
Robotic grasping of unmodeled objects using time-of-flight

range data and finger torque information
Alexis Maldonado, Ulrich Klank and Michael Beetz

Intelligent Autonomous Systems, Technische Universität München, Germany

{maldonad, klank, beetz}@in.tum.de

Abstract— Robotic grasping in an open environment requires
both object-specific as well as general grasping skills. When the
objects are previously known it is possible to employ techniques
that exploit object models, like geometrical grasping simulators.
On the other hand, a competent system will also be able to deal
with unmodeled objects using general solutions.

In this paper we present an integrated system for au-
tonomous rigid-object pick-up tasks in domestic environments,
focusing on the gripping of unmodeled objects and exploiting
sensor feedback from the robot hand to monitor the grasp. We
describe the perception system based on time-of-flight range
data, the grasp pose optimization algorithm and the grasp
execution. The performance and robustness of the system is
validated by experiments including pick-up tasks on many
different common kitchen items.

I. INTRODUCTION

Our goal is to build a general and competent control

system for mobile manipulation robots performing pick-

and-place tasks in human environments. We can expect

to have information and detailed models of many of the

objects present, and this should be employed to the greatest

possible advantage; but in any open environment the robot

will certainly encounter unknown objects, or due to sensor

uncertainty, it might fail to recognize known ones.

To deal with these issues we are developing a pick-and-

place control system that employs two general classes of

grasping strategies: (1) informed grasping strategies that use

models of the objects to plan or infer adequate grasping

actions using the model as an information resource and

(2) general methods that can grasp objects successfully

without having model information and just relying on single

view sensor data.

In this paper we investigate the second class of grasping

strategies, the ones applicable without having prior models.

An overview of this grasping strategy is shown in Figure 1:

The robot, which is depicted in Figure 2, is ordered to grasp

an object on a table, so it moves its time-of-flight camera and

obtains a point-cloud of the table and the object. The object

of interest is segmented from the point cloud, and a Gaussian

point distribution representation is calculated (Sec. IV). This

is the simplest model that can represent the position, size and

orientation of the object including the perceptual uncertainty.

We then use a simplified model (Fig. 7) of our robotic hand to

find a good hand orientation and approach vector considering

obstacles.

The main contributions of this paper are: (1) A perception

system based on time-of-flight range data that represents

objects as Gaussian point distributions. (2) A grasp pose

Fig. 1. Overview of the proposed system.

optimization algorithm. (3) A method to incorporate torque

sensors in the fingers to detect collisions and improve grasp-

ing. Briefly said, we present a working system that uses 3D

perception with a time of flight (ToF) camera and torque

sensors in the fingers to reliably manipulate a large set of

unmodeled objects. For a video demonstration, see [1].

II. RELATED WORK

Natale et al [2] present a system that deals with great

uncertainty in the position of the manipulator by using tactile

feedback to explore the objects. This is inspiring work for

incorporating sensors in the robot’s hand. We calibrate our

robot to be able to act quickly and accurately when the

sensors allow it, and follow the same idea of exploration

when the estimates of position and/or size were not precise.

Another very interesting work shows manipulation of tex-

tured objects based on a single view [3]. A very advanced

system was presented on a HRP-2 in [4]: it additionally

includes the verification of a manipulation task by vision

in daily life environments, this system also uses previously

known objects and visual modalities and a simple hand, while

it uses the full body for manipulation.

Saxena et al describe an advanced system to grasp novel

objects using visual [5] and ToF [6] information. One impor-

tant difference is that our system does not need training data

and that it uses the torque sensors from the hand to monitor

and improve the grasp.

A simple grasp planning was shown by Vahedi and Stap-

pen presented in [7] for a three fingered hand could encage a

polygonal region, and could approximate a grasp in a com-

putationally complexity in O(n3) (n = length of Polygon). In

contrast we present here a fast probabilistic encaging of an

unmodeled object including a set of unmodeled obstacles.

The work of Geidenstam et al. [8] has shown grasp plan-

ning of previously unmodeled objects, which unfortunately

requires on the one hand high quality input measurements

and on the other hand relatively high computation time.

Geometrical-simulation grasp planners like GraspIt [9] re-

quire object meshes or CAD models to work, or at least

point clouds with approximated faces and normals. Both are

not necessary for our approach.

III. ROBOT PLATFORM

Our mobile manipulation robot ’TUM-ROSIE’ is depicted

in Fig. 2. The components used for the system described

in this paper are: a KUKA omnidirectional platform, two

KUKA LWR-4 7-DOF lightweight arms, two DLR-HIT

hands acting as end-effectors, an Amtec-Robotics PW-070

pan-tilt unit, and a SR4000 time-of-flight camera from

MESA Imaging. There are two on-board computers running

Debian GNU/Linux, and we use extensively the YARP[10]

and ROS[11] middlewares, which also allows us to run

parts of the system on additional computers. The arms are

controlled over an independent Ethernet connection using

KUKA’s Fast Research Interface (FRI) to send joint-velocity

commands at 500Hz.

Fig. 2. Our mobile manipulation robot grasping an unmodeled object.

Fig. 3. Robot’s camera view while grasping a cup. Objects are often
partially occluded during grasping.

IV. PERCEPTION: POINT-CLOUD SEGMENTATION AND

OBTAINING THE GAUSSIAN POINT DISTRIBUTION

We work towards robotic agents that excel at manipulating

everyday household objects. The methods we use are detailed

Fig. 4. The robot observes a cup. On the left, an RGB camera image, and
on the right, two different views from the point cloud data.

Fig. 5. On the left, a Gaussian point distribution correctly represents the
cup. Middle and right: One chosen grasp pose from different perspectives.

in [12], [13], [14]. Our system has a wide spectrum of

algorithms going from general obstacle detection to specific

object recognition and localization, but here we will concen-

trate on the detection of unmodeled objects.

The perception system uses data from a time-of-flight

range camera mounted on the Pan-Tilt unit. Fig. 4 shows ToF

data from a cup. The 3D data is very noisy and incomplete

(mostly only the front face of the object can be seen). Both

facts are clearly noticeable by looking at the point cloud from

a different perspective as the sensor.

Our robot operates in a kitchen environment, so we use

the assumption that the objects we would like to manipulate

will be placed on a plane, usually the table top or the counter

top.

The system will identify a supporting plane on the point

cloud, and the unknown objects can be easily found by

separating the points that protrude from that plane. Then

the points are clustered based on the euclidean distance

and for each cluster, the system returns one Gaussian point

distribution.

The mean and covariance matrix of the point distribution

represent an approximated hull of the object. This represen-

tation of the cluster is very compact: 3 numbers representing

the position of the center, and a 3x3 matrix that represents

the shape.

All the detected objects are used by the manipulation

system. One of them is chosen as the object to grasp, and

the rest are considered as obstacles for that grasp-action.

This algorithm works reliably, even considering that the

ToF camera can be very noisy in some situations. An

example of the point cloud data can be seen in Fig. 5,

including small colored group of axes that represent the

covariance in 3D. It can be seen that the point distribution

represents the original object closely. Some objects, like the

Ice Tea box seen in Fig. 8 are only partially perceived by

the ToF camera, so the point distribution will be smaller than

the real object. In Section VI we explain how we deal with

this issue.

All the kinematic chains that are involved are precisely

calibrated (e.g. the mounting position of the ToF camera, or

the pose of the Pan-Tilt unit). A small error of one or two

degrees in the pose of the camera will translate to several

centimeters of error in the estimated position of the objects.

Our current calibration assures a residual spatial error under

a centimeter, which is substantially lower than the expected

noise of our ToF camera.

V. GRASP POSE OPTIMIZATION BASED ON

GAUSSIAN POINT DISTRIBUTIONS

Given our simple representation of the position and shape

of the object, our grasp planner has to find an appropriate

pose where the robot can execute a general force-closure

grasp, like a 3-finger-pinch.

Fig. 6. We parametrize the grasp with three values: α influences the
steepness of the grasp, β influences the direction of the grasp, δ defines the
final distance between hand center and the object center.

Our strategy is to find a hand pose that brings the center of

the palm as close as possible to the object, while avoiding

collisions by maximizing the distance of the object to the

points representing the fingers.

These contradicting goals can be jointly solved using

our representation of measurements of unknown objects as

a point distribution: We model all objects as a Gaussian

distribution of material around the estimated object center

µ with a covariance Σ, see section IV.

We can approximate the probability of a collision of

a finger tip position P = [x,y,z]T with the object at Q =
[µx,µy,µz]

T by

d(P,Q) = [x−µx,y−µy,z−µz]
T

(1)

f (P,Q,Σ) =
1

c
√

det(Σ)
exp

(

−
1

2
d(P,Q)Σ−1d(P,Q)T

)

(2)

based on the standard Gaussian probability density func-

tion for joint random variables with c= (2π)3/2. The random

variables are here the three components of Q. Those compo-

nents are not independent since we measure the end effector

position in terms of the arm, while measuring the objects in

terms of the camera.

Given this function f we can now evaluate a certain grasp

and we can calculate an optimal grasp regarding this criteria.

Figure 6 shows how we parameterize the position of the

hand with the angle out of the x-y plane α (approaching

angle, defined positive) and one angle around the z-axis β

(hand rotation) we get the following function for calculating

a Point Pi
δ
= [xi,yi,zi]

T on the approaching phase toward Q

at distance δ :

Pi
δ (α,β ,Q) = Q+





(δ − z)cαsβ + cβxi − sαsβyi

(δ − z)cαcβ + sβxi + sαcβyi

(δ − z)sα + cαyi



 , (3)

where cα denotes cos(α) and sα denotes sin(α). If we

introduce now a special distribution case of objects, that have

a clean major axis along the robot’s Z axis (equal to the

table’s normal), we get this special case for the covariance:

Σz =





sx c 0

c sy 0

0 0 sz



 (4)

This special Σ allows a general minimization for an

optimal α . Which can be expressed by

argmin
α

f (Pδ (α,β),Q,Σ) (5)

This minimum can be estimated by set the derivative of f

equal to zero, while setting Q = [0,0,0]T without loss of

generality:
∆ f (Pδ (α), [0,0,0]T ,Σz)

∆α
= 0, (6)

which results in two solutions solving for α independent

from all other parameters: α1 = 0,α2 = π
2

. The result is

intuitive: if an object is placed upright on a table, we only

have to evaluate if we better grasp from the top or from

the side. This does not hold for any inclined objects or any

objects placed on a ramp, but it is valid for most household

items and all our test objects.

Fig. 7. Simplified hand model. Red circles indicate the points used in the
kinematic model. The yellow circle shows the origin of the hand reference
frame. The left hand is shown.

In order to characterize the hand properties we define a set

of points P0..9
δ

. They are shown in Fig. 7. P0
δ

and P1
δ describe

the connection between thumb and the other fingers, which

is a critical collision point. P1..9
δ

are the positions of the other

fingers. All Pi
δ

are just defined like Pδ with a constant offset

in hand coordinates, which can be easily derived from Q, α
and β . We defined the z-axis of the hand so that it starts at P0

δ
,

and it points towards the object at Q. This axis is controlled

by the two parameters α and β while the palm is along the

y-axis, which is normal to the plane described by the z-axis

of the object and the hand. Basically, the hand-model is a

kinematic tree representing the fingertips and internal points

of the palm.

The simplified error function for a point under the given

assumptions is then:

fs = min(f (Pi
δ (0,β ,Q),Q,Σ), f (Pi

δ (
π

2
,β ,Q),Q,Σ)) (7)

Which leads to the best configuration for an object floating

in free space:

[β ,α] = argmin
β ,α

9

∑
i=0

fs(i,δ ,β ,Q,Σ) (8)

where β is, due to the symmetry of our point distribution, a

value between −π
2

and π
2

and α = 0 or π
2

. The choice of δ
which is a value between min(sx,sy,sz) and (max(sx,sy,sz)+
f ingerlength) not only depends on this collision probability,

but also on the enclosure probability, which is inversely

correlated with δ . Then it requires an additional optimization

for this parameter.

Incorporating the table leads to further reduction of the

parameter space in α and δ for small objects:

µz − ztable <
palmwidth

2
⇒ α = π

2

⇒ δ > ztable + f ingerlength
(9)

Further objects on the table at position Q j = [µ j
x ,µ

j
y ,µ

j
z]

must be considered if they conflict with the arm trajectory.

This only is the case, if the two following conditions hold:

µz −µ j
z < s j

z (10)

√

(

µx −µ
j

x

)2

+
(

µy −µ
j

y

)2

> f ingerlength (11)

All relevant obstacles are collected in O = [Q,Q1,Q2..QN]
and S = [Σ,Σ1,Σ2..ΣN]. Both variables contain as a first

element the object to grasp, and subsequently all detected

obstacles. Eq. 7 can be generalized for an obstacle:

f j
s = min(f (Pi

δ (0,Q),Q jΣ j), f (Pi
δ (

π

2
,Q),Q j,Σ j)) (12)

This adaption can be incorporated into Eq. 8, which now

can calculate the desired grasp configuration in our setup in a

few iterations over δ and β . The optimization process should

best start at a β corresponding to the smallest extension of

the object and at the smallest possible distance δ , searching

for the first local minimum.

This adaption of Eq. 8 follows:

[β ,α] = argmin
β ,α

N

∑
j=0

9

∑
i=0

f j
s (i,δ ,β ,Q,Q j,Σ j)−aδ (13)

where N denotes the number of obstacles which can be

adapted during the grasp in case of unexpected collisions

of the hand with the target object. aδ is a factor charging

for a further delta depending on the number of finger points

and δ . The added Q j would be the finger position at the

time of collision and Σ j will be the uncertainty of the hand

obstacle relation at this time, which we assumed constant. If

a collision is detected during the execution of the approach

and grasp movement, the hand is moved back and a new

calculation of the optimal grasping pose is done.

To conclude this section, we have shown a simple error

measurement that allows searching on only three variables

for a good grasping pose taking into account possible obsta-

cles during the approach to the grasp position.

(a) A scene seen by the robot’s RGB
camera.

(b) Scene data from the ToF camera.
Calculated grasp poses are shown.

(c) Resulting grasp position on the
ice tea box(top view).

(d) Resulting grasp position on the
ice tea box (side view).

Fig. 8. Visualization of selected grasps in a scene.

VI. GRASP EXECUTION AND SUPERVISION

A. Detection of collisions in the fingers

As was seen at the end of Section IV, it is possible that

the perception system underestimates the size of the object

of interest due to occlusion, or measures the object’s position

inaccurately due to sensor uncertainty. Executing a ’blind’ or

sensor-less grasp procedure will not be reliable due to the

important effect caused by small errors in the pose estimation

or calibration.

The best place to get information about the object being

manipulated are the fingers themselves since they are the

closest and most reliable source of contact information. The

DLR-HIT hand is equipped with three torque sensors on

each finger, placed near each joint. Our hand controller

reads torque data constantly from the fingers, and uses it to

detect collisions with the object during the approach phase.

A collision can simply be detected by applying a threshold

on the filtered torque streams, as can be seen in Fig. 9(b).

Sensing and positioning of the arm will always have

uncertainties, so we employ a haptic approach to make the

grasping more robust: A detected collision event on any

finger indicates that our estimation of the object’s shape

and/or position was wrong, but we can use the position of

the collision to improve the estimation, so the system can

locally correct the grasp. See Eq. 13 where the results are

taken into account. Basically, the hand is moved back, the

position where the crash was detected is put back into the

grasp planner as a possible obstacle, and a new grasp pose

can be calculated. The system also checks if the new desired

position is reachable by the hand using a position-inverse-

kinematics algorithm, and can look for other grasp positions

until it finds an appropriate one.

Since this algorithm is designed to put the fingers around

(a) Approach, collision, pull-back, grasping using the corrected pose.

(b) Base torque data for the middle finger.

Fig. 9. The collision with the object can clearly be detected based on the
torque data. The finger was in contact with the object for 0.3 seconds.

the object as closely as possible, all that is needed is a

simple enveloping grasp. We chose a 3-finger pinch on our

DLR-HIT hands, but the same algorithm would work with a

parallel-finger manipulator (with torque sensors installed to

detect crashes on the fingers).

B. Motion control

In order to guide the motion of the arm and the hand for

manipulation, we employ a system based on vector fields

[12], where it is possible to create point attractors, as well

as planar and spherical repellers. We can easily encode the

available information from the environment: the desired pose

of the end effector, and all the detected obstacles.

The KUKA LWR-4 arms are being operated in Joint-

Impedance mode, with a low stiffness set for each joint

for safety. The arm could be pushed by a person or have

a collision at any time, and the motion controller should

deal with this gracefully and continue towards the desired

pose while avoiding obstacles. For this reason, we do not

pre-calculate any trajectories.

Our current implementation has an on-the-fly reconfig-

urable vector field that decides the direction in which the end

effector of the arm should move, and it feeds this to a damped

least squares inverse kinematics algorithm for finding the

joint velocities. This loop runs in real time (currently 240Hz).

The vector field also observes additional constraints, like

the distance of each joint to its limits, or the distance of

the whole arm posture to a preferred one, and influences

the inverse kinematics algorithm by changing constantly the

joint-weights (affect the relative movement of the joints),

or task-weights (affects how much importance is given to

position or orientation in Cartesian space).

For the experiments described in this paper, we used a

relatively simple high-level controller that: (1) moves the

hand and the arm out of the view of the sensors in the

head. (2) asks the visual perception system for positions

Object Size(WxHxD in cm) Success/Trials

Tape roll 5x5x4 2 / 4
White Porceilain cup 6x6x4 4 / 4
Blue Porcelain cup 6x6x4 3 / 4
Melitta Coffee Filters Small 2x5x7 2 / 2
Paper Towel 28x7x7 4 / 4
Melitta Coffee Filters Big 4x8x20 4 / 4
Assam-Blend Tea box 7x10x17 4 / 4
Can of Peas 11x7x7 4 / 4
Soup Box (Heisse Tasse) 11x7x7 4 / 4
Green Teapot 22x17x12 1 / 1
Peppermint Tea box 16x7x6 4 / 4
Nivea Shower gel 17x8x3 1 / 8
Iced Tea 27x10x10 4 / 4
Leibniz cookies 22x7x4 4 / 4
Paper cup 6x6x4 3 / 4

Total 48 / 59

TABLE I

RESULTS OF THE GRASPING EXPERIMENTS ON HOUSEHOLD ITEMS.

of objects and obstacles. (3) calculates approach and grasp

poses using the grasp pose optimizer. (4) configures the

vector field accordingly, moves the arm, deals with collisions.

(5) executes a 3-finger pinch on the hand. (6) lifts the object,

and evaluates the grasp. (7) drops the object at a pre-defined

location.

Errors can be detected during each step of the procedure,

and the controller takes corrective action, e.g. moving the

hand out of the way, and detecting objects again if the grasp

was not successful.

VII. EXPERIMENTAL RESULTS

The following experiments show the robustness of the

proposed grasping system for unmodeled objects, as well

as the entire system accuracy.

A. Handling Different Objects

Fig. 10. The household items used for testing. Results in Table I.

The test set contains 15 objects which can be seen in

Figure 10. We consider a grasp attempt successful if the

object was lifted from the table, and held in the hand for

at least 10 seconds. The statistics about successful grasps

can be found in Table I. The robot grasped correctly the

majority of the random kitchen objects. The overall success

was approx. 80 percent, decreasing mostly due to one object

(“Nivea shower gel”), that was difficult to grasp. Since the

system can recognize failed grasp attempts, it can repeat the

action (including perception), and this would improve the

reliability.

(a) Grasping (b) Lifting

(c) Avoiding an obstacle (d) Dropping

Fig. 12. This sequence illustrates a transport task using collision avoidance.

B. Cleaning up a cluttered scene

Another experimental setup can be seen in Fig. 11, where

the task is to clear the table by picking up the objects on

it. The robot successfully picked up all objects one after the

other.

Fig. 11. Grasping all the objects from a cluttered scene

C. Handling Obstacles

After choosing an object to grasp, the remaining clusters

are configured as obstacles for the vector field. The obstacle

avoidance was tested by grasping an object and ordering the

robot to drop it in a position where it would likely collide

with obstacles on the way. Figure 12 shows different stages

of this task.

VIII. CONCLUSIONS

The presented system is able to reliably grasp unmodeled

objects by extracting a minimal representation from the

point cloud data, which can also be easily communicated

to our vector field controller for the robot arm, allowing the

robot to retrieve objects in cluttered situations, and move

them avoiding collisions under non-excessive clutter. By

using torque information from the fingers, it is possible

to detect collisions with the objects during grasping, and

improve the object estimate to appropriately grasp, even if

the estimated position was inaccurate or the arm did not

reach the desired position perfectly because of low stiffness

and external interference.

IX. FUTURE WORK

We are currently integrating a grasp planner that uses

meshes of the hands/objects to evaluate possible grasps.

The idea is to use it for known objects, and fall back to

the system described here when no model can be found.

We also plan to extend the sensing capabilities of the

hand to have more accurate information about the ob-

jects in it, as well as detect slippage very early in the

grasp. With this additional information, it would be pos-

sible to correct a failing grasp attempt. We will release

the code used for these experiments under a free soft-

ware license, as a part of the official TUM ROS repos-

itory at http://tum-ros-pkg.svn.sourceforge.net/viewvc/tum-

ros-pkg/stacks/grasping/ .

ACKNOWLEDGMENTS

This work was supported by the CoTeSys (Cognition for Tech-
nical Systems) cluster of excellence and MVTec GmbH.

REFERENCES

[1] A. Maldonado, “Youtube - robot grasping unmodeled objects
using time-of-flight and torque data,” Video posted to:

http://www.youtube.com/watch?v=IhnyqMoRbfw, March 2010.
[2] L. Natale and E. Torres-Jara, “A sensitive approach to grasping,” 2008.
[3] A. C. Romea, D. Berenson, S. Srinivasa, , and D. Ferguson, “Object

recognition and full pose registration from a single image for robotic
manipulation,” in IEEE International Conference on Robotics and

Automation (ICRA ’09), May 2009.
[4] K. Okada, M. Kojima, Y. Sagawa, T. Ichino, K. Sato, and M. Inaba,

“Vision based behavior verification system of humanoid robot for daily
environment tasks,” in Proceedings of the 6th IEEE-RAS International

Conference on Humanoid Robots (Humanoids), 2006, pp. 7–12.
[5] A. Saxena, L. L. S. Wong, and A. Y. Ng, “Learning grasp strategies

with partial shape information,” in AAAI, 2008, pp. 1491–1494.
[6] A. Saxena, J. Driemeyer, and A. Ng, “Robotic grasping of novel

objects using vision,” The International Journal of Robotics Research,
vol. 27, no. 2, p. 157, 2008.

[7] M. Vahedi and A. F. van der Stappen, “On the complexity of the set
of three-finger caging grasps of convex polygons,” in Proceedings of

Robotics: Science and Systems, Seattle, USA, June 2009.
[8] S. Geidenstam, K. Huebner, D. Banksell, and D. Kragic, “Learning

of 2D grasping strategies from box-based 3D object approximations,”
in Proceedings of Robotics: Science and Systems, Seattle, USA, June
2009.

[9] C. Goldfeder, M. Ciocarlie, H. Dang, and P. Allen, “The Columbia
Grasp Database,” in International Conference on Robotics and Au-

tomation (ICRA), 2009.
[10] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot

Platform,” International Journal of Advanced Robotics Systems, spe-

cial issue on Software Development and Integration in Robotics, vol. 3,
no. 1, 2006.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in In IEEE International Conference on Robotics and Automation

(ICRA 2009), 2009.
[12] M. Beetz, F. Stulp, P. Esden-Tempski, A. Fedrizzi, U. Klank, I. Kresse,

A. Maldonado, and F. Ruiz, “Generality and legibility in mobile
manipulation,” Autonomous Robots Journal (Special Issue on Mobile

Manipulation), vol. 28, no. 1, pp. 21–44, 2010.
[13] U. Klank, D. Pangercic, R. B. Rusu, and M. Beetz, “Real-time cad

model matching for mobile manipulation and grasping,” in 9th IEEE-

RAS International Conference on Humanoid Robots, Paris, France,
December 7-10 2009.

[14] U. Klank, M. Z. Zia, and M. Beetz, “3D Model Selection from an
Internet Database for Robotic Vision,” in International Conference on

Robotics and Automation (ICRA), 2009.

