-diss-20111125-1079930-1-7

[16] Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in Pro-
ceedings of the 32nd annual meeting on Association for Computational
Linguistics. Association for Computational Linguistics Morristown,
NJ, USA, 1994, pp. 133–138.

[17] M. Tenorth, J. Bandouch, and M. Beetz, “The TUM Kitchen Data Set
of Everyday Manipulation Activities for Motion Tracking and Action
Recognition,” in IEEE International Workshop on Tracking Humans
for the Evaluation of their Motion in Image Sequences (THEMIS), in
conjunction with ICCV2009, 2009.

[18] F. De la Torre, J. Hodgins, J. Montano, S. Valcarcel, and J. Macey,
“Guide to the Carnegie Mellon University Multimodal Activity (CMU-
MMAC) Database,” CMU-RI-TR-08-22, Robotics Institute, Carnegie
Mellon University, Tech. Rep., 2009.

[19] M. Tenorth, F. D. la Torre, and M. Beetz, “Learning probability
distributions over partially-ordered human everyday activities,” in
IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, May 6–10 2013.

