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Abstract— Advancements in Virtual Reality have enabled
well-defined and consistent virtual environments that can cap-
ture complex scenarios, such as human everyday activities.
Additionally, virtual simulators (such as SIGVerse) are designed
to be user-friendly mechanisms between virtual robots/agents
and real users allowing a better interaction. We envision
such rich scenarios can be used to train robots to learn new
behaviors specially in human everyday activities where a diverse
variability can be found. In this paper, we present a multi-level
framework that is capable to use different input sources such as
cameras and virtual environments to understand and execute
the demonstrated activities. Our presented framework first
obtains the semantic models of human activities from cameras,
which are later tested using the SIGVerse virtual simulator
to show new complex activities (such as, cleaning the table)
using a virtual robot. Our introduced framework is integrated
on a real robot, i.e. an iCub, which is capable to process the
signals from the virtual environment to then understand the
activities performed by the observed robot. This was realized
through the use of previous knowledge and experiences that the
robot has learned from observing humans activities. Our results
show that our framework was able to extract the meaning
of the observed motions with 80% accuracy of recognition by
obtaining the objects relationships given the current context
via semantic representations to extract high-level understanding
of those complex activities even when they represent different
behaviors.

I. INTRODUCTION

Enabling robots to learn new tasks, typically requires
that humans demonstrate the desire task several times [1].
The observed motions should capture the human pose to
further create the models that identifies the demonstrated
task. However, this implies high costs due to the preparations
of capturing new scenarios and those observations are limited
to few tasks. Nevertheless, the problem of the acquisition
of data can be (partially) solved using virtual environments
when new scenarios and different conditions can be rapidly
tested in a larger scale for more diverse scenarios than
conventional means (see Fig. 1).

Virtual environments (VE) are human-computer interfaces
in which the computer creates a sensory-immersing environ-
ment that interactively responds to and is controlled by the
behavior of the user. For example, SIGVerse is a simulator
environment, which combines dynamics, perception, and
communication for synthetic approaches to investigate the
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Fig. 1. Overview of our approach that is capable to re-use the learned
models obtained from 2D cameras when using new input sources such as
virtual environment signals as prosed in this work.

genesis of social intelligence [2]. Using such simulator has
several advantages, for instance fast and cheap set-up of
new environments, different points of view of the analyzed
scene, multi-user interaction, embodied interaction between
virtual avatars and real user, etc. In other words, such VE
are important tools specially when several human behaviors
are investigated such as cooking, cleaning, etc. since they
provide more complete and synchronize information about
the executed task and the elements in the environment that
greatly help in the understanding of human behaviors without
the need of further expensive extra sensors.

It is well known that the segmentation and recognition
of human behaviors from observation is a difficult and
challenging problem [3]. For this reason several alternatives
have been proposed to gather the observed data, for instance
using one static camera as presented in [4] or several external
cameras, e.g. [5] and recently researches has been exploring
egocentric cameras to analyze the human gaze information,
e.g. [6], [7] to enhance the recognition of activities of
daily life for robotic systems. However, those recordings
are limited to the analysis of the obtained data and the
acquisition of new tasks will require whole new set-ups,
recruiting participants that will demonstrate the new tasks,
accurate sensors located around the scenario, etc. which
in long term represents a very costly and limited solution.
Therefore, a better alternative is using virtual simulators that
allow a long-term Human-Robot-Interaction due to its large



scale capabilities as proposed in [8].
In this paper, we propose a framework that is able to

segment and recognize human behaviors based on previously
learned experiences. The human activity recognition does
not depend on the learned task and it is possible to be
re-used in several and new scenarios using different input
sensors, such as cameras and virtual scenarios. Fig. 1 depicts
our proposed system, which first trains models to correctly
identify the human behaviors while preparing a sandwich
from real cameras. From this scenario, the semantic represen-
tations and reasoning engines are obtained using the observed
cooking task. The challenging part is the transference of
the obtained models into a new scenario where instead of
observing a real human, we observe a virtual mobile robot,
which is demonstrating a whole new task of cleaning the
table. Finally, our system is fully implemented into a robotic
platform that gathers the information of the VE and extracts
the semantics of the demonstrated activity to understand the
behavior of the virtual robot to execute a similar task in its
real scenario.

In summary the main contributions of this paper are:
a) we propose a multi-level framework that combines the
information from different input sources such as 2D cameras
and VE using our proposed semantic representations; b)
the proposed framework is flexible and adaptable to new
situations due to the re-usability of the learned semantics; c)
we assess our framework using more complex tasks than the
ones used on the training phase, thus demonstrating that our
obtained models do not depend on the trained task; d) our
presented framework is fully implemented on a humanoid
robot that imitates the observed behavior from different input
sources. The rest of this paper is organized as follows, section
II presents the related work. Then, section III describes the
technical details of the SIGVerse system. Afterward, section
IV explains the steps executed on the virtual data. Then,
section V presents the semantic representations method.
Finally, section VI briefly expresses the obtained results
followed by the conclusions.

II. RELATED WORK

The construction of hypothetical interaction models of hu-
mans should be designed to be large and preferable based on
big data to make them more scalable and to achieve a more
natural Human Robot-Interaction (HRI). Typically, research
on HRI is done within a close laboratory, under very control
scenarios, e.g. the light conditions are controlled, the location
of the cameras, among other factors. However, that limits
the exploration of more complex and difficult tasks normally
analyzed in social and embodied interaction to build robust
and general models about the studied interactions. This need
was explicitly stated in the Robohow1 project, whose goal
is to enable robots to autonomously perform a large set
of complex everyday manipulation tasks in real settings
using websites, visual instructions and haptic demonstrations
as primary information sources. However, integrating and

1http://www.robohow.eu

combining those heterogeneous pieces is not a trivial task
and it is still an unsolved problem.

Regarding the problem of human activity recognition sev-
eral challenges have to be addressed, for instance: automatic
segmentation of human motions [9], [10], identification of
important features of the motion [11], definition of the
importance of the object(s) to the task [12], as well as the
definition of different levels of abstraction [13]. One of the
main issues about those problem domains is that in order
to translate the proposed methods from one task to solve
a similar problem in another task is not straightforward. In
other words, the recognition of human activities is still far
from being an off-the-shelf technology [14].

Segmenting and recognizing human activities from
demonstrations have been (partially) achieved using human
poses mainly observed from external videos, e.g. using Con-
ditional Random Fields (CRF) [15], Dynamic Time Warping
[16], or by encoding the observed trajectories using Hidden
Markov Models (HMMs) mimesis model [17]. However, the
above techniques realize on the generation of trajectories
which depend on the location of the objects, it means
that if a different environment is being analyzed then the
trajectories are altered completely, thus, new models have
to be acquired for the classification, this implies that the
proposed techniques need considerable time to finally learn
a specific task [1]. Additionally, such techniques require a
sophisticated visual-processing method to extract the human
trajectories [18].

Recent studies focuses on determining the levels of ab-
straction to extract meaningful information from the pro-
duced task to obtain what and why certain task was recog-
nized. Hierarchical approaches are capable to recognize high-
level activities with more complex temporal structures [14].
Such approaches are suitable for a semantic-level analysis
between humans and/or objects which can be modeled us-
ing object Affordances to anticipate/predict future activities
[19], or using Graphical Models to learn functional object-
categories [20], or Decision Trees to capture the relationships
between motions and object properties [4]. For example, [21]
suggests to use a library of OACs (Object-Action Complexes)
to segment and recognize an action using the preconditions
and effects of each sub-action which will enable a robot to
reproduce the demonstrated activity. However, this system
requires a robust perception system to correctly identify the
object attributes which are obtained off-line. Then, based on
the affordance principle, Aksoy et. al. [22] presented the
called Semantic Event Chain (SEC), which determines the
interactions between the hand and the objects, expressed in a
rule-character form, which also depends on a precise vision
system.

III. SIGVERSE SIMULATOR

The SocioIntelliGenesis simulator (SIGVerse2) was prin-
cipally developed for the RoboCup@Home simulation chal-
lenge [2]. SIGVerse enables a better and straightforward

2http://www.sigverse.org



HRI experiments, since all agents either real or virtual are
able to interact socially and physically. Additionally, users
can arbitrary join virtual HRI experiments trough Internet to
enhance the interaction.

SIGVerse has three main modules: a) dynamics are used to
simulate the physical properties of the objects and agents; b)
perception which provides the senses of vision, sound, force
and touch to enhance the HRI; c) communication between
the available services.

SIGVerse is a client/server system consisting of a Linux
server and a Windows client application. The server is in
charge of running the dynamics calculations and of control-
ling the behaviors of the robot and human avatars. Whereas
the Windows client is used to access the user interface in
real time. In this work the server system was implemented
to access the environment information, specially to obtain the
position of the objects in the scene and the robot encoders
information that can be recorded during the executed task as
shown in Fig. 2.

Fig. 2. Principal components of the SIGVerse software. Additionally, we
can observe the communication between the server and client services. The
output log file obtained from the virtual scenario is stored in a file that is
used for the semantic system.

For our experiment, we choose the task of cleaning up,
which is one of the challenge tasks according to the rule-
book of the RoboCup@Home competition [8]. During this
task the robot has to grasp a piece of trash targeted by the
user and place it in a receptacle. Several problems are tested
in this task and one of them is the understanding of the
meaning of the instruction by speech recognition or by image
processing of pictures captured with a camera. In this paper
we will focus on the second problem.

The SIGVerse simulator is a state-of-the-art system that
has recently gained attention at the RoboCup@Home compe-
tition in the simulation league due to its robust functionality.
During this challenge users were able to control the robot
trough a Joystick device or a Kinect device. In other words,
the controller that determines the behavior of the robot used
in this paper was written directly by random users. In this
work the data used from SIGVerse contains the motions of a
robot that is controlled by an autonomous controller module
written by users.

IV. EXTRACTING INFORMATION FROM SIGVERSE

In our previous work [4], we proposed a new method
to recognize human activities based on semantic represen-
tations. This abstract method does not directly attempt to
classify human activities, but rather, it infer the activities
based on the observed human motions together with the
information of the object of interest. To achieve this goal, we
combine the visual information of the demonstrated task and
the information of the human motions. First, we segment the
continuous human motions into meaningful classes. Then,
the second part handles the difficult problem of interpreting
the perceived information into meaningful classes using
our inference module. Three primitive human motions are
segmented into mainly three categories:

• move: The hand is moving, i.e. ẋ > ε
• not move: The hand stop its motion, i.e. ẋ→ 0
• tool use: Complex motion, the hand has a tool and it

is acted on a second object, i.e. oh(t) = knife and
oa(t) = bread.

Notice, that those kind of motions can be recognized in
different scenarios and this method has been tested using
as input: one camera [6] and multiple cameras [5]. However,
these segmented motions can not define an activity by them-
selves. Therefore, we need to add the object information,
i.e. the motions together with the object properties have more
meaning than separate entities. The object properties that can
be recognized are:

• ObjectActedOn (oa): The hand is moving towards an
object, i.e. d(xh, xo) =

√∑n
i=1(xh − xoi)

2 → 0
• ObjectInHand (oh): The object is in the hand, i.e. oh is

currently manipulated, i.e. d(xh, xo) ≈ 0.

where d(.) is the distance between the hand position (xh)
and the position of the detected object (xo). The output of
this module determines the current state of the system (s),
which is defined as the triplet s = {m, oa, oh}. The definition
and some examples of the motions and object properties are
further explained in [5].

A. Results of the segmentation using virtual data

One of the main advantages of using VE is the fact that
the location of agents and objects within the environment are
known and can be acquired without any further perception
system, which safes time when analyzing the data. However,
our system previously presented in [4] only considered the
information of 2D images. This means that we needed to
adapt our system to also include 3D data. These changes
are only reflected on the segmentation of the robot hand
motions during the execution of the task cleaning, i.e. on
the computation of the right end-effector velocities of the
mobile virtual robot.

Since the obtained velocities of the virtual mobile robot
end-effector presented some noise, we implemented a 2nd.
order low-pass filter to smooth the obtained velocities. We
choose the digital Butterworth filter with normalized cutoff



frequency Wn.

H(z) =
b(1) + b(2)z−1 + ...+ b(n+ 1)z−n

1 + a(2)z−1 + ...+ a(n+ 1)z−n
(1)

where b and a are row vectors that contains the filtered
coefficients in length n+1 where n = 2 and with coefficients
in descending powers of z. This filter was also used to
smooth the distance signal d(xh, xo) before computing the
object properties oa and oh.

Quantitatively the results of segmenting the motions
(move, not move, tool use) of the virtual robot while exe-
cuting the cleaning task are 77.83% accurate compare with
the ground-truth3. Regarding the object properties for this
virtual scenario are for the recognition of the ObjectActedOn
property is 88.46% accurate and 90.5% when recognizing the
ObjectInHand property.

V. UNDERSTANDING HUMAN ACTIVITIES

In this work we propose two levels of abstraction: the
low-level, which describes generalized actions such as: move,
not move or tool use, and the high-level abstraction, which
represents the basic human activities, such as: reach, take,
cut, release, etc. Our technique uses the information from
the low-level abstraction, to infer the high-level activities.
This section briefly describes our method introduced in [4] to
combine the observations obtained from the external cameras
using semantic representations. In other words, this mod-
ule interprets the visual data obtained from the perception
module and process that information to infer the human
intentions. This means that it receives as input information
the hand motion segmentation (m) and the object properties
(oa or oh).

In order to identify and extract the meaning of human
motions, we used a decision tree to automatically generate
the semantic rules that defines and explains the demonstrated
human motions in a general manner. We used the C4.5 algo-
rithm [23] and the Weka software to build our decision tree.
We used as training data the information from 2D cameras
for the sandwich-making scenario (see the training box from
Fig. 1). Notice, that this scenario has high complexity due
to the several sub-activities that it contains and different
constraints.

Our proposed method consists of two steps to recognize
human activities. For the first step, we used the information
of the ground-truth data of the first subject for the scenario
of making a sandwich. We split the data as follows: the first
60% of the trails was used for training and the rest 40% for
testing. Then, we obtained the tree Tsandwich shown in Fig.
3 which presents the same structured as the one previously
presented in [4]. From this tree the following human basic
activities can be inferred: idle, take, release, reach, put
something somewhere and granular4. This learning process
will capture the general information between the objects,

3The ground-truth data is obtained by manually segmenting the videos
into hand motions, object properties and human activities.

4Granular activities define classes such as cut, pour, flip, etc. These
activities are difficult to generalize because they depend on the context.

motions and activities. It is important to highlight that a
similar tree is obtained when the pancake data set is used
for training as presented in [6].

Fig. 3. This figure shows the tree obtained from the sandwich making
scenario (Tsandwich).

From Fig. 3 we can observed that the activities: cut,
sprinkle, etc. are inferred using the same rule:

if Hand(Tool use)→ Activity(GranularActivity) (2)

This means that these activities need more information in
order to be correctly classified. Those activities does not
represent human basic activities, and we will call them
granular activities and we used the second step of our
proposed method to extend the obtained tree based on the
current context to infer such activities in a similar manner
as presented in [4].

A. Results of the human recognition

We tested the accuracy of the obtained tree Tsandwich

using the remaining 40% of the sandwich data set to validate
the accuracy of the obtained rules. Then, given the input
attributes nsandwich test = {Move, Something, None}
we determine c(nsandwich test). Afterward, the state-value
pairs from the test data set nsandwich test are of the form
〈nsandwich test(t), ?〉, where t represents the time (frames).
After that, the target value is determined for each state
of the system c(nsandwich test(t)). Finally, the obtained
results show that c(nsandwich test(t)) was correctly classified
92.57% of the instances using as input information manually
labeled data, i.e., during the off-line recognition.

It is important to notice that the demonstrations used to
train the semantic representations comes from 2D cameras
and from a cooking activity. This implies that the human is
always standing in the same location during the execution of
the activity. Then, will it be possible to re-use the learned
models depicted in Fig. 3 in a unknown scenario, where the
demonstrator is moving constantly around the kitchen?.

In order to answer the above question, we tested the
obtained tree from Fig. 3 with the new cleaning task using
the information of the virtual environment, this means that
now we have as input 3D information. Additionally, as can
be observed in the attach video the agent that demonstrates



the behavior is a virtual robot which is moving around the
kitchen, which makes the recognition even harder, specially
when no previous training has been applied to this new
situation.

From the obtained results we can notice that the activities
idle and release are wrongly recognized by our system
compared to the ground-truth. However, if we observe the
obtained tree one in more detail (see Fig. 3), then we notice
that in order to recognize the idle or release activities, we
use the rules:

if Hand(NotMove) and ObjectInHand(None)

→ Activity(Idle) (3)
if Hand(Move) and ObjectInHand(None)

and ObjectActedOn(None)→ Activity(Realease) (4)

This indicates that in both activities the only difference is
the motion of the hand, which is either move or not move.
This is a very interesting phenomenon because it suggest
that these two rules describe the same activity. This aspect
did not pop up before since previously we have tested our
system in different cooking scenarios, where the human is
mostly standing in the same place, which is in front of a
table. However, in this new scenario, we notice that the
demonstrator, in this case the virtual robot, is moving around
the kitchen, which stressed this situation.

Then, we considered the case when these two rules
describe the same activity and we tested the sandwich
making scenario again with this new assumption and the
recognition improved from 92.57% to 95.43%. Additionally,
we asked random participants to label the ground-truth
data for the sandwich scenario and we noticed that they
frequently misclassified the activities idle and release. Thus,
demonstrating that this two rules are equivalent. Following a
similar procedure, we compute the accuracy of recognition of
our system into the new scenario and the quantitative results
are 80% accurate compare to the ground-truth, which is a
very high accuracy specially since no training was performed
in this new scenario and the training and testing scenarios
are very different.

VI. TRANSFERRING THE MODELS INTO HUMANOID
ROBOTS

The experimental integration and validation of the ac-
quired cognitive behavior into a humanoid robot are very
important, essential and a challenging task. Therefore, as a
final step, we validate our framework on a humanoid robot,
the iCub a 53 degrees of freedom humanoid robot [24].
The implementation of our proposed framework within the
control loop of the robot, follows a similar procedure as
explained in our previous work [4]. However, we needed
to include new procedures to adapt our code to the new
scenario where more than one object is possible to be
detected. Which means that several objects can have the
same property at the same time. Then, to avoid that case,
we improve our system specially, during the recognition of

ObjectActedOn and ObjectInHand properties. This procedure
is better explained in Algorithm 1.

Algorithm 1 Determine ObjActOn and ObjInHand.
Require: distance[n]: store the distance between the hand and objects detected (n).

threshold OA : ObjectActedOn threshold.
threshold OH : ObjectInHand threshold.

1: for i = 0 to N step 1 do
2: if distance[i] <= threshold OH then
3: OH vector.push back(i)
4: else
5: if distance[i] <= threshold OA then
6: OA vector.push back(i)
7: end if
8: end if
9: end for

10: Find the value with lower distance from OA vector to choose ObjActOn
11: for index = 0 to OA vector.size() step 1 do
12: if distance[OA vector[index] < min then
13: ObjActOn = OA vector[index]
14: min = distance[OA vector[index]]
15: end if
16: end for
17: A similar procedure is followed to find ObjInHand
18: return ObjActOn,ObjInHand

The results of the recognition of the human activities
can be observed in Fig. 4. Our results also suggest that in
order to execute a complex task such as cleaning the table
it is possible to only recognize simple and basic human
activities, such as: reach, take, put, release/idle. Another
interesting result is the possibility to understand and execute
complex activities such as cleaning without the use of the
granular activities, which also demonstrates the robustness
of our obtained semantic representations which are still valid
(without any further training) under different scenarios and
using different input sources such as cameras or VE.

Additionally, Fig. 4 depicts the integration between the on-
line perception and semantic capabilities of our iCub robot
to successfully recognize in real time human activities from
different sources of information under different scenarios. In
other words, we integrate and assess our system for different
levels of complexity, i.e. first, we tested our obtained models
using video inputs, later without further training we tested
the same models under a new Virtual Environment scenario.
Where the obtained results show that our framework is able
to extract from the SIGVerse virtual simulator the meaning
of the observed motions with 80% accuracy of recognition.

This indicates that our proposed system is designed in a
way that allows different inputs without further modifications
and without the need of further training to correctly extract
the semantic of complex human activities as general as
possible.

VII. CONCLUSIONS

In this paper we present our framework to bootstrap hu-
manoid robot skills using virtual reality means via extraction
of semantic representations for the recognition of human
activities. Our semantic representations are obtained by seg-
menting low-level human motions, i.e, move or not move
and two object properties, i.e. ObjActedOn, ObjInHand. We
prove that our semantic rules captures the meaning of the
human everyday activities, in a completely new scenario,



Fig. 4. First the robot observes the motions of the human from the external and the gaze videos, then it infers or learns the human activity and finally
the iCub execute a similar activity.

i.e. cleaning the table without any further training with an
accuracy of recognition around 80%.
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