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Abstract— In this paper we discuss the problem of action-
specific knowledge processing, representation and acquisition
by autonomous robots performing everyday activities. We
report on a thorough analysis of the household domain, which
has been performed on a large corpus of natural-language
instructions from the Web and underlines the supreme need
of action-specific knowledge for robots acting in those environ-
ments. We introduce the concept of Probabilistic Robot Action
Cores (PRAC) that are well-suited for encoding such knowledge
in a probabilistic first-order knowledge base. We additionally
show how such a knowledge base can be acquired by natural
language and we address the problems of incompleteness,
underspecification and ambiguity of naturalistic action spec-
ifications and point out how PRAC models can tackle those.

I. INTRODUCTION

Roadmaps for robot research and technology identify
robotic (co-)workers, assistants, and companions as promis-
ing targets for our technologies. These applications have in
common that autonomous robots must perform complete jobs
including a variety of human-scale activities, can be tasked
in naturalistic ways, and operate over extended periods of
time. They have to perform what is commonly referred to
as everyday activity. In a recent experiment, Beetz et al. [1]
have shown the feasibility of such robotic assistants by
executing a natural-language recipe for making pancakes
on one of their robotic platforms, which is illustrated in
Figure 1.

Anderson [2] defines an everyday activity as a complex
task that is common and mundane to the human – in our case
to the robot – and that it in turn has a great deal of knowledge
about. People performing everyday activity typically aim for
adequate or satisficing performance rather than optimality
and expert performance. Following this definition, everyday
activities are routine in a sense that they occur frequently
and, as a consequence, a robot must be well-experienced in
performing them. The familiarity with these activities hence
results in a large amount of knowledge about how a particular
activity is to be performed in a specific context, going along
with the awareness about objects involved in these actions as
well as their inter- and intrarelations. This makes executing
everyday activities a very knowledge-intensive task rather
than intensive to planning.

As a consequence, knowledge about actions and objects
serves as a source for constraints, i.e. a robot is to perform
a particular action subject to the constraints given by its
knowledge about this action. Constraining the space of

Fig. 1. The robot “TUM-Rosie” while making pancakes. The pancake
recipe has been downloaded from the web page wikihow.com.

possible action configurations by knowledge does not mean
to restrict the physical or mental capabilities of a robot,
but to guide the process of decision making. Considering
only alternatives that have worked before rather rules out
alternatives that are inappropriate or irrational in a particular
context and hence makes repeated reasoning about choices
obsolete. Consider, for example, a naturalistic instruction
such as “Push the spatula under the pancake,” which might
be taken from a recipe for making pancakes. Successfully
executing this instruction requires the robot to hold the
spatula at its handle, to push only the blade of the spatula
under the pancake, to push the blade at a position where the
pancake can be lifted safely, to push the blade between the
pancake and the pan, and to hold the spatula in an appropriate
angle to the pan, to name only a few. As these additional
constraints are not stated explicitly in the original instruction,
the robot has to infer them by itself. This requires us to equip
robots with a substantial body of knowledge that enables it to
resolve ambiguities and to infer information that is missing
in naturalistic task specifications.

Knowledge allows a robot to adjust action parameters such
as the object acted on, the utensil or tool used to manipulate
the object, the direction and destination of an action etc.
or, in other words, to perform the appropriate action on the
appropriate objects in an appropriate way. Appropriateness
here does not mean optimality. Simon [3] refers to this



“satisficing” performance in decision making as rational
boundedness, which results from cognitive limitations of an
agent that has to balance utility and costs of deliberation
effort. In these terms, an optimal solution often cannot be
found in real-world scenarios and a robot “accepts ‘good
enough’ alternatives, not because he prefers less to more but
because he has no choice.” [3]

These considerations set the stage for this paper. We
intend to investigate how much action-specific knowledge
robots should be equipped with in order to be capable of
performing everyday activities successfully, effectively and
competently. We will further investigate how this knowledge
can be acquired, represented and used. For this research
we restrict ourselves to abstract knowledge, the knowledge
about actions that is typically communicated and written
down in instructions. Other kinds of essential knowledge
that the abstract knowledge needs to be combined with is
being addressed in other works and includes naive physics
knowledge [4], common-sense knowledge [5] and knowledge
gathered from experience [6].
The contributions of this paper are the following:
• We will hypothesize and give estimations for the amount

of knowledge that robots might need for the competent
performance of envisioned robot jobs such as preparing
meals. These estimations will be obtained by the
application of data mining techniques to websites that
provide written instructions for performing everyday
activities that are intended for human use.
Based on these results we will discuss (1) how this
knowledge is organized, (2) how it is to be represented
and (3) how it is to be acquired.

• We will introduce the concept of Probabilistic Robot
Action Cores (PRAC) for representing action-specific
knowledge for everyday manipulation, which can be
thought of as abstract event types encoded in a proba-
bilistic first-order knowledge base.

• We will finally demonstrate the strength of PRAC
models by applying a proof-of-concept implementation
to the problems of disambiguation and completion of
naturalistic action specifications.

II. HOW MUCH ACTION-SPECIFIC KNOWLEDGE DOES A
ROBOT NEED?

When building a domain-specific knowledge base (KB), it
is crucial to have a thorough understanding of the require-
ments the KB has to meet. In order to get an idea about the
knowledge required for executing everyday activities, we did
a study on a large set of natural-language instructions that
we mined from the wikihow.com website, which contains
thousands of recipes, plans and other step-by-step directives
for a vast number of everyday household activities, which
are written by humans and intended for human use. Our
investigations aim at answering the following questions:
• How many different actions does a robot need to know?
• How much variation do these actions exhibit?
• How do humans explain complex tasks to other hu-

mans?

Action Verb # Occurrences
Adding sth. to sth./Combining > 7,900
Picking/Placing sth. swh. > 4,900
Filling/Pouring sth. into/onto sth. > 3,100
Removing sth. > 1,700
Stirring/Beating sth. > 1,900
Serving sth. > 1,400
Mixing/Blending sth. > 1,200

Fig. 2. Most frequent action verbs in the wikiHow.com dataset and
their number of occurrences. Further frequent action verbs comprise
Baking, Cooking/Simmering/Boiling, Cutting/Chopping/Slicing, Sprinkling,
Flipping/Turning over, Refrigerating/Cooling/Freezing, Shaking, Waiting.

Especially the third question is of particular importance in
order to be able to endow robots with means for understand-
ing naturalistic task specifications.

At the time this study has been conducted, the “Food &
Entertaining” category on wikiHow.com comprises 273
subcategories consisting of 8786 articles in natural lan-
guage, covering basic cooking skills (e.g. cutting techniques),
recipes for cooking a wide range of dishes (e.g. making
pancakes) or plans for organizing a whole dinner party.

The plans have been automatically extracted by a website
parser. For analyzing them, we applied the system described
in [7] for extracting single instructions from natural-language
text and for transforming them into a formal, logic-based
representation. The system first parses a natural-language
text using a statistical parser and afterwards exploits its
syntactic structure in order to determine action verbs as
well as semantic relations such as the object acted on
and prepositional relations. The system also implements
the mapping from word meanings to concepts in a logical
knowledge base. For a detailed description we refer to [7].

A. How many actions are there?

We analyzed more than 130,000 sentences out of which
we extracted about 53,000 relevant instructions. Here, in-
structions are regarded as relevant if they are goal-directed
in a sense that a respective instruction effectively contributes
to the overall outcome of a plan. This differentiation is
important since in recipes, beside regular instructions, also
a vast amount of additional explanations, comments and
non-goal-directed instructions such as “Enjoy your meal,”
“Admire your work,” or “Be an artist,” for instance, can be
found. Such instructions do not represent action verbs for
object manipulation, which we consider here, and thus they
have been filtered for this study by a stop word strategy.

We found that almost the entire set of 8786 natural
language plans under consideration can be represented as
compositions of instructions spanned up by a space of about
100 different action verbs. Among these, the most important
(i.e. most frequent) actions are given by pick-and-place
actions (e.g. “Place the placemat in front of the chair.”) and
actions for combining two or more substances (e.g. “Add
the eggs to the flour.”). Interestingly, the top 15 action verbs
make more than 50% of all the 53,000 actions. Figure 2
shows frequencies of the top seven action verbs.
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Fig. 3. Automatically generated taxonomy of differnet types of “Flipping”
actions using a semantic clustering of syntactic relations.

B. How much variation do actions exhibit?

Despite the limitation of action verbs that can be often
found in the household domain with respect to numbers,
the actions under consideration are still very complex. On
the one hand, this is due to the world to be acted in being
inherently continuous and uncertain, but, on the other hand,
this also results from different actions often occurring with
different parameterization in different contexts.

In order to examine how much variation the domain-
relevant action verbs exhibit, we analyzed the 53,000 in-
structions with respect to their parameterization given by
syntactic relations such as the object acted on as well as
prepositional relations that modify the respective action verb,
such as “with”, “from”, “to”, “into” relations and such.
These relations can have different meanings in different
contexts and hence it is crucial to be able to resolve their
meanings in order to understand and execute a respective
action proficiently.

The dimensionality of each action verb configuration has
been reduced by applying a semantic clustering technique
to these parameterizations on the objects referred to in
the respective relations. As a distance measure between
concepts, the WuP similarity [8] has been applied to these
relation arguments, whose corresponding word senses (i.e.
concepts in the WordNet [9] class taxonomy) have been
determined first by the importer for natural language instruc-
tions described above.

Figure 3 exemplarily shows a taxonomy of the action verb
“Flip”, which has been automatically generated by iteratively
applying the semantic clustering algorithm to the arguments
of the syntactic relations in the entire set of “flipping”
instructions. It can be seen that our procedure generates
a steep taxonomy of different action configurations for the
action verb “Flip”, which reasonably reflects different types
of that action. As an example, consider the generalization of
FlippingPancakeWithInstrumentality, which is highlighted.

Figure 4 shows the cluster sizes for relations with respect
to five of the 15 most frequent action verbs. As can be seen,

Relation Flipping Cutting Adding Filling Stirring
objActedOn 65 499 1200 188 166
prep_with 12 28 58 162 36
prep_on 2 34 42 3 4
prep_into 3 139 77 24 48
prep_onto 8 1 14 1 1
prep_to 2 26 460 24 18
prep_from 0 46 18 3 4
prep_through 1 31 4 0 8

Fig. 4. Sizes of clusters that have been obtained by semantically clustering
the prepositional relations of action verbs.

a large number of diverse everyday household activities, in
which an average person participates often, can be broken
down to a set of elementary actions that still is very limited,
though there is a wealth of different objects involved.

Our study on domain-specific action verbs supports our
introductory thesis that a robot performing these activities
with the same ease as humans do, needs to have a substantial
body of knowledge about how to execute the single actions
involved. With implementing robot control plans for the most
important action verbs we reported on above, we expect that
we can cover a wide range of everyday household activities
that can be performed by our robots.

C. Naturalistic Action Specifications

When studying the ways how humans explain complex
activities to other humans, we observe that they make use of
a language that is extremely underspecified and vague. As
an example, consider the following sequence of instructions
for making a pancake:

1) Pour milk into a bowl.
2) Add flour and mix well.
3) Heat the greased pan.
4) Pour the batter into the pan, then wait for 2 minutes.
5) Push the spatula under the pancake and flip it.
6) Wait for another 2 minutes.
7) Place the pancake on a plate.
8) Serve.
When formulating such directives, humans tend to omit

important information, which is necessary for performing a
particular action. Thus, only understanding what is explicitly
specified by an instruction is insufficient for performing an
action proficiently and successfully. The example shows
that naturalistic action specifications written by humans are
severely underspecified and ambiguous: instruction 2), for
instance, does not specify what the flour is to be added
to and neither what needs to be mixed. Similarly, the
relations between the spatula, its parts and the pancake are
not explicitly referred to in instruction 5).

Figure 5 depicts the network of entities and relations that
specify this event more precisely. The colored entities are
given by the instruction, whereas the grayed ones need to be
inferred in order to obtain a deeper semantic representation.
As can be seen, the information given by the natural-
language directive only serves as little evidence in a complex
network of dependencies between objects and actions, which
needs to be completed.
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Typically, humans can do such inference with great ease.
They share a large amount of common background knowl-
edge about actions and objects, which is self-evident to them,
rendering explicit announcements of these facts redundant
and obsolete. As we will discuss in the next section,
such knowledge can serve as a constraining mechanism
in everyday manipulation activities as it does it in natural
language. As a consequence, for completely understanding
a naturalistic instruction with the goal of executing it, it is
indispensible to not only understand what is given, but also
to infer what is actually meant.

III. PROBABILISTIC ROBOT ACTION CORES

What is actually meant by an instruction specifies much
more constraints than the instruction itself explicitly states.
As we pointed out in the previous sections, the execution of
everyday manipulation activities and human household tasks
is characterized by strong experience and familiarity of an
agent performing them, which makes everyday manipulation
a knowledge-intensive task. Additionally, our studies on
how humans explain everyday activities to others, such as
cooking a meal, show that people typically omit information
that is self-evident to them but inevitable for any robot that
is supposed to perform them. It is the knowledge about
actions, objects and the relations that hold between them that
humans have in common, which allows them to infer what
information is needed from what is explicitly specified.

Robots acting in human environments therefore must have
corresponding action-specific knowledge available as well
as mechanisms for reasoning about it, which allow to infer
what to do to which objects in a particular situation. By
employing such an action-specific KB, we can address the
following important issues that arise when acting in human
environments and interpreting naturalistic task instructions:

1) Disambiguation: naturalistic action specifications ex-
hibit a high degree of ambiguity. As an example, con-
sider the action verb “Turn over,” which offers a variety
of possible meanings1. Given contextual information,

1WordNet provides 11 different meanings of the verb “Turn over”.

however, e.g. the objects{
,

}
our background knowledge about this action substan-
tially limits the space of possible interpretations, though
there is no explicit information given about what actions
to perform on which objects.

2) Completion of actions: naturalistic action specifications
are incomplete. As pointed out above, this results from
the common human knowledge about actions, which is
that self-evident that no one would state it explicitly.
In descriptions of activities written by humans, such
as cooking recipes, we often encouter instructions like
“stir occasionally”. These instructions are characterized
by extreme underspecification since they lack any infor-
mation about the objects involved. In our example, for
instance, it has to be inferred what needs to be stirred
(e.g. batter), which utensil is to be used (e.g. a spoon or
a mixer), where the action takes place (e.g. in a bowl)
etc.

If robots are to be instructed in a natural manner, they
need to be endowed with capabilities for understanding
human task specifications. Previous work in this field mainly
focuses on deriving goals from natural-language instructions,
transforming them into a formal representation and finding
an action sequence that yields the desired goal. General
problem solvers have been applied to problems that require
intensive mental effort and concentration, such as playing
chess or solving cryptarithmetic puzzles. Everyday activities,
however, are of fundamentally different nature [2]. Humans
perform such activities with great ease, if not unconciously,
not requiring intensive planning and deliberation. Planning
about action sequences, i.e. reasoning about actions, their
effects and goals, has been widely studied by both the
artificial intelligence and the robotics community. How-
ever, these approaches towards action intelligence assume
complete knowledge about actions and the world. As our
studies show, service robots that will have to act in human
environments will be faced with high uncertainty, ambiguity
and underspecification, and, as Moore [10] points out, in
such real-world scenarios, the knowledge about actions often
is incomplete though indispensible. Only little attention has
been paid to the important role that knowledge about actions
plays in such environments, and about reasoning mechanisms
allowing to infer the information that is needed in order to
perform an activity competently.

We argue that action-specific knowledge is key to deal-
ing with complex, human-scale everyday tasks rather than
classical planning and we present a framework for model-
ing probabilistic dependencies between actions, objects and
ontological information about the world.

The key idea of an action verb-specific knowledge base
is to model events in everyday activity as generic event
patterns. It has been shown that the level of abstraction
of such patterns should be as abstract as possible, but as



specific as necessary in order to still be able to discriminate
between particular roles filled by the entities involved. As
Bailey [11] points out, humans are capable of rapidly yet
flexibly learning such event patterns, i.e. how different action
verbs are to be used in different context. This already
happens in early childhood and by hearing just a few exam-
ples. Humans are capable of abstracting away from single
instances of events to more generic event patterns by building
superclasses subsuming the concrete event instances. A
graphical representation of such a pattern is shown in Figure
5. We are pursuing a similar strategy in building up our
knowledge base.

This leads to an informal definition of an action core: a
Robot Action Core is the set of inter- and intraconceptual
relations that constitute an abstract event type, assigning
an action role to each entity that is affected by the re-
spective action verb. Action roles thus can be regarded as
action parameters defining relations among entities involved.
Knowing about all roles of a particular action in turn is
required to fully specify the action under consideration.

The idea of a Probabilistic Robot Action Core (PRAC) is
to represent a joint probability distribution over the action
roles such that evidence given by a naturalistic instruction
can be used to infer the information that is required for fully
specifying the action (cmp. to Figure 5). From a probabilistic
point of view, we can formulate this inference task as

arg max
neededRoles

PAction(neededRoles | givenRoles),

where the given roles also include relations that are incorpo-
rated by an ontology that models taxonomic (is-a, in symbols
v) or mereological (part-of, in symbols �) knowledge.
This allows us to model an action core at an appropriate
level of abstraction, such that it can be applied to a large
number of real-world scenarios of the same type. Given a
couple of concrete single action specifications, the taxonomic
relationship between entities can be exploited to abstract
away to more generic action patterns. As an example,
consider the following two concrete instructions:

“FillAction milkTheme into a bowlDestination”
and “FillAction a glassDestination with waterTheme”,

where the set R = {Action,Theme,Destination} represents
the roles of the action verb “fill”. Within the PRAC
framework, taxonomic generalization is used to encode

“FillAction a liquidTheme into a containerDestination”.

as an abstract “filling” event. Given a previously unseen ob-
ject, let us assume “juice”, the most probable role assignment
of that word can be inferred since superclasses are taken into
account in the model.

In an unknown scenario, object information can be gath-
ered from the environment and be matched against the action
core patterns, which enables to draw conclusions about what
is missing and constraining the search space of possible
action configurations. Here the term “scenario” is to be
understood in a wide range. A scenario can be given by

a real-world setting, a simulated environment, video sources
or a natural language instruction.

In these terms, we can define a Probabilistic Robot
Action Core as a conditional probability distribution
P (R×A× C | v, �), where

R is the set of all action roles
A is the set of all action verbs
C is the set of all class concepts
v is a taxonomy relation over C
� is a mereological relation over C.

A Probabilistic Robot Action Core hence models a proba-
bility distribution over all possible roles of an action and
can be seen as a “probabilistic typecast” on action role
arguments. This probabilistic first-order representation of
events can be used in order to resolve ambiguity and to
complete the most plausible action specification, based on
what is given by the instruction. In our examplary instruction
“Flip the pancake,” the action “flip” and the object “pancake”
are given, and we can use the PRAC distribution to infer
action roles that are not specified, for instance the type of
instrument to be used:

arg max
c∈Concepts

P ( i v c | p v Pancake,

Theme(a, p),

ActionVerb(a,Flip)

Instrument(a, i))

= Spatula (1)

In the next section, we show how such a PRAC model
can be designed and learned from labeled language data.

IV. IMPLEMENTATION

Here we present our implementation of PRAC, which is
applicable to natural-language instructions. Figure 6 shows
the overall architecture of our system. We mainly use five
knowledge sources which are publicly available in order to
construct the relational PRAC model. In particular, we use

1) the WordNet lexical database for conceptual and taxo-
nomic knowledge,

2) the FrameNet database for action and role definitions,
3) the Stanford Parser for extracting syntactic information

from natural-language instructions,
4) the wikihow.com website for domain-specific action

knowledge,
5) the Amazon Mechanical Turk marketplace in order to

obtain semantically labeled ground truth data.

The first three knowledge sources are depicted in the upper
part of the diagram in Figure 6. Knowledge from each of
these resources is relational in its nature, such that it can
be directly be imported into a logic framework like PRAC.
The lower part shows knowledge sources that we use for the
purpose of data acquisition, which is discussed in the next
section.
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A. Knowledge Sources

WordNet [9] is a lexical database that groups words of
equal conceptual meanings into groups, the so-called synsets.
Additionally, it provides a deep taxonomy of these synsets
as well as mereological relations. Given a word and its part
of speech, the possible word meanings can be obtained from
WordNet, which corresponds to the sets C,A,v and � in the
PRAC model. FrameNet [12] provides conceptualizations of
actions that consist of an action definition and a set of associ-
ated roles that represent the parameters of a respective action.
An action itself is represented as an abstract concept and
specific action verbs represent instances of these concepts.
As an example, consider the defintion of the action concept
MovingInPlace, which is defined in FrameNet as follows:

A Theme moves with respect to a fixed location,
generally with a certain Periodicity, without under-
going unbounded translational motion or significant
alteration of configuration/shape.

Possible instances of this abstract event are given by the ac-
tion verbs Rotate, Shake, Spin, Twirl, Flip, Turn around etc.,
which share the same action parameters, such as the Theme
undergoing a non-translational motion, the FixedLocation or
the Periodicity of the motion. Figure 7 shows definitions of
a selection of roles attached to the MovingInPlace event.

Beside semantic knowledge about actions, objects and
their interrelations, also syntactic information can be strong
evidence in understanding naturalistic action specifications.
Prepositional relations, for instance, but also the sequence
of words in an instruction can have strong influence on its
semantics. For example, consider the instruction “Flip the
pancake with a spatula”, where the prepositional relation
with indicates an instrumental relationship between the action
flip and the subsequent word spatula. Other prepositional
relations, such as “into”, “onto”, “from” or “off”, however,
indicate Goal and Source relations in instructions like “Fill
a cooking pot with water from the tap.”

Information given by such syntactic relations can be

Role Definition
Theme A physical entity that is participating in non-

translational motion.
FixedLocation The point or set of points that define the limits

of motion for the Theme.
Angle The amount of rotation that the Theme undergoes
Periodicity The number of times the Theme returns to a state

in a given duration.
Direction The direction of rotation of the Theme.
Place The location where the bounded motion happens.
Time The time at which the Theme is in bounded

motion.

Fig. 7. Role Definitions for the Action Concept MovingInPlace

incorporated by employing natural-language parsing. In
particular, syntactic dependencies connect constituents in a
natural-language instruction by means of binary predicates
that can be directly imported into a relational model such
as PRAC. The following dependencies, for instance, are
obtained by the Stanford Parser [13], being applied to the
instruction above:

1. det(pancake-3, the-2)
2. dobj(Flip-1, pancake-3)
3. det(spatula-6, a-5)
4. prep_with(Flip-1, spatula-6)

These dependencies indicate that the second word “the”
depends on the third word “pancake” as a determiner,
“pancake” represents a direct object of the verb “Flip”
and “spatula” depends on “Flip” via a prepositional “with”
relation. However, PRAC does not rely on a correct parse,
for it considers these relations just as evidence features.
In connection with the semantic action roles defined by
FrameNet, the syntactic Stanford Dependencies represent the
set R of interconceptual relations.

B. Data Sources

The lower part of Figure 6 represents three Web resources
that we use for acquiring data. We extracted more than 1,400
natural-language instructions from the “Food & Entertain-
ing” category of wikihow.com and had them semantically
annotated. This set of instructions comprises the action verbs
add, cut, fill, flip, mix, place, pour and put, which belong to
the most frequent actions verbs we reported on in Section
II-A. In a first step, we employed Amazon Mechanical Turk
to crowdsource the task of semantically annotating word
senses for each of the nouns, verbs, adjectives and adverbs
occurring in the natural-language instructions. The possible
word senses have been obtained from the WordNet lexical
data base. In a second step, we annotated the action roles
in each instruction. As a result, we obtained a semantically
annotated corpus of natural language data that can be used
in order to train the PRAC models described above. In the
near future, we also plan to incorporate data from the Open
Mind Indoor Commonsense (OMICS) [14] data base, which
has not yet been integrated in our current implementation.

C. Markov Logic Networks

We implemented the PRAC knowledge base as a Markov
Logic Network (MLN) [15]. MLNs represent a knowledge



Predicates
hasSense(w, r!, i) hasRole(w, r!, i)
isa(s, s) hasPOS(w, pos!, i)
det(w, d, i) dobj(w,w, i)
prep_from(w,w, i) prep_with(w,w, i)
prep_into(w,w, i) conj_and(w,w, i)

# Formula
1 hasSense(w1,+s1, i) ∧ hasRole(w1,+r1, i) ∧ isa(+s1,+s2)
2 hasSense(w1,+s1, i) ∧ hasRole(w1,+r1, i) ∧ hasSense(w2,+s2, i) ∧ hasRole(w2,+r2, i)
3 prep_from(w1, w2, i) ∧ hasRole(w1,+r1, i) ∧ hasRole(w2,+r2, i)
4 prep_with(w1, w2, i) ∧ hasRole(w1,+r1, i) ∧ hasRole(w2,+r2, i)
5 prep_into(w1, w2, i) ∧ hasRole(w1,+r1, i) ∧ hasRole(w2,+r2, i)
6 conj_and(w1, w2, i) ∧ hasRole(w1,+r, i) ∧ hasRole(w2,+r, i)
7 hasPOS(w,+pos, i) ∧ hasRole(w1,+r, i)

Fig. 8. Predicate declarations and formulas representing the PRAC model for the action fill.

representation formalism that combines first order logic and
probabilistic undirected graphical models (Markov Random
Fields). An MLN can be regarded as a first-order knowledge
base with a weight attached to each formula. The probability
of a possible world x is defined as

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
,

where ni(x) is the number of true groundings of the i-th
formula Fi in the world x, wi is the weight attached to Fi

and Z is a normalizing constant.
It is known that learning and inference in MLNs are

computationally very expensive. Hence, in order to keep the
implementation tractable, we simplify the PRAC distribution
to factorize according to∏

A∈A
P (R× C |A, v, �) ,

i.e. we have one PRAC model for each action verb.
Figure 8 shows the predicates and formulas that have been
chosen for the MLN. In the predicate declarations, the “!”
operator specifies a functional constraint on the respective
predicate argument, i.e. all entities fill exactly one action
role in one particular action specification (as indicated by
the hasRole predicate declaration).

In an MLN, the logical formulas specify features of the
data at hand and represent dependencies among relations.
Here, the “+” operator indicates that the respective formula
will be expanded with respect to the corresponding argu-
ment domain. The first formula, for instance, specifies a
correlation between the conceptual meaning of a particular
word w1 in an instruction i, its action role r1 and its super
classes in the class hierarchy. This formula therefore models
the generalization principle from concrete event instances to
more generic event patterns. The second formula assumes
correlations between co-occurences of action roles and their
types, and Formulas 3-7 model the connection between
syntactic and semantic features.

D. Experiments

Due to the computational complexity of learning and
inference in MLNs, we had to restrict our experiments to
a small excerpt of the WordNet class taxonomy as well as
a limited number of action-specific relations and formulas
in the current implementation. However, this small subset
suffices for demonstrating the strength of the PRAC concept.

As a first proof of concept, we conducted experiments
on a very small number of training instructions (i.e. 3) and

analyzed the generalization performance of the model on a
larger set of test instructions (i.e. 10). Here, the objects
involved in the test set have not been part of any training
instruction. The training instructions were given by “Fill
a cup with water from the tap,” “Fill milk into a bowl,”
and “Fill the cup and the pot with water,” where we used
the action roles Theme, Source and Goal. After having
learned the PRAC model for the action verb “fill” with only
three instances, the system succeeded to correctly assign the
corresponding word meanings and action roles of 10 out
of 10 natural language directives, each of which addressed
objects that have not been part of the training set. Examples
are “Fill a glass with juice” or “Pour oil into the pan.” Here,
evidence was given only by the syntactic features obtained
from the parser.

Inferring information that is missing in an instruction
can be done in a two step process: First, the instruction
is analyzed for the given action roles as just described.
Afterwards, the action roles assigned to the words in the
instruction are taken as evidence, and for each missing action
role, a new entity is introduced, assigned to the respective
role (according to Eq. 1). Given the instruction “Fill the sink
with water,” PRAC is then able to determine the action roles
given by the instruction and to infer e.g. where to get the
water from (i.e. Source=Tap).

Although being conducted using very small data sets,
the results of the experiments show that PRAC succeeds
to automatically find general event patterns out of a set
of concrete action instantiations, which can be applied to
new situations with previously unseen objects. Using PRAC,
knowledge about actions can be acquired not only by exam-
ining concrete instructions from natural language plans, but
also more general statements about objects and their action-
specific roles can be incorporated in PRAC learning. A rule
such as “Always fill liquids into containers” can be specified
and, due to the class hierarchy in PRAC, effects will be
propagated to all subclasses of Liquid.

V. RELATED WORK

In recent years, much work has been done in order to
make knowledge sources available to robots, which are
indented for human use [7], [16], and to generate robot
plans out of natural-language instructions [7], [17]–[20].
Dzifcak et al. [19] use a combinatorial categorial gram-
mar for deriving a goal formulation in temporal logics in
order to find an action sequence that achieves this goal.
Matuszek et al. [17] use statistical machine translation
techniques to match natural-language navigation directives



against a formal path description language. Others [16], [18]
use probabilistic models to derive plans to be executed by a
robot. What all these approaches have in common is that they
do not take into account that natural-language instructions
typically are severely underspecified and ambiguous. They
make what is commonly referred to as the closed world
assumption postulating that all knowledge about the world is
given and complete. For a very limited set of actions, as in
robot navigation, for example, this seems reasonable. When
tasks become more complex, however, such as preparing a
meal, this is an uncommon form of human cognition [2],
[21]. Additionally, most approaches to teach robots by means
of natural language are designed to capture and execute what
is specified by an instruction using “shallow” mappings to
robot control, but they are not intended to accumulate more
general action knowledge that can be recalled in different
situations.

Our work goes beyond those approaches by modeling
abstract event patterns in a probabilistic first order knowledge
base, taking prior ontological knowledge about actions and
objects into account. This allows to abstract away from
concrete action instances towards a more generic notion
of actions that helps in disambiguating and completing
underspecified naturalistic action specifications. Our work
is not about finding action sequences given a particular goal,
but about how to perform complex everyday activities in
presence of partial and incomplete information.

VI. CONCLUSIONS

In this work we argue that robots that are to perform
complex everyday activities must be equipped with a sub-
stantial body of action-specific knowledge in order to resolve
the problems of ambiguity and underspecification, which are
ubiquitous when dealing with naturalistic action descriptions.
We reported on a domain analysis, which supports this thesis.
We introduced the concept of Probabilistic Robot Action
Cores, which are a novel, knowledge-driven approach to
model abstract event types, and we presented promising
experimental results that show that these models are well-
suited to be learned from natural-language data and show
excellent generalization performance. Future investigations
will concentrate on finding more efficient algorithms for
probabilistic first-order reasoning in order to build more
expressive PRAC models and to evaluate them on larger data
sets.

We believe that equipping robots with action-specific
knowledge is a key paradigm for implementing more flexible,
cognitive robot behavior and pushing autonomous robots to
performing more advanced everyday activities.
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