
Universität Bremen

Master Thesis

Robot trajectory optimization for
collision-free fetch-and-place applications
using sequential quadratic programming

Mahesh Kumar Karikalan (Matr.Nr: 3020323)

May 24, 2018

Tutor:
Dipl.-Ing. Georg Bartels

1st Examiner:
Prof. Dr.-Ing. Kai Michels

2nd Examiner:
Prof. Michael Beetz, PhD

Diese Erklärungen sind in jedes Exemplar der Abschlussarbeit mit einzubinden.
This declaration must be included into the Master’s Thesis.

Name: Matrikel-Nr:

Urheberrechtliche Erklärung

Erklärung gem. § 10 (10) Allgemeiner Teil der MPO vom 27.10.2010

Hiermit versichere ich, dass ich meine Masterarbeit ohne fremde Hilfe angefertigt
habe, und dass ich keine anderen als die von mir angegebenen Quellen und Hilfsmit-
tel benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind,
habe ich unter Angabe der Quellen als solche kenntlich gemacht.

Die Masterarbeit darf nach Abgabe nicht mehr verändert werden.

Datum: Unterschrift:

Erklärung zur Veröffentlichung von Abschlussarbeiten

Bitte auswählen und ankreuzen:

� Ich bin damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv
für wissenschaftliche Zwecke von Dritten eingesehen werden darf.

� Ich bin damit einverstanden, dass meine Abschlussarbeit nach 30 Jahren (gem.
§7 Abs. 2 BremArchivG) im Universitätsarchiv für wissenschaftliche Zwecke
von Dritten eingesehen werden darf.

� Ich bin nicht damit einverstanden, dass meine Abschlussarbeit im Univer-
sitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden darf.

Datum: Unterschrift:

Abstract

The current technological advancements made robots to be intelligent and cost-effective
to use them in unstructured environments like supermarkets. In supermarkets, lack of
human labour availability is a major problem, where the robots can be of help to mon-
itor and replenish the sold products on the supermarket shelves.

Supermarkets are challenging environments, because of the constant change of
products, Although products undergo constant change, the supermarket shelf remains
constant making the fetch and place of these products on the shelf a monotonous task.
Hence, an idea would be to reuse robots’ previously gained knowledge from past
experiences to plan a trajectory for fetching and placing the supermarket products.

In order to reuse previous knowledge, an appropriate software algorithm has to
be chosen. Sequential Quadratic Programming (SQP) is one such mathematical op-
timization technique that can be initialized with an initial guess to obtain an opti-
mized result. With SQP, the trajectory planning was proposed as a mathematical op-
timization problem by Schulman et al. in [1]. In this thesis, the proposed algorithm is
re-implemented to adapt the obstacle collision constraints to convert the constrained
problem into an unconstrained problem. Also, the algorithm is adapted by formu-
lating time continuous collision cost for the robot’s self-collisions instead of discrete
collision costs.

The newly adapted algorithm is evaluated for reliability, run-time performance,
consistency, sensitivity for different solver parameters. The adapted algorithm is also
compared with the re-implemented original algorithm to evaluate the run-time perfor-
mance and the number of problems solved for the randomly generated problems and
obstacle constraints.

The evaluated results showed that the adapted trajectory planning algorithm can
solve a good ratio of previously unsolvable problems by an original re-implemented
algorithm with an extra computational cost.

i

Table of Contents

Table of Contents

Abstract i

Table of Contents ii

List of Figures iv

List of Tables vi

List of Abbreviations vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Formulation . 3
1.3 Contribution . 4

2 Background and Related works 5
2.1 Basic Terminologies . 5
2.2 Convex Optimization . 13

2.2.1 Quadratic Programming . 13
2.2.1.1 Minimization of unconstrained problem 14
2.2.1.2 Quadratic Programming with equality constraints . 14

2.2.2 Descent methods . 15
2.3 Related work . 17

3 Methodology 20
3.1 System Architecture . 20
3.2 Problem Description and Modelling 20
3.3 SQP . 23

3.3.1 Trust region method . 24
3.3.2 L1 Penalty method . 27
3.3.3 Merit Function . 30
3.3.4 Sequential l1 Quadratic Programming (SQl1P) 31

3.4 Collision checker . 33
3.4.1 Gilbert–Johnson–Keerthi (GJK) algorithm 33

ii

Table of Contents

3.4.2 Expanding Polytope Algorithm (EPA) 36
3.5 Time continuous Collision free trajectory 42
3.6 Software . 45

3.6.1 Convex optimization solver 46
3.7 Bullet physics . 48
3.8 Graphical User Interface (GUI) . 49

4 Evaluation 50
4.1 Experiment Setup . 50

4.1.1 Pick and place using Kuka arm 51
4.1.2 Pick and place of supermarket products using Donbot robot . 51

4.2 Results . 53
4.3 Discussion . 67

5 Conclusion 69

6 References 70

iii

LIST OF FIGURES

List of Figures

1.1 Robots deployed in super market to pick and place grocery items . . . 2
1.2 Donbot robot in action at the supermarket setup 2

2.1 Robot Manipulator . 6
2.2 Homogeneous Transformation . 6
2.3 Forward and Inverse Kinematics . 8
2.4 Piano Moving Problem . 10
2.5 Motion Planning . 10
2.6 Global and local optimum . 12
2.7 Gradient Descent Method . 16
2.8 Backtracking line search . 17

3.1 Architecture: A Robot Trajectory Optimized Planner 21
3.2 Trust region vs Line search . 26
3.3 Trust region subproblem . 27
3.4 Penalty method: Contours of Q(x, µ) at µ = 1, 10 28
3.5 Inconsistent trust region model . 31
3.6 Minkowski sum: geometric representation 34
3.7 Support points on a polygon A and a circle B along the vector V . . . 35
3.8 Different types of SimplexV . 35
3.9 Iterations of GJK algorithm without collision 37
3.10 Iterations of GJK algorithm with collision 38
3.11 Intersection of two objects A and B and corresponding penetration depth 39
3.12 Iterations of EPA . 40
3.13 Signed distance between objects A and B 41
3.14 Swept convex hull volume of a time continous trajectory having

collision . 43
3.15 Illustratoin of robot having collision and free from collision 44
3.16 Software Architecture . 47
3.17 Main components of bullet physics 48
3.18 A GUI application for Trajectory Optimization Planner 49

4.1 A 7 Degrees of freedom (DOF) lbr iiwa arm mounted on a table . . . 51

iv

LIST OF FIGURES

4.2 A 11 DOF Donbot robot in front of supermarket shelf 52
4.3 A sample planned trajectory of a 7 DOF Kuka arm 53
4.4 A sample planned trajectory of a 6 DOF arm of Donbot robot 54
4.5 A sample planned trajectory of an 11 DOF Donbot whole body 55
4.6 Reliability test for a 7 DOF Kuka arm 56
4.7 Reliability test for a 6 DOF arm of Donbot 57
4.8 Reliability test for an 11 DOF Donbot: whole body 57
4.9 Consistency test for a 7 DOF Kuka arm 59
4.10 Consistency test for a 6 DOF arm of Donbot 60
4.11 Consistency test for an 11 DOF Donbot (whole body) 60
4.12 Consistency test for a 7 DOF Kuka arm 61
4.13 Consistency test for a 6 DOF arm of Donbot 62
4.14 Consistency test for an 11 DOF Donbot (whole body) 63
4.15 Adaptability test: Trust region vs Average time taken to solve the

trajectory planning problem . 64
4.16 Adaptability test: Trust region vs number of Quadratic Programming

(QP) and SQP iterations taken to solve the trajectory planning problem 65
4.17 Adaptability test: number of samples vs average time taken to solve

the trajectory planning problem . 65
4.18 Adaptability test: l1 vs l2 penalty norm - number of samples vs

average time taken to solve the trajectory planning problem 66
4.19 Comparison test: Kuka arm - Old vs New adapted SQP 66
4.20 Comparison test: Donbot robot - Old vs New adapted SQP 67

v

LIST OF TABLES

List of Tables

4.1 Configuration of the system on which the algorithm was evaluated . . 50
4.2 Reliability test . 58

vi

Acronyms

Acronyms

CES Convex Elastic Smoothing. 18

CSO Configuration Space Obstacle. 33, 34, 36, 39

CVXOPT A Python package for convex optimization. 48

CVXPY Python-embedded modeling language for convex optimization. 46, 48

DOF Degrees of freedom. iv, v, 3, 8, 9, 23, 42, 50–57, 59–63, 67

DP Dynamic Programming. 18

ECOS Embedded Conic Solver. 48

ECOSBB Embedded Conic Solver with a Branch-and-Bound procedure. 48

EPA Expanding Polytope Algorithm. iii, iv, 36, 40

GJK Gilbert–Johnson–Keerthi. ii, iv, 33–35, 37–39

GUI Graphical User Interface. iii, iv, 4, 49, 69

IAI Institute for Artificial Intelligence. 3

KDL Kinematics and Dynamics Library. 46

KKT Karush–Kuhn–Tucker. 15

LGP Logic Geometric Program. 19

LQG Linear Quadratic Guassian. 19

MD Minkowski Difference. 33

MS Minkowski Sum. 33

vii

Acronyms

OOS out-of-stock. 1

PD Penetration Depth. 39, 40

PSO Particle Swarm Optimization. 18

QP Quadratic Programming. v, 13, 14, 59, 64, 65

REFILLS Robotics Enabling Fully-Integrated Logistics Lines for Supermarkets. 1

RIA Robot Institute of America. 5

SCS Splitting Conic Solver. 48

SD Signed Distance. 40, 42

SOC Stochastic Optimal Control. 19

SQl1P Sequential l1 Quadratic Programming. ii, 31, 32

SQP Sequential Quadratic Programming. i, ii, v, 3, 4, 19–21, 23–32, 42–46, 48–50,
56, 59, 64–69

SRDF Semantic Robot Description Format. 9, 46, 48, 49

URDF Universal Robotic Description Format. 8, 9, 23, 46

viii

1 Introduction

1 Introduction

1.1 Motivation

In the past, robot technology allowed robots to be used in structured environments
such as industries for the manufacturing proccesses. With the help of less sophisti-
cated programming, robots could perform same movements over and over again for
about thousand times a day. Unlike industries, the unstructured environments like
homes, hospitals and supermarkets offers more challenges to the robots. In such a
situtions, robotics technology was not ready to handle a different variety of tasks with
an infinite number of combinations or even to collaborate with humans [2].

However, recent scientific and technical advancements have made robots to be
used in wide applications rather than industrial process [3]. Also, these advancements
made robot to be flexible and autonomous to interact with human or even with the
other robot to accomplish the assigned task [4]. One such application of robots are
in service industry, where the robots have to operate in an constrained environment to
perform some useful task for humans in a full or semi-autonomous manner. Hence, it
attracts importance for more research and explorations in service sector.

For example, a cleaning robot in a hospital has to autonomously react to the
movement of doctors and patients and also has to navigate through the obstacles [5]. In
[3], a robot called DAVID has been developed to collect and deliver mails, print-outs
and stationery items within office environment. A vacuum cleaning robot Roomba has
been developed as commercial product by iRobot [6], which can autonomously move
around the house to vacuum and charge itself once the battery level reaches below the
certain level [7] .

In case of retail industry, out-of-stock (OOS) is a serious problem [8], as it affects
their slim profit margin because of the 4% decrease in overall sale [9]. Around 70%
to 90% of OOS is due to improper maintenance to replenish missing products on
the shelf [10]. In order to improvise the shelf replenishing of products, retailers can
deploy human labours to periodically check the stocks on the shelf and accordingly
can take necessary actions [10]. Due to the lack of human labour and increase in
demand for more workers [2], robots can be deployed to perform tasks like fetching
and placing the products, move them to different places as shown in the Figure 1.1.

As part of Robotics Enabling Fully-Integrated Logistics Lines for Supermarkets (RE-

1

1.1 Motivation

Figure 1.1: Robots deployed in super market to pick and place grocery items [11]

Figure 1.2: Donbot robot in action at the supermarket setup [11]

2

1.2 Problem Formulation

FILLS) project [12], at Institute for Artificial Intelligence (IAI), a robot called Donbot
as shown in the Figure 1.2 has been developed. The main aim of this project is to im-
prove or replace the intra-logistic wearing and monotonous operations performed by
the clerks in supermarkets. Specifically, this robot expected to monitor the supermar-
ket shelves and replenish the missing products, store delivery, pre-sorting and refilling
of products in the store inventory.

There are several challenges in refilling the supermarket shelves as the retail envi-
ronment is difficult and dynamic, hence deploying robot in such a situations demands
robots to be intelligent enough to handle and manipulate the products. In supermar-
kets, one complex task is to plan a collision-free trajectory to fetch and place an item.
For effective handling of the products, the planned trajectory has to be optimized, so
that the robot action is smooth, jerk free and looks natural. Also, optimizing the tra-
jectory could not only smoothens the trajectory but also could conserves energy there
by staying active for more time and also could reduce the damages of the actuators
caused due to the jerks in motion [13].

There are several approaches to plan a collision-free trajectory and the Sequential
Quadratic Programming (SQP) is a most recent technique. This thesis implements
this SQP technique for planning collision-free path within the context of shelf replen-
ishment.

1.2 Problem Formulation

A trajectory planning in a supermarket environment is an interesting problem, as it
is dynamic with the constant change in products on the shelves. Hence, each time a
new trajectory has to be planned with the changed collision obstacles. This trajectory
planning problem gets even more difficult, if the whole body of the robot has to be
moved with more number of Degrees of freedom (DOF).

Fetch and place items on shelf is very stereotypical, where the humans plan the
task once and adapt quickly with the change and doesn’t plan from scratch. Hence, it
is undesirable if the robot takes more time to plan trajectory for this monotonous task.

With SQP, trajectory planning is conceived as a mathematical optimization prob-
lem, where an old solution can be re-used to plan new trajectory as the planner can
adapt with each input initial guess and accordingly the planning time can be improved.

While optimizing the trajectory, following challenges has to be addressed,

• The optimizer algorithm should spend most of the time on optimizing the ob-
jective cost and hence modelling of the problem has to be really fast but still
accurate

• Trajectory has to optimized adhering to the robot’s limitations and collision

3

1.3 Contribution

constraints. Hence, the problem should be formulated so that it always stays in
the feasible region and appropriate solution could be found

• The output of the trajectory is a set of discrete sample points. These discrete
sample points could lead the robot into collision as the robot moves. Hence the
collision constraints should be formulated such that the optimized trajectory is
time continuous collision-free even in case of robot’s self-collision

1.3 Contribution

In thesis, I have re-implemented and adapted the trajectory optimization algorithm,
from Schulman et al. [1], by converting and adding collision constraints to the objec-
tive function and also by formulating time continuous collision costs for the robot’s
self-collision case. This algorithm has been developed in python and can solve more
complex problem in less time. Additionally, a Graphical User Interface (GUI) appli-
cation has also been developed to tune the SQP solver parameters and to interact with
the planner. Finally, the developed algorithm has been evaluated in different scenarios.
This re-implemented trajectory optimization planner can be found at [14].

This thesis report is organized as follows: In chapter 2 basic terminologies relat-
ing to robot, trajectory and optimization techniques, background works are discussed.
The methodology followed and software used to implement the trajectory optimiza-
tion planner are discussed in chapter 3. The evaluation results and conclusion are
given in chapter 4 and chapter 5 respectively.

4

2 Background and Related works

2 Background and Related works

2.1 Basic Terminologies

Robot

The Robot Institute of America (RIA) defines a robot as, ”A reprogrammable, multi-
functional manipulator designed to move material, parts, tools, or specialized devices
through various programmed motions for the performance of a variety of tasks” [15,
pg. 5].

Robot Manipulator

A robot manipulator is a set of rigid links that are connected together by a set of
joints, as shown in Figure 2.1. At the end of the manipulator, a tool such as a gripper
attached to manipulate objects in the environment. The joints can one of the following
six types: prismatic, revolute, cylindrical, spherical, helical and planar joints. These
joints contains motor, which gets actuated to move to the links in a controlled manner
to perform a given task [16, pg. 81].

The joints are numbered as i which connects the links i−1 and i. In a manipulator,
link 0 is denoted as reference frame and link n is connected to the end effector. Such
a sequence of robotic link connected from base of the robot to the end-effector link is
called as kinematic chain [17, pg. 21].

In a kinematic chain, each joint has a coordinate frame to relate parent link with
its child link. Usually, the coordinate frame on the link that doesn’t move is chosen as
base frame, so that, knowing current joint angles, the location of the end-effector in
Cartesian space can be calculated [16, pg. 83].

Using homogeneous transformation T , a matrix represents position and orienta-
tion, a vector ir which is relatively expressed in i coordinate frame can be relatively
expressed in j coordinate frame if the position j pi and orientation jRi of i frame is
known relative to the j frame.

jr = jRi
ir + j pi (2.1a)

5

2.1 Basic Terminologies

Figure 2.1: Robot Manipulator[18, pg. 11]

Figure 2.2: Homogeneous Transformation [19]

6

2.1 Basic Terminologies

the above equation can be written as[ir
1

]
=

[jRi
j pi

0 1

] [ir
1

]
(2.1b)

where,

jTi =

[jRi
j pi

0 1

]
(2.1c)

j pi = [j px
i ,

j py
i ,

j pz
i]

T (2.1d)

jTi is a 4 × 4 homogeneous transformation matrix and each link i frame can be
expressed in terms of the base frame as,

0Ti = 0T1 ∗
1T2

i−2Ti−1 ∗
i−1Ti (2.2)

Robot Kinematics

In a serially linked manipulator, the movement of each link is affected by the move-
ment of links preceding it. This resulting movement of a link is a composition of
motions with respect to its parent’s link. Hence, it is necessary to describe the posi-
tion and orientation of an end-effector with respect to the base coordinate system of
the robot [17, pg. 21].

The study of this motion of the robot’s body without the knowledge of moment
or force that produces it is known as robot kinematics [20, pg. 117].

Forward Kinematics

Given all joint positions in a kinematic chain and its geometric link parameters, the
problem of finding the position and orientation of the end-effector relative to the base
is known as forward kinematics. This problem is solved by the transformation from
a coordinate frame fixed to the end-effector to the coordinate frame(reference frame)
fixed to the base of the robot [21, pg. 26].

Inverses Kinematics

In a serial chained manipulator, inverse kinematics is a problem to find joint positions
with the known state of the end-effector relative to the base of the robot, provided
intermediate link’s geometric parameters are known [21, pg. 27].

7

2.1 Basic Terminologies

Forward Kinematics

Inverse Kinematics

Joint Space Cartesian Space

q1
q2

q3

q4
q5

X

Figure 2.3: Forward and Inverse Kinematics[22]

Degrees of freedom (DOF)

DOF is the minimum number of independent variables that need to be specified to
locate all parts of the robot’s mechanism. In case of serially linked manipulator, the
number of joints is the number of DOF that an arm posses [23, pg. 299].

Jacobian

Jacobian is an instantaneous forward kinematics problem to find the total velocity (po-
sitions and velocity) Ẋ of an end-effector with the known joint positions and velocities
of a kinematic chain, where X = [x, y, z]. Here, the joint velocity corresponds to angu-
lar velocity in case of revolute joint and to translational velocity in case of prismatic
joint.

Differentiating the forward position kinematics equation with respect to time re-
sults in equation of the following form,

Ẋ = J(q)q̇ (2.3)

where q̇ is a vector of dimension N, vn is a spatial velocity of the end-effector and
J(q) is called Jacobian matrix [21, pg. 29].

The Equation 2.3 relating linear and angular velocity of the end-effector, in Carte-
sian space, to the joint rates is known as twist [24].

Universal Robotic Description Format (URDF)

URDF is an XML specification file containing the model description of a robot, as-
suming that the robot joints are connected with only rigid links [25]. This file has the
following information about the robot,

8

2.1 Basic Terminologies

• Dynamic and kinematic description of the robot

• Collision information of the robot

• Visual representation of the robot

Semantic Robot Description Format (SRDF)

SRDF is again an XML specification file, which is similar to URDF, provides infor-
mation that are missing in URDF [26]. Few elements contained in SRDF about the
robot are,

• group: set of robot joint’s link that can be used to plan trajectory for set of DOF
of a robot

• group state: set of pre-defined joint values for a specified group

• chain: set representing kinematic chain of a robot

• disable collisions: set of robot link pair against which collision checking will
be ignored. This is useful in case where two adjacent joints always in collision
and two joints never gets collided.

Motion Planning

In robotics, a fundamental problem is to to convert high-level tasks for movements
into low-level descriptions are commonly referred with the term motion planning and
trajectory planning.

A motion planning problem, often referred as Piano’s movers problem, it to de-
termine appropriate motions for the robot to move without colliding any obstacles
reaching a goal state [27, pg. 79].

A primary focus of robot motion planning is on the required translations and ro-
tations to move the robot (piano), ignoring the system dynamics and differential con-
straints. However, recent works consider the modelling errors, differential constraints
and uncertainties [27, pg. 3].

Trajectory Planning

In robotics, the term trajectory planning refers to the problem of finding both path
and velocity of the robot to move, respecting its joint position and velocity limits, i.e.
finding a path in space X, such that x ∈ X, where x = (q, q̇) [27, pg. 792].

9

2.1 Basic Terminologies

Figure 2.4: Example: Motion planning of a piano from start S to goal G [28, pg. 125]

Figure 2.5: Example: Motion planning of robot Manipulator from position A to posi-
tion B [18, pg. 11]

10

2.1 Basic Terminologies

Optimization

Before discussing the concepts of optimization, following basic terms shall be intro-
duced.

Optimization problem is defined as a problem to find a state of model, subject to
constraints, for which the objective function value x∗ is minimum or maximum, i.e.
f (x∗) ≤ f (x) or f (x∗) ≥ f (x) for all x ∈ �n [29, pg. 2].

Here, our goal is to minimize the robot joint velocity during manipulation subject
to robot joint position and velocity limits as shown in Equation 2.4.

For example,

f (x) =
∑

t∈(0, T)

∑
i∈(0, N)

∥∥∥qt+1, i − qt, i
∥∥∥2 (2.4)

(2.5)

Objective (function)

A quantitative performance measure of the system is called as objective f . In our
case, energy of the system is considered as an objective. This objective varies with
certain system characteristics known as variables or states. These variables are sub-
ject to restrictions due to joint position and velocity limits of the robot and with the
environment (in case of collisions) constraints, in which the robot is deployed [29, pg.
2].

Model of a system

A mathematical representation of the system characteristics (energy of the manipula-
tor) is called model of the system. The process of identifying this model, variable (or
state) and its constraints is called Modelling [29, pg. 2].

Trajectory Optimization

A problem of minimizing or maximizing some performance measure of a trajectory
with given a set of robot’s constraints (such as joint limits and velocity limits) [30].
In the scope of this thesis, trajectory optimization means optimizing the trajectory to
minimize the robot joint velocity.

Global Minimum

A point x∗ is said to be global minimum point, if the objective function evaluates to
least value at that point, i.e. f (x∗) ≤ f (x) for all x ∈ �n [29, pg. 12].

11

2.1 Basic Terminologies

Local Minimum

A point x∗ is said to be local minimum point, if the objective function evaluates to
least value in its neighborhood N , i.e. f (x∗) ≤ f (x) for all x ∈ N [29, pg. 12].. Also,
if f is twice differentiable in N , then 5 f (x∗) = 0 and 52 f (x∗) is positive semi-definite
[29, pg. 15].

f(x)

x

Figure 2.6: Global and local optimum

Affine functions

A sum of linear functions and a constant is known as affine function f .
An affine function has the form,

f (x) = Ax + b (2.6)

where, f : �n → �m and A ∈ �m×n, b ∈ �m [31, pg. 36].

Hessian matrix

A square matrix consisting of second-order partial derivatives of a function f (x) is
known as Hessian matrix H. If f (x) is continuous and has all second order partial
derivative terms, then the Hessian matrix has the form [32],

12

2.2 Convex Optimization

H =



∂ f
∂x2

1

∂ f
∂x1 ∂x2

. . .
∂ f

∂x1 ∂xn

∂ f
∂x2 ∂x1

∂ f
∂x2

2
. . .

∂ f
∂x2 ∂xn

...
...

. . .
...

∂ f
∂xn ∂x1

∂ f
∂xn ∂x2

. . .
∂ f
∂x2

n


(2.7)

Positive definite matrix

A square matrix P is positive definite if the product xT Px has strictly positive elements
for each non-zero column of x. Similarly, if the product xT Px has positive or zero
elements for each non-zero column of x, then P is called as positive semi-definite
matrix[33].

2.2 Convex Optimization

A optimization problem is called a convex optimization problem when the objective
and constraints are convex functions satisfying the following inequality,

fi(αx + βy) ≤ α fi(x) + β fi(y) (2.8)

for all values of x, y ∈ �n and ∈ α, β ∈ � [31, pg. 1].

2.2.1 Quadratic Programming

A problem of optimizing a quadratic objective function with affine constraints is
known as Quadratic Programming (QP) [31, pg. 152].

The General QP problem has the form[29, pg. 448],

min
x

f (x) =
1
2

xT Px + qT x (2.9a)

subject to AT
i x = bi i = 1, 2, 3...N (2.9b)

lb j ≤ GT
j x ≤ ub j j = 1, 2, 3...M (2.9c)

13

2.2 Convex Optimization

where, vector x = [x1, x2, x3,, xn]T is an optimization variable, N denotes number
of equality constraints, M denotes number of inequality constraints. Also, AN×n, GM×n

are constraint Jacobian matrices, bN×1, lbM×1, ubM×1 are vectors, qn×1 is a Jacobian
matrix, Pn×n is an Hessian matrix and a vector x∗ is an optimal solution to the prob-
lem. Here, QP is called convex problem if P is positive semi-definite and non-convex
problem if P is indefinite.

2.2.1.1 Minimization of unconstrained problem

Let us discuss the methods of minimizing unconstrained problem [31, pg. 457],

minimise f (x) (2.10)

where f : Rn → R is a convex function that can be twice differentiated and
assume that we have a solution at x∗ and its objective value is f ∗. So the necessary
condition for a solution at x∗ to be optimal is that,

5 f (x∗) = 0 (2.11)

We can see here that, solving Equation 2.10 is same as solving for x in Equa-
tion 2.11, hence solution can be found analytically solving Equation 2.11, but usually
found by an iterative algorithm computing sequence of points x(0), x(1), x(2), ..., x(n)

with lim
k→∞

f (x(k)) = f ∗. The algorithm will be terminated if f (x(k))− f ∗ ≤ ε > 0, where

ε is some tolerance value.

2.2.1.2 Quadratic Programming with equality constraints

The unconstrained problem doesn’t arise in practical situations, where the problem are
always subjected to some restrictions. The discussion for solving quadratic problem
begins with equality constraints problems, but the approach is also applicable for the
case of inequality constraints problems [29, pg. 451].

General QP problem with equality constraints has the form,

min
x

f (x) =
1
2

xT Px + xT q (2.12a)

subject to AT
i x = bi i = 1, 2, 3...N (2.12b)

where, x = [x1, x2, x3,, xn]T , N denotes number of equality constraints, AN×n

14

2.2 Convex Optimization

is a constraint Jacobian matrix, bN×1 is a vector and Pn×n is an Hessian matrix and
let us assume that A has a full rank N, so that the constraints in Equation 2.12 are
consistent.

The necessary conditions to have x∗ as a solution is that there exists a vector and
the following equations are satisfied,

P −AT

A 0


x∗

λ∗

 =

−q

b

 (2.13)

where λ is called Lagrange multipliers. We can express Equation 2.13 in a form
that can be used for computation by considering x∗ = x + p, where x is some solution
estimate and p is the next step desired.

So Equation 2.13 becomes,

P AT

A 0


−p

λ∗

 =

g
h

 (2.14)

with

h = Ax − b, g = q + Px, p = x∗ − x (2.15)

The matrix in 2.14 is known as Karush–Kuhn–Tucker (KKT) matrix.
If the A has full rank N and P is positive definite, then KKT matrix will be non-

singular, then there is a unique solution at (x∗, λ∗) that satisfies Equation 2.13.

2.2.2 Descent methods

All the algorithms that progressively searches for the optimal solution x∗ through 5x
are called descent methods [31, pg. 463] and produce sequence of x(k) for k = 1, 2, ..., n
and represented by,

x(k+1) = x(k) + α(k)∆x(k) (2.16a)

such that f (x(k+1)) < f (x(k)) (2.16b)

except when x(k) is optimal solution

where ∆x is a vector in Rn is called step or search direction, k denotes the iteration

15

2.2 Convex Optimization

number and α(k) > 0, except that if x(k) is optimal, called as step length or step size. For
simplicity, the notations x(k), x(k+1), ∆xk are represented by xk, xk+1, pk respectively
and xk+1 := xk + αk pk.

Figure 2.7: Gradient Descent Method [31, pg. 471]

Figure 2.7 shows iteration of a gradient descent problem ∈ R2 with some objective
function f , shown in dashed curves and small circles represents the iteration, solid
line, connecting each iteration, shows the scaled steps of αpk

The general descent algorithm involves two steps,

1. The initial guess has to be made for x

2. Then the descent direction has to be found for every step size α

Algorithm 1 Gradient descent method in general [31, pg. 464]
1: initialize initial guess x and tolerance η
2: while ‖5 f (x)‖2 ≤ η do
3: Find pk

4: For a step size α > 0, update xk+1 = xk + αpk

5: end while

Finding value for α along the line x + αpk is known as line search method and α
determines where next iteration is. If value of pk is chosen as −5 f (x), then the search
method is called gradient descent method [31, pg. 466]. The line search is also known

16

2.3 Related work

as backtracking because, the value of α starts with unit step size and reduces by a
factor β until the condition f (x + rαpk) ≈ f (x) + α 5 f (x)T pk < f (x) + αr 5 f (x)T pk

holds, where r ranges from 0 to 0.5 and β from 0 to 1 [31, pg. 465].

Figure 2.8: Backtracking line search [31, pg. 465]

Figure 2.8 shows how the search for x∗ is restricted between the lines, with a slope
r ∈ (0, t0), f (x) + α 5 f (x)T pk and f (x) + αr 5 f (x)T pk.

Choosing initial values of αk and pk determines how quick and how close the
optimal value could be reached. So, the ideal choice for pk would be of the form [29,
pg. 30],

pk = −H−1
k 5 f (xk) (2.17)

where Hk is a non-singular and symmetric Hessian matrix.

2.3 Related work

Over the years, there has been many improvements in trajectory planning and opti-
mization. This section briefly describes the previous and related works,

Sampling based motion planners were successful in solving wide range of prob-
lems especially the manipulation tasks [13] [34] [35] [36] [37] [38]. These algorithm
randomly explores the configuration space to generate a graph with edges connect-
ing the samples [38]. This random approach can give faster results, but in few cases
the algorithm doesn’t gives solution even if a solution exists [39]. Further, the out-
put from these algorithm lacks path quality and hence needed to improve the path by
smoothening [13] [40]. Another downside of these algorithm is that, at each request
of the trajectory, a different solution consisting different number of sample points are

17

2.3 Related work

generated. Though these algorithm can solve most number of problem, the solution
consistency is not guaranteed.

Optimization techniques are employed, in order to have a consistent and reliable
solution to the trajectory planning problem. Dynamic Programming (DP) has been
used by Shareef and Steil [41] to optimize the trajectory by reducing the dimension-
ality of the problem to a second order differential equation by calculating arc length
as path parameter from the given geometrical path. The main disadvantage of this
method is that, it is computationally not efficient to find the path parameter for the
given problem because all possible combinations has to be explored, making it slower
and thus not suitable for real time application.

Boudjellel and Chettibi [42] treats the problem in a different way by using multi-
objective optimization algorithm NSGA-II based on [43]. Here, the main focus is
to minimize the travel time and the quadratic average of applied efforts on actuators
by using two spline functions: a b-spline function to define path in which the robot
moves and a cubic function to set-up the motion along this path. The drawback of
this method is the calculation of robot’s kinematic and dynamics equations. These
calculations could be feasible for a simple robot but not for the complex robots and
also these calculations had to be done for each robot differentlyand hence doesn’t suit
for real-time applications.

The motion planning problem by Oleynikova et al. [44], minimizes the cost func-
tion consisting of velocity and collision, in terms of end derivatives that can contin-
uously compute collision-free trajectory for any newly detected obstacles. The main
drawback of this approach is to efficiently segregate the explored space either as oc-
cupied or unoccupied or unknown space as the real sensor measurements is not dense
enough, also additional distance field computational cost for each voxel grid on a very
large environments.

In [45] Alatartsev et al. defines the problem of optimization having some relax-
ation in the path of end effector motion. Here, the relaxation in path means set of ad-
missible paths that can be chosen heuristically as a continuous plan rather than point-
to-point path. The limitation of this approach is the slower computation of heuristics,
which is not possible to apply it in real-time.

Particle Swarm Optimization (PSO) is a stochastic optimization technique to find
global solution for the given problem. This technique is used by Gao, Ding, and Yang
[46] to find time optimal solution using 4-3-4 polynomial interpolation avoiding map-
ping relationship between motion position and polynomial interpolation coefficients.
Here PSO parameters are to be calculated empirically, running time of PSO changes
with the change in velocity and acceleration constraints and also uncertainty of initial
movements is caused by the initial random distribution. Thus, this approach doesn’t
give consistent reliable results to use in real-time.

In [47] Zhu, Schmerling, and Pavone proposes Convex Elastic Smoothing (CES)

18

2.3 Related work

algorithm to smooth out and to faster the computation of the optimization problem
with a simple heuristics. Here, a tube like structure is constructed around an output tra-
jectory of a motion planner to have a collision-free path through convex optimization
technique with quadratic objective and constraints. The tube is just a bubble or circle
around each way point Pi to identify colliding objects which seems to be a promis-
ing approach to find collision objects. A pitfall in this approach is that, the algorithm
just smooths out the reference trajectory form sample-based motion planner and can-
not operate standalone and also doesn’t produces reliable results with collision-free
reference trajectory.

Toussaint [48] proposed a method to solve a non-linear Stochastic Optimal Con-
trol (SOC) problem to find equivalent Linear Quadratic Guassian (LQG) perturbation
model around the optimal trajectory by finding a local approximate solution with the
probalisitic trajectory model coinciding the optimal trajectory. Also in [49], he for-
mulated the problem as a Logic Geometric Program (LGP) over a end configuration
space by analysing all possible end effector configurations and heuristics to inform
the search over this space. Exploring the optimal solution considering all possible end
effector poses needs lot of computational time making it not applicable in situations
having dynamic constraints.

In the approach for trajectory optimization proposed by Kalakrishnan et al. [13],
the motion planning is treated as a derivative free stochastic optimization problem
that minimizes the cost of a function. The cost function, may be non-differentiable
and non-smooth, is used to smoothen the trajectory along with the collisions con-
straints by generating and improvising the series of noisy trajectories. Ratliff et al.
[50] treats the problem using a covariant gradient descent method that converges to a
local optimal solution with cost considering the smoothness and obstacles. Addition-
ally Hamiltonian Monte Carlo algorithm based on [51], [52] is used to improvise the
solution better than most of the traditional optimization problem, but still it couldn’t
over come local minima for more difficult problem with practical time constrains.

The one important missing factor in all above algorithm is the lack of collision
check between the set of generated discrete way points and hence, the trajectory may
not be time continuous collision-free.

In [1] Schulman et al. treats optimization of trajectory, as a sequential convex
optimization problem with l1 penalties for inequalities and equalities constraints, con-
verging to a local optimal solution based on Sequential Quadratic Programming (SQP).
Wih efficient handling of collision avoidance constraints using Jacobian, a time con-
tinuous collision-free trajectory can be obtained. This seems to promising approach
as it outperforms [50] and [13] and can also deal with the time continuous collisions.
In this thesis, this approach by Schulman et al. is re-implemented in python with few
adaptations explained in the following chapter.

19

3 Methodology

3 Methodology

In recent years, motion planning has received interest for mobile systems and manipu-
lation with collision avoidance as the goal. The other constraints, like torque, energy,
handling constraints, generating smooth path are of less interest, also has a scope to
improve [13]. Sampling based planning algorithms are also well received because it
could find the path by connecting high dimensional space [50]. These methods that
searches through a graph invloves workspace discretization and hence their perfor-
mance decreases with increase in dimensions [53]. However, in this thesis, the motion
planning task is treated as a convex optimization that finds sub-optimal collision-free
trajectory using SQP method.

3.1 System Architecture

Trajectory planner as a convex optimization using SQP technique, the goal is to mini-
mize velocity of the robot joint motion from start to goal position. The implementation
of the trajectory optimization algorithm has been explained in the following sections
and the system architecture is shown in Figure 3.1.

3.2 Problem Description and Modelling

The input from the user to the problem builder is as follows,

• Start and goal position of the robot

• No of samples for the trajectory

• Duration of the trajectory

The optimization algorithm takes a cost function to be optimized as an input and
gives optimized output based on the constraints imposed on the cost function. Hence,
the robot joint velocity has to be modelled as a cost matrix P that an optimizer solver
can work on along with the robot’s limitations as the constraints.

The cost function to minimize the robot joint velocity is given by [1],

20

3.2 Problem Description and Modelling

f (x) =
∑

t∈(0, T)

∑
i∈(0, N)

∥∥∥qt+1, i − qt, i
∥∥∥2 (3.1)

(3.2)

where,
T = No of time steps
N = No of joints
x = [q0, start, q1, start, ..., qN, start, ..., q0, goal, q1, goal, ..., qN, goal]

Problem
descrip-

tion

Formulate
Quadratic
Problem

Problem
as a

Matrix

SQP
Solver

Robot
trajec-

tory

Collision
checker

Robot
des-

crition

World
des-

crition

Update
collision

con-
straints

Current
robot
State

Simulated
Robot

is
trajectory
collision

free?

Final
collision-
free Robot
Trajectory

Real
Robot

No

Yes

Figure 3.1: Architecture: A Robot Trajectory Optimized Planner

21

3.2 Problem Description and Modelling

The cost matrix P for such a model is,

P =



2 0 0 −2 0 0 0 0 0

0
. . . 0 0

. . . 0 0 0 0
0 0 2 0 0 −2 0 0 0
−2 0 0 4 0 0 −2 0 0

0
. . . 0 0

. . . 0 0
. . . 0

0 0 −2 0 0 4 0 0 −2
0 0 0 −2 0 0 2 0 0

0 0 0 0
. . . 0 0

. . . 0
0 0 0 0 0 −2 0 0 2



(3.3)

The Equation 3.3 has be to minimized respecting the robot joint position and
velocity limits. These limits are considered to be constraints in the optimization prob-
lem. The Equation 3.4 represents its corresponding model G,

G =



−1 0 0 1 0 0 0 0 0
0 −1 0 0 1 0 0 0 0

0 0
. . . 0 0

. . . 0 0 0

0 0 0
. . . 0 0

. . . 0 0
0 0 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0
. . . 0 0 0 0 0

0 0 0 0
. . . 0 0 0 0

0 0 0 0 0
. . . 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



(3.4)

The matrix G is an inequality constraint to the problem, since it is bounded by
joint position’s and velocity’s lower limits lbG and upper ubG limits.

22

3.3 SQP

lbG ≤ G(x) ≤ ubG (3.5)

To plan a robot trajectory, apart from the robot joints position and velocity limits,
robot start qstart and goal qgoal configurations has to be given as equality constraints
to the problem, represented as,

A(x) = b (3.6a)

where,

A =

[
qstart

qgoal

]
(3.6b)

The robot limitations required for optimization problem are taken from URDF
file of the robot. With all above required variables the robot trajectory optimization
problem is defined as,

min
x

f (x) =
∑

t

∑
i

∥∥∥qt+1,i − qt,i
∥∥∥2 (3.7a)

lbG ≤ G(x) ≤ ubG (3.7b)

A(x) = b (3.7c)

3.3 Sequential Quadratic Programming (SQP)

In a robot, each joint will have position and velocity limit leading to a large problem
with many number of constraints. For example, a 10 Degrees of freedom (DOF) robot,
will have 10 position and 10 velocity constraints summing to 20 constraints. Hence,
the problem has to be scaled down into multiple smaller sub-problem, so that solving
them yields a reliable solution to the original problem.

The strategy of breaking down and solving large problem into equivalent convex
sub-problems by a suitable conversion is called as SQP. This SQP method can be
solved using trust region method effectively to find ∆x even when the constraints are
non-linear [29, pg. 529].

23

3.3 SQP

3.3.1 Trust region method

Trust region method is similar to the linear search method as discussed in subsec-
tion 2.2.2, where the optimal value of the quadratic objective function is found itera-
tively from the initial guess. Line search focuses on finding step length αk in different
search direction pk, while trust region method minimizing the step length within the
trust region around the model representation of the objective function in each iterate.
This minimized step is considered as minimized approximate of the model for the next
iteration. Thus, the direction and step are chosen simultaneously [29, pg. 68].

The general approach to solve the quadratic problem is to construct a model func-
tion mk with the gathered information on objective function f , whose characteristics
is similar to the original f around the current iterate xk. The search for the optimal
solution x∗ is restricted with a small region around xk, so that the model mk will be a
good approximation of f .

Now, the original problem of minimizing f is reduced to solve the following sub-
problem in a sequence,

min
p

mk(xk + p) (3.8)

where p restricted within region of trust. The original objective function f is
approximated into a model function mk, usually, by a second order Taylor-series ex-
pansion at each iterate xk, given by,

f (xk + p) = fk + gT
k p +

1
2

pT
5

2 f (xk + tp)p (3.9)

where fk = f (xk), gk = 5 f (xk) and t is a scaler ∈ (0, 1). With Hessian approxi-
mation Hk for the second order term in mk, Equation 3.9 becomes,

mk = fk + gT
k p +

1
2

pT Hk p (3.10)

The difference between the Equation 3.9 and Equation 3.10 is equal to O(‖p‖2)
will be small if p is small. Thus, when the Hessian approximation is as close to the
objective function f , then ‖p‖ will be small, so the now the objective is to minimize
p, such that ‖p‖ ≤ ∆k

If the chosen step pk happens to be the bad approximate of the model, then trust
region is reduced or else, the trust region will be expanded. If the trust region is too
small or large, the algorithm may miss the step to find the approximate minimizer mk

24

3.3 SQP

closer to actual objective function. A step that has failed indicates that the model is
not proper representation of the original objective function over the current iteration.
Hence, the initial choice for the trust region in very crucial in solving the objective.

min
p∈Rn

mk(p) = fk + gT
k p +

1
2

pT Hk p (3.11a)

(3.11b)

subject to linearized constraints,

Ak + 5AT
k p = 0, i = 1, 2, 3...N (3.11c)

Gk + 5GT
k p ≥ 0, j = 1, 2, 3...M (3.11d)

along with,

‖p‖ ≤ ∆k (3.11e)

where, Ak = AT
i (x) − bi(x), Gk = GT

i (x) − ubGi or lbgi − GT
i (x) and ∆k is called

trust region radius within which the algorithm searches for the step minimizer for f
and the norm ‖·‖ is an Euclidean norm.

The main advantage of imposing trust region constraint is that [29, pg. 546],

• the Hessian matrix Hk doesn’t need to be a positive definite matrix

• the trust region decides how good the step has to be even, if there are singular
Hessian and Jacobian matrices and provides the mechanism to enforce global
convergence

Figure 3.2 shows difference in approach between trust region and line search. From
the previous iteration and steps, the model mk is constructed from the function f (xk)
and its derivative at 5 f (xk), whose contours are shown in dashed ellipse. Here, we
can see that the step direction from line search along the the minimizer step mk causes
small reduction in f , although initial step length is optimal, whereas, the reduction
of mk within the trust region (dotted circle) produces more reduction in f making it
better progress in achieving the solution.

The key aspect of minimizing the objective function f is to choose the right value
of ∆k for each iteration, such that there is a good agreement in reduction between the

25

3.3 SQP

Figure 3.2: Trust region vs Line search [29, pg. 67]

original objective function f and the model objective function mk. To evaluate this,
for given pk xk, following expression is used,

ρk =
f (xk) − f (xk + pk)
mk(0) − mk(pk)

(3.12)

In the Equation 3.12, the numerator is known as actual reduction in original ob-
jective function and denominator is called as predicted reduction (i.e., reduction by the
model function in f). Since the predicted reduction is computed between p = 0 and
pk, it will be always positive, hence the ρk will be negative only when the objective
value of f (xk + pk) is greater than f (xk). Also, ρk is closer to 1 if the model mk and the
objective f are in good agreement, therefore the trust region radius ∆k is increased and
vice versa, when ρk is closer to 0 or less than 0, the trust region radius ∆k is decreased
for the next iteration [29, pg. 69]. The Figure 3.3 shows how search is done on each
sub problems at each iteration with different trust region radii ∆,

Different norms can be used to define the trust region the Euclidean norm, e.g.,

‖p‖1 ≤ ∆k or ‖p‖2 ≤ ∆k or ‖p‖∞ ≤ ∆k (3.13)

When the norm is Euclidean, then the trust region will be a sphere around the

26

3.3 SQP

Figure 3.3: Trust region for different radii ∆1,∆2,∆3 [29, pg. 70]

model and when∞ norm is used, the trust region will be just a rectangular box defined
by,

xk + pk ≥ 0, p ≥ −∆ke, p ≤ ∆ke (3.14)

where e = (1, 1, ..., 1)T and the problem solution can be easily calculated using
bounded-constrained quadratic programming. When practical problems are larger,
the calculation of Hessian Hk is expensive, the use of∞ norm with a rectangular trust
region is a convenient method to solve the problem defined by Equation 3.11 [29, pg.
97].

3.3.2 L1 Penalty method

The original constrained problem can converted into its equivalent sequence of un-
constrained sub-problem by adding the constraints back to the original problem [29,
pg. 497].

• To the original objective function,

• an additional penalty term is added for each constraint, which is positive when
the minimizer xk violates the constraints or zero otherwise.

The common approach would be to multiply the additive penalty term with a
larger coefficient value that penalizes for every constraint violations, thus making sure
that the penalty minimizer function stays within the feasible region of the constraints.

27

3.3 SQP

(a) Penalty method: Contours of
some Q(x, µ) at µ = 1 [29, pg.
500]

(b) Penalty method: Contours of
some Q(x, µ) at µ = 10 [29, pg.
500]

Figure 3.4: Penalty method: Contours of Q(x, µ) at µ = 1, 10 [29, pg. 499, 500]

This type of adding the constraints to the main objective function is called as penalty
methods. Such an unconstrained problem will be of the form,

Q(x, µ) = f (x) +
µ

2

Z∑
i=1

c2
i (x) (3.15)

where, Z is the number of constraints, c2
i (x) is square of the constraint, µ > 0 is

called the penalty parameter and the Equation 3.15 is called quadratic penalty func-
tion, also when the µ increase to ∞, the constraint violations are penalized more
severely. Since the penalty terms are smooth, the techniques used for unconstrained
optimization can be used to solve the problem over xk at each iteration.

The Algorithm 2 describes how the problem is solved iteratively for different val-
ues of µk at each iteration. Here, the penalty parameter µk can be adaptively chosen
depending on how difficult to solve the penalty function. The termination condition
‖5xQ(x, µk‖ ≤ τk doesn’t satisfies as the iteration moves the minimizer xk out of fea-
sible region or the case where the constrains violations doesn’t decrease significantly,
the penalty parameter has to be increased to a very larger value to bring the problem
back in track within the feasible region.

The simple way to update the penalty term µk in Algorithm 2 is to initialise with
some small value and to increase in terms of 5 or 10 till the minimiser xk pulled into the

28

3.3 SQP

Algorithm 2 Penalty Method Algorithm [29, pg. 501]
1: initialize initial, max trust region size µ0 and µmax respectively
2: initialize non-negative sequence τk with τk → 0
3: initialize initial guess x0
4: initialize penalty increase ratio µr

5: set xk = x0
6: set µk = µ0
7: for k = 0, 1, 2, ..., µmax do
8: Minimise for xk from Q(xk, µk)
9: find ρk =

f (xk)− f (xk+pk)
mk(0)−mk(pk) , terminating when ‖5xQ(x, µk)‖ ≤ τk

10: if converged then
11: return xk

12: end if
13: Set new penalty µk = µr ∗ µk

14: choose different starting point xk

15: end for

feasible region with some tolerance. The initial choice of µ0 is very important because,
choosing it very small may results in bad minimizer xk and needs many iterations to
converge. In these iterations, there is a possibility that xk can be pulled away before
reaching the solution x∗, in such a situations the algorithm has to be terminated and
restarted with initial guess x0 and different µ0. In contrast to this, choosing very large
value of µ0, the algorithm needs many number of iterations before the penalty function
can be minimized [29, pg. 511].

Only when the problem contains equality constraint, the function Q(x, µk) is
smooth and the unconstrained problem techniques can be used to solve the problem.
However, in a practical application where there would be inequality constraints the
problem is non-smooth. Also, the quadratic penalty function doesn’t gives same min-
imizer xk solution of the non-linear program for different positive values of µ. In such
a situations, exact penalty functions can be used, which yields single minimizer xk

leading to a exact solution to a large non-linear problems.
General non-linear programming problem with l1 (exact) penalty function is ex-

pressed as,

φ1(x, µ) = f (x) + µ(
∑
i∈ε

|ci(x)| +
∑
i∈Γ

|ci(x)|−) (3.16)

where, [y]− = max(0,−y). The name is l1 penalty because the penalty term

29

3.3 SQP

µ is l1 norm times the constraint violation. Also, it should be here noted that the
Equation 3.16 is not differential at some value of x causes ci(x) = 0. for i ∈ N ∪ M.
Due to this, the algorithms that were discussed previously can’t be used directly to
solve φi(x, µ). So the constraints ci has to be linearised and the non-linear part of the
objective function f has to replaced by it equivalent quadratic function, as below [29,
pg. 512]:

q(x, µ) = f (x) + 5 f (x)T p +
1
2

pT Hp + µ(
∑
i∈ε

|ci(x)p + 5ci(x)T p| + (3.17)∑
i∈Γ

|ci(x)+ 5 ci(x)T p|−)

where, H is a symmetric matrix containing second derivative of f .

3.3.3 Merit Function

Merit functions are used to decide whether the iteration has to be accepted or not. This
merit function decides how the step size changes in line search method and how the
trust-region changes (expanded or shrinked). The following discussion shows how the
non-smooth, exact l1 merit function can be used to solve the problem of type,

min
x

f (x) (3.18)

subject to c(x) = 0 (3.19)

The inequality constraints c(x) > 0 can be converted into a equality constraints of
the form,

c(x, s) = c(x) − s = 0 (3.20)

where s ≥ 0 is slack variable vector. Therefore, any problem with inequality and
constraints can be converted into a form expressed in Equation 3.18 and the corre-
sponding l1 merit function takes the form,

φ1(x, µ) = f (x) + µ ‖c(x)‖1 (3.21)

The Equation 3.21 can be solved iteratively by choosing different values of µk

wih increase in value at each iteration.

30

3.3 SQP

3.3.4 Sequential l1 Quadratic Programming (SQl1P)

In some cases, the problem doesn’t gives solution because of trust region constraint,
even if the constraints Equation 3.11c and Equation 3.11d are compatible. In Fig-
ure 3.5 shows an example, having only one equality constraint and any step p satis-
fying equality constraints should lie outside of trust region ∆k. This example shows
how a consistent equality and inequality constraints may not give solution if the norm
of the solution is restricted.

Figure 3.5: Inconsistent trust region model [29, pg. 547]

One possible way to get the solution, in such a case, is simply to increase ∆k until
the step p that satisfies linear constraint lies with in the trust region. This strategy
doesn’t serve the purpose of the trust region constraint within which the approximation
of the original objective function and constraints are trusted [29, pg. 546].

An infeasible problem can be turned into feasible problem, by linearizing the
constraints into the objective function with l1 penalty term into the problem as,

min
p

qµ(p) = f (xk) + 5 f (xk)T p +
1
2

pT Hp + (3.22)

µ(
∑
i∈ε

|Gi(xk) + 5Gi(xk)T p| +
∑
i∈Γ

|Ai(xk) + 5Ai(xk)T p|−)

31

3.3 SQP

subject to,

‖p‖∞ ≤ ∆k

where, y− = max(0,−y). This type of problem is a smooth quadratic problem,
which is always consistent because the trust region has ∞ norm, can be be solved by
quadratic programming algorithm.

The SQl1P approach has following advantages,

• Inconsistent problem has been converted into consistent problem, which always
ensures the satisfaction of trust region constraint

• The second order term can be used directly or replaced by quasi-Newton ap-
proximation and doesn’t need to be positive definite

In Equation 3.22, l1 merit function decides step acceptance pk. After compuation
of pk in each iteration, the ratio ρk is calculated using Equation 3.12 and the trust
region rules, according to the Algorithm 3, decides the step acceptance pk.

Algorithm 3 Trust Region Algorithm [29, pg. 549]
1: initialize initial and max trust region size ∆0 and ∆max respectively
2: initialize ε > 0, η, γ ∈ [0, 1]
3: initialize initial guess x0 and initial ∆0 > 0
4: set xk = x0, ∆k = ∆0
5: for µ = 10, 100, 1000, ..., µmax do
6: for k = 0, 1, 2, ..., iterationLimit do
7: compute pk from Equation 3.22
8: find ρk from Equation 3.12
9: if ρk > η then

10: xk+1 = xk + pk

11: choose ∆k+1 such that ∆k+1 ≥ ∆k

12: else
13: xk+1 = xk

14: choose ∆k+1 such that ∆k+1 ≤ γ ‖pk‖

15: end if
16: end for
17: end for

32

3.4 Collision checker

3.4 Collision checker

The goal of robot motion planning is to make robot perform some task. While per-
forming a given task, the robot shouldn’t collide with itself (self-collision) or with
any obstacles in the surroundings. Hence, collision checking is more important step
in motion planning. The following sections will discuss techniques to detect collision
and to find distance from the obstacles.

3.4.1 Gilbert–Johnson–Keerthi (GJK) algorithm

In [54], Gilbert, Johnson, and Keerthi proposed an efficient way to detect collision
between two objects and to measure distance between them along a path describing
both position and orientation in configuration space continuously.

An object in an Euclidean space is a set of non-empty points. Let A, B denotes
two rigid bodies in R3 and the natural choice to measure the proximity between them
is with Euclidean distance, i.e. shortest line segment connecting two objects, as it
signifies the physical distance and invariant with different choices of the coordinate
system [54],

The minimum distance between two objects A and B is given by,

d(A, B) = min{|a − b|, a ∈ A, b ∈ B} (3.23)

Instead of computing Equation 3.23, the same can be obtained by calculating
distance between the origin and the difference d given by [55],

d(A, B) = ‖υ(A − B)‖ (3.24a)

where,

υ(C) ∈ C (3.24b)

‖υ(C)‖ = min{‖x‖ , x ∈ C} (3.24c)

The difference in Equation 3.24a is known as Minkowski Difference (MD) and υ(C)
is a nearest point to the origin in configuration space C. Minkowski Sum (MS) of two
objects A and B, as shown in Figure 3.6 and MD is sum of A and -B with -A denotes
the reflection of A about origin O, can be calculated by adding Ai and Bi, where i
represents every point in an object [56]. MD is also known as Configuration Space

33

3.4 Collision checker

Figure 3.6: Minkowski sum: geometric representation [56]

Obstacle (CSO) and the goal of the GJK algorithm is find if the region enclosed by
CSO contains origin [57].

When two objects intersects, there will be common points on both the objects
and hence the difference between those points will be zero. Hence, in order to detect
collision, it is sufficient to check if the CSO contains origin.

It is a tedious procedure to find CSO for each point in A against each point in
B and hence it is sufficient to find difference between a farthest point in A along a
direction v and a farthest point in B along a direction −v, which is guaranteed to
appear in the CSO region.

S A,B(v) = S A(v) − S B(−v) (3.25a)

where,

S A(v) = max{v · a, a ∈ A} (3.25b)

The Equation 3.25b is knowns support function, which maps a vector v to a farthest
point, called as support point, on an object A along a given direction v and the plane
containing support point is referred as supporting plane. If the vector is pointing
perpendicular to a surface, then all the points on a supporting plane are farthest points,
in this case the support function return its centroid [57], [56].

For a primitive shapes, its not necessary to compute all possible v · x and their precise
support mapping function can be directly used, thus GJK algorithm can give faster
results [55]. Few examples are,

34

3.4 Collision checker

Figure 3.7: Support points on a polygon A and a circle B along the vector V [56]

For a Polytope,

S A(v) = max{v · a, a ∈ vertices(A)} (3.26a)

For a Box with extents 2ηx, 2ηy, 2ηz,

S A(x, y, z)(v) = (sgn(x)ηx, sgn(y)ηy, sgn(z)ηz)T (3.26b)

For a Cylinder with origin as center, y being central axis, radius ρ, top at y = η and
bottom y = −η,

S A(x, y, z)(v) =

(ρσ x, sgn(y)η, ρσz), if x < 0.
(0, sgn(y)η, 0), otherwise.

(3.26c)

where sgn(x) = 1, if x > 0, and 1, otherwise.

Figure 3.8: Different types of Simplex [57]

Let n be a fixed integer, n-simplex is a convex hull with n + 1 points in n-
dimensional space, as shown in Figure 3.8. Thus, a point, a line segment, a triangle
and tetrahedron has 0-, 1-, 2-, 3- simplex respectively, as shown in Figure 3.8.

The GJK algorithm explained in Algorithm 4, is a descent method, begins with

35

3.4 Collision checker

Algorithm 4 GJK Algorithm [55]
1: initialize set of vertices of simplex in k-th iteration Wk = ∅

2: initialize closest point to the origin inside the simplex convexhull vk with any
arbitrary point v0 in C

3: initialize close enough := f alse and a tolerance value ε = 0.01
4: initialize lower bound value µ = 0
5: while (close enough is False and vk is not 0) do
6: wk = S A,B(−vk)
7: δ = vk ·

wk
‖vk‖

8: µ = max(µ, δ)
9: close enough = ‖vk‖ − µ ≤ ε

10: if close enough is f alse then
11: vk = υ(ConvexHull(Wk

⋃
wk))

12: Wk = smallest X ⊆ Wk
⋃

such that vk ∈ ConvexHull(X)
13: end if
14: end while
15: return ‖vk‖

an arbitrary point v0 within CSO and an empty simplex set Wk, on each iteration a
support point vk+1 along the direction −vk is found and the smallest simplex enclosing
the support closest to origin added into Wk until no further vk other than itself is found
[57].

Figure 3.10 shows case of collision, where the algorithm started with an arbitrary point
v0 and an empty simplex set W = ∅, finds an support point v1 and adds a vertex w0 into
W. Since, there is only one vertex in the simplex, the vertex itself is a support point
and the next support point is found towards the origin to find new vertex w1 forming
2-simplex segment. With 2-simplex a line segment is formed and the closest point
to the origin, on the line segment, is taken as a new support point to find next vertex
w2 normal. With 3-simplex, the closest point to the origin again on a triangle gives
same vertex w2, hence the algorithm is terminated. With the simplex set enclosing
the origin, represented by plus sign, the existence of collision between objects can be
found.

3.4.2 Expanding Polytope Algorithm (EPA)

To move objects in space without colliding, it is important to know if the path taken
by an object can lead into collision. In such a case, to detect collision between the
objects, it is sufficient to know if they are in contact and the distance between them

36

3.4 Collision checker

(a) k = 0,W = ∅ (b) k = 1,W = {w0}

(c) k = 2,W = {w0,w1} (d) k = 3,W = {w0,w2}

Figure 3.9: Iterations of GJK algorithm without collision. The dashed line denotes
support planes H(−vk, vk · wk) and Wk drawn in solid line [55]

37

3.4 Collision checker

(a) k = 0,W = ∅ (b) k = 1,W = {w0}

(c) k = 2,W = {w0} (d) k = 2,W = {w0,w1}

(e) k = 3,W = {w0,w1} (f) k = 3,W = {w0,w1,w2}

Figure 3.10: Iterations of GJK algorithm without collision. The dashed line denotes
support planes H(−vk, vk · wk) and Wk drawn in solid line [55]

38

3.4 Collision checker

(a) Intersection of objects A and B (b) k = 1,W = {w0}

Figure 3.11: Intersection of two objects A and B and corresponding penetration
depth [58]

is not required. But, in order to bring the objects out of collision and to continue the
motion in the planned path, it is necessary to know how far the two objects have been
overlapped. This shortest vector (distance) between the intersecting objects along
which either of the object has to be translated, to bring them just in contact, is known
as Penetration Depth (PD) [58].

From Equation 3.23, the distance between two objects is given by

d(A, B) = min{‖x‖ , x ∈ A − B} (3.27a)

where as, the penetration depth p is given by [58],

p(A, B) = in f {‖x‖ , x < A − B} (3.27b)

PD given by infimum (greatest lower bound), is a vector between the origin and a
non-unique point lying anywhere on the boundary of CSO formed by intersection of
objects A and B as shown in Figure 3.11.

In [58], Van Den Bergen, had used output of GJK and continues to find PD by,

1. starting with last iteration polytope of GJK containing origin and vertex on the
boundary of CSO,

2. find a support point in the direction of normal vector pointing to the origin from
an edge closer to it,

3. add the found vertex w to the simplex list.

4. repeat this procedure until no more support vertex w, other than itself can be
found

39

3.4 Collision checker

(a) k = 0 (b) k = 1

Figure 3.12: Iterations of EPA. Green arrow and blue arrow represents PD and con-
tact normal ~n respectively [58]

5. length of the vector point from the origin to the supporting plane is the required
penetration depth, as shown in green color in Figure 3.12 and the blue arrow
denotes the contact normal ~n pointing from one object to the other.

PD expressed in terms of length of the vector pointing from origin to the support-
ing plane is given by,

p(A, B) = v ·
w
‖v‖

(3.28)

With PD, the objects can be moved to bring them just in contact, but in order to en-
sure the moving object is free of collisions, these objects have to be moved further to
maintain some distance dthreshold. Hence, it is preferable to have a parameter describ-
ing collision and separation between the objects, that is zero when the objects are just
in contact on the boundary, positive when there is no collision and negative when there
is collision as shown in Figure 3.13. Such a parameter is called as Signed Distance
(SD), defined as [1],

sd(A, B) = d(A, B) − p(A, B) (3.29)

In order to ensure the robot is not colliding with any objects during motion, it is
important to perform collision check between each link of the robot and the obstacles
and between each pair of robot links. Also, it is sufficient to check nearby obstacles
for collision within certain distance dcheck, such that dthreshold ≤ dcheck. Now, with SD,
the collision constraint for the optimization problem can be defined as [1],

40

3.4 Collision checker

B

A

T

(a) sd ≥ 0

A

B
(b) sd = 0

A

B

T

(c) sd ≤ 0

Figure 3.13: Signed distance between objects A and B [1]

41

3.5 Time continuous Collision free trajectory

For collision with obstacles,

sd(Ai,O j) ≥ dthreshold, i = 1, 2, 3...No of robot links (3.30a)

i = 1, 2, 3...No of obsctales

For robot self collision,

sd(Ai, A j) ≥ dthreshold,i, j = 1, 2, 3...No of robot links (3.30b)

Let AA and W AA represents an object A in space R3 in its local and world coor-
dinate system respectively, a point pA be a contact point on A, n̂ be the normal vector
along SD, WUA be a statinary object’s pose and WUA(θ) be an object’s pose that varies
with a parameter θ. With these terms, the SD can be expressed as [1],

sd(A(θ), B) ≈ n̂ · (WUA(θ) pA −
W UB pB) (3.31)

With robot’s Jacobian with respect to its DOF of a point pA, the Equation 3.31
can be linearised as,

5θ0 sd(A(θ), B)
∣∣∣∣
θ0
≈ n̂ · JpA(θ0) (3.32a)

sd(A(θ), B) ≈ sd(A(θ0), B) + n̂T
· JpA(θ0)(θ − θ0) (3.32b)

3.5 Time continuous Collision free trajectory

Using the Equation 3.32 as a constraint, the SQP solver produces robot trajectory
consisting of discrete way-points. These way-points have to be interpolated to form
time continuous trajectory before feeding into the robot, might lead into collision as
shown in Figure 3.14. Hence, the collisions must be checked between the convex hull
swept by the states A(t) and A(t + 1) of moving object A and an obstacle B, in order to
generate a continuous in time collision free trajectory.

Let the object A move in space between the time interval [t, t + 1] and the SD of
the convex hull sweept in this interval is defined as [1],

42

3.5 Time continuous Collision free trajectory

A(t)

B

A(t+1)

Figure 3.14: Swept convex hull volume of a time continous trajectory having colli-
sion

sd(A(t), A(t+1))(v) =

sdA(t), if sdA(t) > sdA(t+1)

sdA(t+1) otherwise
(3.33)

Since the object A is moving in space, there are three possibilities for the collision
to occur:

1. Collision at the state A(t)

2. Collision at the state A(t + 1)

3. Collision between the states A(t) and A(t + 1)

The constraint with Equation 3.32 takes care first two discrete collision cases.
For the third case, it is necessary to know collision hit fraction Ω between the states
A(t) and A(t + 1), so that accordingly collision constraint for the SQP solver can be
formed. Let pA(t), pA(t+1) and pc be the closest point on object A at state t, t + 1
and on the swept volume of convex hull respectively. The contact fraction Ω can be
approximated, assuming linear approximation between the states A(t) and A(t + 1) as,

Ω =

∥∥∥pA(t+1) − pc
∥∥∥∥∥∥pA(t+1) − pc

∥∥∥ +
∥∥∥pA(t) − pc

∥∥∥ (3.34a)

With contact fraction Ω, Equation 3.32 can be extended as [1],

43

3.5 Time continuous Collision free trajectory

A(t)

B

A(t+1)

(a) robot link having collision

B

A(t+1)A(t)

(b) robot link free from collision

Figure 3.15: Illustratoin of robot having collision and free from collision. The
dashed line represents interpolated sample points between the states
A(t) and A(t + 1)

sd(A(θ(t), θ(t + 1)), B) ≈ sd(A(θ0), θ(t + 1)), B) (3.35)

+ Ω n̂T
· JpA(t)(θ0(t))(θ(t) − θ0(t))

+ (Ω − 1) n̂T
· JpA(t+1)(θ0(t + 1))(θ(t + 1) − θ0(t + 1))

With the Equation 3.35 as a constraint, the SQP solver generates a trajectory that
will move the in between region (swept convex hull volume) covered out of collision
during robot link motion as shown in Figure 3.15. The Equation 3.35 not only covers
the case where the robot link, during motion, undergoes translation but also rotation,
as the correction factor is always below 1 cm [1].

Since the problem is solved using l1 penalty method, the optimization problem
reduced to minimizing the variable pk according to the Equation 3.22 instead of origi-
nal minimizer xk, where pk represents change in the original optimization variable ∆x.
Hence the term θ(t) − θ0(t) can be replaced by pk.

44

3.6 Software

Now, with all the required constraints, the final SQP optimization is given by,

min
p

qµ(p) = f (xk) + 5 f (xk)T p +
1
2

pT Hp + (3.36a)

µ(
∑
i∈ε

|Gi(xk) + 5Gi(xk)T p| +
∑
i∈Γ

|Ai(xk) + 5Ai(xk)T p|−)

subject to,

‖p‖∞ ≤ ∆k (3.36b)

Ci(xk) = sd(A(pk), B) −Ω n̂T
· JpA(t)(θ0(t))pk

−(Ω − 1) n̂T
· JpA(t+1)(θ0(t + 1))pk+1 − dthreshold ≥ 0 (3.36c)

Further the collision constraint in the Equation 3.36c can be formulated as an l1
penalty term and added back to the Equation 3.36a to form,

min
p

qµ(p) = f (xk) + 5 f (xk)T p +
1
2

pT Hp + (3.37a)

µ(
∑
i∈ε

|Gi(xk) + 5Gi(xk)T p| +
∑
i∈Γ

|Ai(xk) + 5Ai(xk)T p|−)

µ(
∑
i∈ε

|Ci(xk) + 5Ci(xk)T p|

subject to,

‖p‖∞ ≤ ∆k (3.37b)

With the above Equation 3.37a, the optimization problem is further reduced to
have only trust region constraint and hence, it can be easily solved. Now, this problem
can be solved using SQP solver with a linearly interpolated trajectory discrete points
as an initial guess x0, from start to goal position, using Algorithm 3.

3.6 Software

Having formulated necessary objective cost and collision constraints for the SQP
solver, a nice and preferably easy interface is required to interpret robot model, state,
limitations and to query collision information from the simulation environment. This
interface designed using a software architecture as shown in Figure 3.16.

45

3.6 Software

As seen in the Figure 3.16, the robot is loaded into simulation environment read-
ing its links geometry, collision information from Universal Robotic Description For-
mat (URDF) and Semantic Robot Description Format (SRDF) files and also any ob-
jects such as table or shelf on which the robot has to perform task are similarly added
into the planning scene. The parameters such as dcheck, dthreshold and the default pa-
rameters of SQP solver are similarly load loaded from a configuration file. Once the
basic configurations for the robot and the SQP solver are loaded, the user just have
to choose goal state either from the SRDF or can define new goal pose to which the
robot should move from the current state.

With the robot limitations, start state and goal state a model of the problem is
built in the Problem Modelling class along with the linearly interpolated initial guess
x0. This problem model is then sent to the SQP problem solver class. With x0, the
optimization problem produces a minimizer x1 respecting all constraints and checked
for collision for each time step of a trajectory between each link and obstacle and
also between each link of the robot (self-collision). Hence, a new set of collision
constraints is generated and the SQP problem is solved again for xk until all constraints
including collision constraints are satisfied.

The joint limitations of the robot are read from the URDF using urdf parser [59].
The l1 penalty constraints representing robot joint position and velocity limits remains
same throughout the problem, but the collision constraints and accordingly the trust
region ∆k gets altered until collision free solution is found.

Few tools libraries used in trajectory optimization application are:

• Python [60] : an high level interpreter language

• Numpy [61] : a fundamental scientific fundamental python package

• Kinematics and Dynamics Library (KDL) [62] : a framework to model a robot
and to calculate kinematics of a chain

In the following section the other libraries used to plan an optimized collision
free trajectory are discussed.

3.6.1 Convex optimization solver

In order to solve a complex problem, it is preferable to express and model a problem
in a natural way rather than in a restricted standard form. Python-embedded modeling
language for convex optimization (CVXPY) is one such interface that can be used to
solve complex convex problem and also supports extensions for parallel solving of
non-convex problems with high-level abstractions [63].

46

3.6 Software

Robot

Problem
Modeling

Trajectory

Planning
Request

Robot Model
(URDF)

Robot State Parameters

World State

Goal State

d_threshold
d_check

Other
Parameters

Planning
request

Problem

SQP
Problem
Solver

Trajectory Problem

Collision
info

Trajectory
Planner

Simulation
Environment

Figure 3.16: Software Architecture

47

3.7 Bullet physics

The main advantage of CVXPY is that, it internally has an interface to different
types of solvers: Embedded Conic Solver (ECOS) [64], Embedded Conic Solver with
a Branch-and-Bound procedure (ECOSBB) [64], Splitting Conic Solver (SCS) [65]
and A Python package for convex optimization (CVXOPT) [66], so that only once the
problem needed to be modelled and can solved across all solvers.

3.7 Bullet physics

Bullet physics engine [67] is an open source library to simulate soft and rigid body dy-
namics and to detect and resolve continuous and discrete collision detection between
convex and convex objects of all primitive shapes by providing updated objects’ world
transform [68].

Figure 3.17: Main components of bullet physics [68]

In each iteration of the SQP solver, the optimized solution x∗ is checked for col-
lision against all obstacles in the environments and between each link of the robot
(self-collision). In such a case, the calculations can be made faster by ignoring few
collisions check between robot links, thus generating less number of constraints. For
e.g. collision check between the adjacent links that are always in contact and between
links that will not collide at all can be avoided. These filter for the collision check are
loaded from SRDF using srdfdom parser [69].

Since the python version of Bullet physics doesn’t have continuous collision
check functionality at the time of implementation, its python wrapper was extended
to support the needed functionality according to the Equation 3.33 and Equation 3.34.
This extended version of PyBullet can be found at [70] in convexsweep branch.

48

3.8 GUI

3.8 Graphical User Interface (GUI)

The default SQP solver parameters are stored in a configuration file. Any change in
these parameters, the trajectory solver application has to be restarted and hence it is
difficult to find appropriate solver parameters in run-time. To ease the use of trajectory
planner application, a GUI, using qt framework [71], is designed to choose SQP solver
parameters, as shown in Figure 3.18. An user can also interact with the GUI to change
different goal states and joint configurations, that are predefined in the SRDF file,
dthreshold and dcheck distance and to plan and execute the trajectory.

The SQP solver parameters, that are stored in a yaml file, are loaded using [72]
into the GUI. Changing these parameters are automatically get saved to same yaml
file.

Figure 3.18: A GUI application for Trajectory Optimization Planner

49

4 Evaluation

4 Evaluation

The trajectory planning algorithm was evaluated with two different robots in different
use cases: a 7 DOF robot arm mounted on a table and an 11 DOF robot with 37 links
is placed in-front of a shelf. In both the case, the algorithm is evaluated for,

• Reliability: how many problems got solved vs total number of problem given

• Consistency: given a same problem, how far the solution is close to one another
in terms of solving time and generated trajectory

• Performance: given different problems, how fast the planner produces the tra-
jectory result

• Reachability: how does the planner reacts if the given problem’s solution can’t
be reached

• Sensitivity: how does the planner reacts to the different SQP solver parameters

4.1 Experiment Setup

The trajectory optimization planner algorithm is evaluated in a simulated environment
using bullet physics [67] running on a computer with the configurations given in Ta-
ble 4.1

Table 4.1: Configuration of the system on which the algorithm was evaluated

Processor Intel core i7 @ 3.40 GHz x

Memory 32 GB

Graphics NVIDIA GeForce GTX 670

Operating system Ubuntu 14.04 LTS

50

4.1 Experiment Setup

4.1.1 Pick and place using Kuka arm

As a simple example, a 7 DOF lbr iiwa [73] Kuka arm mounted on a table as shown
in Figure 4.1 is considered. With this setup, trajectory was planned for the robot
arm moving from random start to random goal positions with randomly placed box
(obstacle) on the table.

Figure 4.1: A 7 DOF lbr iiwa arm mounted on a table

4.1.2 Pick and place of supermarket products using Donbot robot

In this case, an 11 DOF Donbot robot with 37 links is considered. This robot has a 6
DOF UR5 [74] arm, with 2 DOF end-effector, mounted on a 3 DOF mobile base to
move in x, y, z directions. This robot is a complex use case, as the robot robot’s arm
can be driven separately or the whole robot body could be moved.

51

4.1 Experiment Setup

As an evaluation case, this Donbot robot was placed in front of a supermarket
shelf as shown in Figure 4.2 is considered. With this setup, trajectory was planned for
the robot arm moving from random start to random goal positions with random num-
ber of objects placed on the shelf randomly. Also, in a similar situation the trajectory
is planned for the entire robot.

Apart from the default ignore collision between the links, the collision check
between the links ur5 wrist and ur5 forearm of the Donbot robot were ignored, as the
Bullet collision checker always reports a collision of 0.02m between them.

Figure 4.2: A 11 DOF Donbot robot in front of supermarket shelf

52

4.2 Results

4.2 Results

A sample trajectory optimization planner output for the Kuka arm, Donbot-arm and
Donbot-whole body is shown in Figure 4.3, Figure 4.4 and Figure 4.5 respectively.
The blue line in these figure represents given initial linearly interpolated guess from
start to goal position and green line represents the out of the trajectory planner. In
spite of existence of collision in the initial trajectory, the developed algorithm could
generate a collision-free trajectory in most of the cases considered.

Figure 4.3: A sample planned trajectory of a 7 DOF Kuka arm

Run-time performance and reliability

In order to test the reliability and run-time performance of the developed trajectory
optimization planner, the algorithm was tested with a random start and goal positions,

53

4.2 Results

Figure 4.4: A sample planned trajectory of a 6 DOF arm of Donbot

54

4.2 Results

Figure 4.5: A sample planned trajectory of an 11 DOF Donbot: whole body

55

4.2 Results

random number of obstacles placed at random locations and with a constant SQP
parameters for all the three cases: a 7 DOF Kuka arm, a 6 DOF arm of Donbot and
an 11 DOF Donbot: whole body. The results for the same is shown in Figure 4.6,
Figure 4.7 and Figure 4.8 respectively.

Figure 4.6: Reliability test for a 7 DOF Kuka arm

From Figure 4.6, Figure 4.7 and Figure 4.8, it can be seen that the trajectory
optimization planner could generate a collision-free results in atleast 90% of the given
random problems. The problem that couldn’t be solved with just 6 DOF of Donbot
got solved, when the trajectory is planned for the whole body. In the latter case, the
additional 3 DOF helped to move the robot out of collision while reaching the target.

Also, with these random problems posed to the trajectory planner, it could solve
the problem as fast as 3.76, 7.04 and 8.57 seconds for 6, 7 and 11 DOFs respectively.

From, Table 4.2, it can be seen that the average cost improvement for most of the
problems are negative. This indicates the problem cost after optimization is greater
than the initial problem cost from the initial guess. The initial guess to the problem is
just a straight interpolated line from start to goal position, which could be reason for
the initial lower problem cost. Despite the negative cost improvement, the optimized
trajectory was free from collision in all the solvable cases.

56

4.2 Results

Figure 4.7: Reliability test for a 6 DOF arm of Donbot

Figure 4.8: Reliability test for an 11 DOF Donbot: whole body

57

4.2 Results

Table 4.2: Reliability test
Number of

samples
Average

total sovling
time in s

Average
planning
time in s

Average
collision

check time
in s

Average
modelling
time in s

Average
Cost

Improvement

6 0.183 0.132 0.05 0.00085 -13.205

8 0.086 0.054 0.032 0.00089 0

9 0.389 0.286 0.103 0.00084 -29.565

10 0.874 0.66 0.214 0.00091 -17.096

11 2.15 1.665 0.485 0.00096 -8.804

13 0.544 0.411 0.132 0.00095 18.289

14 1.444 1.008 0.435 0.00095 -1.108

15 3.488 2.501 0.987 0.00101 -33.377

16 4.605 3.349 1.254 0.00103 -0.134

17 1.02 0.724 0.295 0.00113 53.922

18 1.615 1.17 0.443 0.0012 28.355

19 1.553 1.147 0.405 0.00122 44.38

20 2.055 1.536 0.517 0.00116 -617.111

21 3.137 2.084 1.052 0.00126 8.128

22 7.826 5.874 1.951 0.00129 69.172

23 1.307 0.974 0.331 0.0016 -22.741

24 7.614 5.854 1.759 0.00126 -289.877

25 8.788 6.822 1.965 0.00133 47.344

26 3.437 2.691 0.745 0.00149 39.435

27 7.101 5.627 1.473 0.0015 -56.489

28 13.599 10.373 3.225 0.00149 -1013.8

29 17.517 14.229 3.286 0.0016 -345.484

30 7.625 6.237 1.385 0.00255 38.501

31 1.658 1.327 0.33 0.00173 -7.322

32 8.153 6.691 1.459 0.00217 23.172

33 4.739 3.93 0.808 0.00184 9.63

34 15.089 12.789 2.297 0.00194 25.94

35 5.103 4.143 0.958 0.00174 68.738

58

4.2 Results

Consistency

To test the consistency of the trajectory optimization planner, the above said three
cases were run with the same start, goal position and SQP parameters and result of
the same is shown in Figure 4.9, Figure 4.10 and Figure 4.11 respectively, where a
straight line can be observed for the solving time, SQP and Quadratic Programming
(QP) iterations. Also, the consistency of the trajectory planner giving same trajectory
results can be inferred from the Figure 4.12, Figure 4.13 and Figure 4.14, as all they
are overlapping perfectly with each other.

Figure 4.9: Consistency test for a 7 DOF Kuka arm: moving from same start to goal
position

Reachability

From Figure 4.6, Figure 4.7 and Figure 4.8, it can also be observed that the trajectory
planner tries to solve the given problem for longer time (around 100 seconds for the
worst case). This is not desirable, as the planner failed to report to the user, that the
problem couldn’t be solved in less time.

Sensitivity

In order to test how the trajectory optimization planner behaves for the different SQP
solver parameter, a few tests ran for the above said cases with random initial trust

59

4.2 Results

Figure 4.10: Consistency test for a 6 DOF arm of Donbot: moving from same start to
goal position

Figure 4.11: Consistency test for an 11 DOF Donbot (whole body): moving from
same start to goal position

60

4.2 Results

Figure 4.12: Consistency test for a 7 DOF Kuka arm: all trials of the trajectory per-
fectly overlapped with each other

61

4.2 Results

Figure 4.13: Consistency test for a 6 DOF arm of Donbot: all trials of the trajectory
perfectly overlapped with each other

62

4.2 Results

Figure 4.14: Consistency test for an 11 DOF Donbot (whole body): all trials of the
trajectory perfectly overlapped with each other

63

4.2 Results

region sizes, random number of samples and random trust region sizes. The result for
the same is shown in Figure 4.15, Figure 4.16 and Figure 4.17. Also, additionally,
these tests were ran with l1 and l2 penalty norm, to see how solver performance varies
with respect to penalty norms as shown in Figure 4.18.

Figure 4.15: Adaptability test: Trust region vs Average time taken to solve the trajec-
tory planning problem

From Figure 4.15, it can be observed that the problem solving time decreases
with the increase in trust region size and the solving time stays constant when the
trust region size increased beyond a certain threshold value. From Figure 4.16, similar
results can be observed with the number of SQP and QP iteration taken to solve the
problem with respect to the increase in trust region size. Figure 4.17 shows, average
time taken to solve the trajectory planning problem with respect to different number
of samples. Also, the Figure 4.18 shows a comparison for the time taken to solve the
trajectory planning problem between l1 and l2 penalty norms.

Comparison between the old SQP and adapted SQP solver

The aforesaid three cases were again ran with random number of obstacles, ran-
dom start and goal position to compare the behaviour performance of the old re-
implemented SQP solver from [1] and the new adapted SQP solver and the corre-
sponding results are shown in Figure 4.19 and Figure 4.20

64

4.2 Results

Figure 4.16: Adaptability test: Trust region vs number of QP and SQP iterations
taken to solve the trajectory planning problem

Figure 4.17: Adaptability test: number of samples vs average time taken to solve the
trajectory planning problem

65

4.2 Results

Figure 4.18: Adaptability test: l1 vs l2 penalty norm: number of samples vs average
time taken to solve the trajectory planning problem

Figure 4.19: Comparison test: Kuka arm - Old vs New adapted SQP

66

4.3 Discussion

Figure 4.20: Comparison test: Donbot robot - Old vs New adapted SQP

For a simpler case of Kukka arm having 7 DOF arm, both the solvers could solve
100 % of the problem given to it as shown in Figure 4.19. Also, it can been seen that
the new adapted solver takes more iterations and time to solve the given trajectory
planning problem. But in a complex case of Donbot robot having 11 DOF, the new
adapted solver has better reliability ratio and takes less number of SQP iterations to
solve the given problem, as shown in Figure 4.20. Also, it can be seen that the new
adapted algorithm takes little more time to solve the problem, because it need more
iterations to solve the problem that couldn’t be possible with the re-implemented old
SQP solver.

4.3 Discussion

The results from the former sections shows that the new adapted algorithm is little
slower than the original re-implemented algorithm. This slowness can be attributed
to the better reliable results from the new algorithm, as it takes little time and itera-
tions to find solution for the unsolvable problem by the re-implemented old algorithm.
Moving collision constraints to the objective function helped the new solver to solve
the unsolvable problem of the re-implemented old solver.

In the case of unsolvable problem, the algorithm takes much time and iterations
before it gets terminated. This is not desirable and hence the algorithm could be

67

4.3 Discussion

further optimized to terminate with a reason after some specified time.
The newly adapted algorithm was test with random collision obstacles and robot

configuration to show the performance, reliability, consistency, sensitivity and reach-
ability of the solver for different parameters. These results shows a smooth trajectory
resulted by trajectory planner even with the initial guesses having collisions.

The trajectory planner produces consistent results even in case of unsolvable situ-
ations by the original re-implemented SQP solver. The addition of collision constraint
to the objective function made the adapted trajectory problem easier to solve, as there
is only trust region constraint for the adapted problem

The SQP solver parameters can bring drastic change in the behaviour of the tra-
jectory planner is also shown and also the speed of the trajectory planner can also be
improved by using l2 penalty norm instead of l1 penalty norm.

In all of the test conducted, the final problem cost was always greater than the
initial problem cost and the reason could be because of the bad initial guess having
collisions.

In a very few cases, there is was a collision between the Donbot robot’s end-
effector and the obstacles found during the execution of an optimized trajectory, but
the collision checker doesn’t report this collision. This collisions might be occurred,
because the collision cost constraints only includes the moveable links to be planned
for trajectory and the fixed links constraints were not included. It would be interesting
to see, how these costs can be included into the problem without affecting the SQP
solver to plan for the requested trajectory. Also, since there was an extra collision pair
ignored other than the default collision pairs, it would also be interesting to see the
behaviour of the algorithm for the complex meshes.

The adapted trajectory optimization algorithm strongly relies on the SQP solver
parameters and initial guess. Hence, choosing proper set of SQP solver parameters
is more important to have a better results. Also, it will be interesting to know the
behaviour of the algorithm, if the initial guess is given from the recorded movement
of human hand on similar pick and place situations.

68

5 Conclusion

5 Conclusion

In this thesis, the trajectory planning problem has been reimplemented using SQP
solving technique from [1]. Further the algorithm is adapted to formulate the collision
constraints as l1 penalty term and added to the objective cost function. Also, the
collision constraints cost formulated to consider time continuous robot’s self collision.
Finally, a GUI application has been developed to tune the SQP solver parameters and
to interact with trajectory planner.

The re-implemented and adapted algorithm was evaluated on different random
scenarios to check the behaviours: run-time performance, reliability, consistency, sen-
sitivity and l1 vs l2 penalty norms. Also, the adapted solver is compared with the
re-implemented original solver for the run-time performance and the case where the
new adapted solver outperforms the re-implemented original solver.

The evaluation results showed that the new adapted trajectory planning algorithm
can solve good ratio of previously unsolvable problems by a re-implemented algo-
rithm with an extra computational cost

69

6 References

6 References

[1] John Schulman et al. “Finding Locally Optimal, Collision-Free Trajectories
with Sequential Convex Optimization.” In: Robotics: science and systems. Vol. 9.
1. 2013, pp. 1–10.

[2] IN LOGISTICS ROBOTICS. “A DPDHL perspective on implications and use
cases for the logistics industry”. In: DHL March (2016).

[3] Erwin Praßler and T Kaempke. “Mobile robots in office logistics”. In: PRO-
CEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ROBOTS.
Vol. 27. INTERNATIONAL FEDERATION OF ROBOTICS, & ROBOTIC IN-
DUSTRIES. 1996, pp. 153–160.

[4] Michael Rüßmann et al. “Industry 4.0: The future of productivity and growth
in manufacturing industries”. In: Boston Consulting Group 9 (2015).

[5] Michaela Sprenger and Tobias Mettler. “Service Robots”. In: Business & Infor-
mation Systems Engineering 57.4 (2015), pp. 271–274.

[6] Roomba. url: http://www.irobot.de/.

[7] Jodi Forlizzi and Carl DiSalvo. “Service robots in the domestic environment:
a study of the roomba vacuum in the home”. In: Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction. ACM. 2006, pp. 258–
265.

[8] Thomas W Gruen, Daniel Corsten, and Sundrr Bharadwaj. “Retail out of stocks:
A worldwide examination of causes, rates, and consumer responses”. In: Gro-
cery Manufacturers of America, Washington, DC 1 (2002).

[9] Hai Che, Jack Chen, and Yuxin Chen. Investigating effects of out-of-stock on
consumer SKU choice. 2011.

[10] Stockout. url: https://en.wikipedia.org/wiki/Stockout.

[11] Institute for Artificial Intelligence. url: http://ai.uni-bremen.de/.

[12] Robotics Enabling Fully-Integrated Logistics Lines for Supermarkets — RE-
FILLS. url: http://www.refills-project.eu/.

[13] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimization for mo-
tion planning”. In: Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE. 2011, pp. 4569–4574.

70

http://www.irobot.de/
https://en.wikipedia.org/wiki/Stockout
http://ai.uni-bremen.de/
http://www.refills-project.eu/

6 References

[14] A re-implemented trajectory optimization planner from John Schulman. url:
https://github.com/k-maheshkumar/trajopt_reimpl.

[15] Dr.-Ing. Danijela Ristic-Durrant. “ROBOTICS I lecture notes, University of
Bremen”. 2015.

[16] Richard M. Murray, S. Shankar Sastry, and Li Zexiang. A Mathematical Intro-
duction to Robotic Manipulation. 1st. Boca Raton, FL, USA: CRC Press, Inc.,
1994. isbn: 0849379814.

[17] Lorenzo Sciavicco and Bruno Siciliano. Modelling and control of robot manip-
ulators. Springer Science & Business Media, 2012.

[18] J.J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley
series in electrical and computer engineering: control engineering. Pearson/Prentice
Hall, 2005. isbn: 9780201543612. url: https://books.google.de/books?
id=MqMeAQAAIAAJ.

[19] Kinematics of Robot Manipulator. slide no: 69. Slideplayer. url: http://
slideplayer.com/slide/7768574/.

[20] Serdar Kucuk and Zafer Bingul. “Robot kinematics: Forward and inverse kine-
matics”. In: Industrial Robotics: Theory, Modelling and Control. InTech, 2006.

[21] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Secau-
cus, NJ, USA: Springer-Verlag New York, Inc., 2007. isbn: 354023957X.

[22] Serdar Kucuk and Z Bingul. The inverse kinematics solutions of industrial robot
manipulators. July 2004, pp. 274–279. isbn: 0-7803-8599-3.

[23] Sébastien Briot, Wisama Khalil, et al. Dynamics of Parallel Robots. Springer,
2015.

[24] Robot kinematics. Wikipedia. url: https://en.wikipedia.org/wiki/
Robot_kinematics.

[25] XML Robot Description Format (URDF). url: https://wiki.ros.org/
urdf/XML/model.

[26] Semantic Robot Description Format (SRDF). url: https://wiki.ros.org/
srdf.

[27] S. M. LaValle. Planning Algorithms. Available at http://planning.cs.uiuc.edu/.
Cambridge, U.K.: Cambridge University Press, 2006.

[28] Lucia Pallottino. Introduction to Motion Planning. Centropiaggio. url: www.
centropiaggio.unipi.it/sites/default/files/course/material/

srd_cap4_mp_0.pdf.

71

https://github.com/k-maheshkumar/trajopt_reimpl
https://books.google.de/books?id=MqMeAQAAIAAJ
https://books.google.de/books?id=MqMeAQAAIAAJ
http://slideplayer.com/slide/7768574/
http://slideplayer.com/slide/7768574/
https://en.wikipedia.org/wiki/Robot_kinematics
https://en.wikipedia.org/wiki/Robot_kinematics
https://wiki.ros.org/urdf/XML/model
https://wiki.ros.org/urdf/XML/model
https://wiki.ros.org/srdf
https://wiki.ros.org/srdf
www.centropiaggio.unipi.it/sites/default/files/course/material/srd_cap4_mp_0.pdf
www.centropiaggio.unipi.it/sites/default/files/course/material/srd_cap4_mp_0.pdf
www.centropiaggio.unipi.it/sites/default/files/course/material/srd_cap4_mp_0.pdf

6 References

[29] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. second. New
York, NY, USA: Springer, 2006.

[30] Wikipedia. https://en.wikipedia.org/wiki/Trajectory_optimization.

[31] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004. isbn: 0521833787.

[32] Wikipedia. https://en.wikipedia.org/wiki/Hessian_matrix.

[33] Wikipedia. https://en.wikipedia.org/wiki/Positive-definite_
matrix.

[34] D. Berenson et al. “Manipulation planning with Workspace Goal Regions”. In:
2009 IEEE International Conference on Robotics and Automation. May 2009,
pp. 618–624. doi: 10.1109/ROBOT.2009.5152401.

[35] James Kuffner et al. “Motion planning for humanoid robots”. In: Robotics Re-
search. The Eleventh International Symposium. Springer. 2005, pp. 365–374.

[36] Radu Bogdan Rusu et al. “Real-time perception-guided motion planning for a
personal robot”. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on. IEEE. 2009, pp. 4245–4252.

[37] Ioan A Şucan, Mrinal Kalakrishnan, and Sachin Chitta. “Combining planning
techniques for manipulation using realtime perception”. In: Robotics and Au-
tomation (ICRA), 2010 IEEE International Conference on. IEEE. 2010, pp. 2895–
2901.

[38] Abraham Sánchez López, René Zapata, and Maria A Osorio Lama. “Sampling-
based motion planning: A survey”. In: Computación y Sistemas 12.1 (2008),
pp. 5–24.

[39] M. Elbanhawi and M. Simic. “Sampling-Based Robot Motion Planning: A Re-
view”. In: IEEE Access 2 (2014), pp. 56–77. doi: 10.1109/ACCESS.2014.
2302442.

[40] Kris Hauser and Victor Ng-Thow-Hing. “Fast smoothing of manipulator trajec-
tories using optimal bounded-acceleration shortcuts”. In: Robotics and Automa-
tion (ICRA), 2010 IEEE International Conference on. IEEE. 2010, pp. 2493–
2498.

[41] Zeeshan Shareef and Jochen Steil. “Trajectory optimization of COmpliant Hu-
MANoid (COMAN) robot arm using path parameter based dynamic program-
ming”. In: Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International
Conference on. IEEE. 2016, pp. 705–710.

72

https://en.wikipedia.org/wiki/Trajectory_optimization
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix
https://doi.org/10.1109/ROBOT.2009.5152401
https://doi.org/10.1109/ACCESS.2014.2302442
https://doi.org/10.1109/ACCESS.2014.2302442

6 References

[42] Mohamed El Amine Boudjellel and Taha Chettibi. “Optimal trajectory planning
for a mobile robot in presence of obstacles using multi-objective optimization
techniques”. In: Modelling, Identification and Control (ICMIC), 2016 8th In-
ternational Conference on. IEEE. 2016, pp. 509–514.

[43] Florent Boithias, Mohamed El Mankibi, and Pierre Michel. “GENERIC MULTI-
OBJECTIVE OPTIMIZATION METHOD OF INDOOR AND ENVELOPE
SYSTEMS’ CONTROL”. In: University” Politehnica” of Bucharest Scientific
Bulletin, Series C: Electrical Engineering 74.1 (2012), pp. 57–66.

[44] Helen Oleynikova et al. “Continuous-time trajectory optimization for online
UAV replanning”. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on. IEEE. 2016, pp. 5332–5339.

[45] Sergey Alatartsev et al. “Robot trajectory optimization for the relaxed end-
effector path”. In: Informatics in Control, Automation and Robotics (ICINCO),
2014 11th International Conference on. Vol. 1. IEEE. 2014, pp. 385–390.

[46] M. Gao, P. Ding, and Y. Yang. “Time-Optimal Trajectory Planning of Industrial
Robots Based on Particle Swarm Optimization”. In: 2015 Fifth International
Conference on Instrumentation and Measurement, Computer, Communication
and Control (IMCCC). Sept. 2015, pp. 1934–1939. doi: 10.1109/IMCCC.
2015.410.

[47] Zhijie Zhu, Edward Schmerling, and Marco Pavone. “A convex optimization
approach to smooth trajectories for motion planning with car-like robots”. In:
Decision and Control (CDC), 2015 IEEE 54th Annual Conference on. IEEE.
2015, pp. 835–842.

[48] Marc Toussaint. “Robot trajectory optimization using approximate inference”.
In: Proceedings of the 26th annual international conference on machine learn-
ing. ACM. 2009, pp. 1049–1056.

[49] Marc Toussaint. “Logic-Geometric Programming: An Optimization-Based Ap-
proach to Combined Task and Motion Planning.” In: IJCAI. 2015, pp. 1930–
1936.

[50] Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for efficient
motion planning”. In: Robotics and Automation, 2009. ICRA’09. IEEE Inter-
national Conference on. IEEE. 2009, pp. 489–494.

[51] Christian Gehring et al. “Control of dynamic gaits for a quadrupedal robot”.
In: Robotics and automation (ICRA), 2013 IEEE international conference on.
IEEE. 2013, pp. 3287–3292.

73

https://doi.org/10.1109/IMCCC.2015.410
https://doi.org/10.1109/IMCCC.2015.410

6 References

[52] Farhad Aghili. “A unified approach for inverse and direct dynamics of con-
strained multibody systems based on linear projection operator: applications
to control and simulation”. In: IEEE Transactions on Robotics 21.5 (2005),
pp. 834–849.

[53] Mohamed Elbanhawi and Milan Simic. “Sampling-based robot motion plan-
ning: A review”. In: Ieee access 2 (2014), pp. 56–77.

[54] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. “A fast procedure for com-
puting the distance between complex objects in three-dimensional space”. In:
IEEE Journal on Robotics and Automation 4.2 (Apr. 1988), pp. 193–203. issn:
0882-4967. doi: 10.1109/56.2083.

[55] Gino Van den Bergen. “A Fast and Robust GJK Implementation for Collision
Detection of Convex Objects”. In: J. Graph. Tools 4.2 (Mar. 1999), pp. 7–25.
issn: 1086-7651. doi: 10.1080/10867651.1999.10487502. url: http:
//dx.doi.org/10.1080/10867651.1999.10487502.

[56] Patrick Lindemann. “The gilbert-johnson-keerthi distance algorithm”. In: Al-
gorithms in Media Informatics (2009).

[57] Jeff Linahan. “A Geometric Interpretation of the Boolean Gilbert-Johnson-
Keerthi Algorithm”. In: CoRR abs/1505.07873 (2015). arXiv: 1505.07873.
url: http://arxiv.org/abs/1505.07873.

[58] Gino Van Den Bergen. “Proximity queries and penetration depth computation
on 3d game objects”. In: Game developers conference. Vol. 170. 2001.

[59] Standalone URDF parser for Python. url: https://github.com/ros/
urdf_parser_py.

[60] Python. url: https://www.python.org/.

[61] NumPy. url: http://www.numpy.org/.

[62] Orocos Kinematics and Dynamics. url: http://www.orocos.org/kdl.

[63] Steven Diamond and Stephen Boyd. “CVXPY: A Python-Embedded Model-
ing Language for Convex Optimization”. In: Journal of Machine Learning Re-
search 17.83 (2016), pp. 1–5.

[64] A. Domahidi, E. Chu, and S. Boyd. “ECOS: An SOCP solver for embedded
systems”. In: European Control Conference (ECC). 2013, pp. 3071–3076.

[65] B. O’Donoghue et al. “Conic Optimization via Operator Splitting and Homo-
geneous Self-Dual Embedding”. In: Journal of Optimization Theory and Ap-
plications 169.3 (June 2016), pp. 1042–1068. url: http://stanford.edu/
˜boyd/papers/scs.html.

74

https://doi.org/10.1109/56.2083
https://doi.org/10.1080/10867651.1999.10487502
http://dx.doi.org/10.1080/10867651.1999.10487502
http://dx.doi.org/10.1080/10867651.1999.10487502
http://arxiv.org/abs/1505.07873
http://arxiv.org/abs/1505.07873
https://github.com/ros/urdf_parser_py
https://github.com/ros/urdf_parser_py
https://www.python.org/
http://www.numpy.org/
http://www.orocos.org/kdl
http://stanford.edu/~boyd/papers/scs.html
http://stanford.edu/~boyd/papers/scs.html

6 References

[66] J. Dahl M. S. Andersen and L. Vandenberghe. CVXOPT: A Python package for
convex optimization, version 1.1.6. online. cvxopt.org, 2013.

[67] Erwin Coumans. “Bullet Physics Simulation”. In: ACM SIGGRAPH 2015 Courses.
SIGGRAPH ’15. Los Angeles, California: ACM, 2015. isbn: 978-1-4503-3634-
5. doi: 10.1145/2776880.2792704. url: http://doi.acm.org/10.1145/
2776880.2792704.

[68] Erwin Coumans. Bullet 2.83 Physics SDK Manual. 2015. url: https : / /
github.com/bulletphysics/bullet3/blob/master/docs/Bullet_

User_Manual.pdf.

[69] SRDF parser for python. url: https : / / github . com / ros - planning /
srdfdom.

[70] Extended version of Bullet Physics SDK for continuous collision detection. url:
https://github.com/k-maheshkumar/bullet3.

[71] Qt for Python. url: http://wiki.qt.io/Qt_for_Python.

[72] Canonical source repository for PyYAML. url: https://github.com/yaml/
pyyaml.

[73] LBR iiwa. url: https :/ /www .kuka .com /en - de /products /robot -
systems/industrial-robots/lbr-iiwa.

[74] UR5 - A HIGHLY FLEXIBLE ROBOT ARM. url: https://www.universal-
robots.com/products/ur5-robot/.

75

https://doi.org/10.1145/2776880.2792704
http://doi.acm.org/10.1145/2776880.2792704
http://doi.acm.org/10.1145/2776880.2792704
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/ros-planning/srdfdom
https://github.com/ros-planning/srdfdom
https://github.com/k-maheshkumar/bullet3
http://wiki.qt.io/Qt_for_Python
https://github.com/yaml/pyyaml
https://github.com/yaml/pyyaml
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/products/ur5-robot/

	Contents
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Problem Formulation
	Contribution

	Background and Related works
	Basic Terminologies
	Convex Optimization
	Quadratic Programming
	Minimization of unconstrained problem
	Quadratic Programming with equality constraints

	Descent methods

	Related work

	Methodology
	System Architecture
	Problem Description and Modelling
	SQP
	Trust region method
	L1 Penalty method
	Merit Function
	SQl1P

	Collision checker
	GJK algorithm
	EPA

	Time continuous Collision free trajectory
	Software
	Convex optimization solver

	Bullet physics
	GUI

	Evaluation
	Experiment Setup
	Pick and place using Kuka arm
	Pick and place of supermarket products using Donbot robot

	Results
	Discussion

	Conclusion
	References

