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Abstract

This thesis is about robots learning from their experience in a household domain. It
describes how Markov Logic Networks can be learned from log iles written during the
execution of CRAM plans. Markov Logic Networks equip irst-order logic formulas with
a weight to state how often these formulas are true. CRAM is a system that allows
high-level robot programming with Lisp. It is used in robots which can, for example,
be used to set the breakfast table. CRAM plans have to be parametrized: If there is
a plan to pick up an object, the object parameter might be an apple on the cupboard.
The learned Markov Logic Networks enable the robots to reason about CRAM plans and
their usual parameters. Thus, they can be used to extend incomplete plan parameters,
such as an apple by information learned from experience, such as on the cupboard, to
make them usable for a plan. Other queries, such as queries for the success probability
for the parametrized plan pick up an apple on the cupboard or queries for the objects
which are usually perceived on the cupboard, are also possible. Apart from that, a new
inference algorithm for Markov Logic Networks is presented. An evaluation will show
experimentally that the developed system works, even if it is not perfect. Furthermore,
the strengths and weaknesses of the approach are discussed.
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1. Introduction

1.1. Motivation

Imagine a robot which is helping in the household. It could set the table or prepare
meals. When executing those tasks, it would be frustrating if the robot would fail on the
same task over and over again. If one looks at the human species, they are able to learn
from their experience their whole life long to avoid this. This is one of the reasons why
humans are able to adapt to new environments and acquire new skills.

More precisely, the human is able to learn new activities. An example is baking a cake:
If the human has never done this before, another human can teach him how to bake a
cake. After the human has baked some cakes under the guidance of the teacher, he is
able to bake one on his own. Moreover, the learning goes beyond the acquisition of new
skills in this example. If the human has learned how to fold in beaten egg white, he
learns to estimate the success of this action. In the case that he has few eggs available
and he knows that he usually fails in folding in beaten egg white, he can ask another
human to perform this task.

Another situation in which the human learns from its experience is when he bakes cakes
in diferent kitchens. If the baking tin is located somewhere else in another kitchen and
he inds out where, the human can remember this location and will also search at this
location the next time. The human is also able to use these facts the other way around:
If he wants to go shopping and if he is writing a shopping list, he can look at all food
storage locations and he knows what is missing. Thus, he knows what he expects at a
storage location.

In all these examples, the human updates what he learned the whole life long. He might
try to simplify the baking process and use this simpliication later on. The more often
he tries to fold in beaten egg white, the more successful he gets. Hence, he updates his
estimate on how often he fails. The more kitchens he uses, the more storage locations are
in his mind when searching something. Thus, the learning process is never completed.

When robots execute a task in the household, they are usually following plans. Such a
plan can be “bake a cake”, but also “pick up an object”. These plans are parametrized.
A plan parameter for the plan to pick up an object might be an apple in the fruit bas-
ket. Therefore, the parametrized plan would be to pick up an apple in the fruit basket.
Learning plans and thus new activities is a huge research ield and will not be covered in
this thesis. Instead, this thesis focusses on the combination of plans and parameters.
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Why can it be necessary for a robot to learn about plans and their parameters its whole
life long? The robot might receive vaguely speciied commands from a human, such as
bring me an apple. It might also have a plan for displacing an object that could be
applied in this situation. Since plans usually consist of sub plans, it would irst execute
the sub plan to pick up an object with the apple as parameter. However, this sub plan
also needs the location of the apple. Hence, the plan parameter is incomplete. Therefore,
the robot must make the decision where to ind the apple. This decision has to be made
at runtime, which can be supported by the learned information.

If the robot learned how to parametrize a plan to be successful, it can use this information
in such a case. Thus, it can automatically infer that it needs the information where the
apple is placed to successfully execute the pick up plan. Moreover, it is able to infer
that the apple is usually placed in the fruit basket. Without a learning mechanism, it
would be required to embed this information in the robot plan which makes this plan
less general. With the learning approach, the robot can be taught to pick up an apple in
the fruit basket and it is able to use this information later on. Furthermore, the lifelong
learning approach makes it possible to update this information. For instance, if apples
are placed somewhere else in the kitchen afterwards.

It might also be necessary to estimate success probabilities for a given parametrization.
If the robot learned a model for these success probabilities, it could decide to choose an
alternative behavior based on the success probability. An example could be the command
to set the table for a special occasion. This could involve placing expensive plates on the
table. The robot might estimate that it frequently loses plates when setting the table. In
this case, it might better ask a human to perform this task. When the success rate grows
due to a software update, the estimate is also updated. Then, the robot will probably
take the challenge to pick up the plate.

If the robot knows what to expect at a speciic location, it is able to prepare for being at
this location. It could, for example, prepare the perception mechanism to expect these
objects. Moreover, it could abort the plan execution, for instance if an expensive plate
is expected at a location where another object should be placed. Finally, it is able to
infer which objects are probably missing if it wants to go shopping. All the use cases
mentioned before are summarized in Figure 1.1.

At the same time, learning is not easy. There are some conditions that make the human
learning very special. Humans are, for example, able to generalize: If a human is told to
pick up an expensive plate and if he has no idea what “expensive” means, he will probably
pick it up like any other plate. If the human learns how to pick up a white plate, he can
also pick up a brown plate. However, more advanced example of generalization, such as
transferring the ability to pick up a plate in order to pick up a wooden board, will not
be covered by this thesis. Humans are also able to deal with contradictions, which is
another condition. If another human tells that it is impossible to pick up a plate and
nine other humans tell that it is possible, the human will probably believe it is possible.
Thus, these conditions are important when applying learning in robotics.
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Thesis Use Cases Use Casespackage [   ]

software developed in this thesis

infer how to parametrize a plan to
 be successful

infer success probabilities for 
plans given a parametrization

infer what is expected to be 
perceived at a location

Robot

Figure 1.1.: Use Cases for this Thesis

In this thesis, an approach implementing learning for the use cases and conditions men-
tioned before is presented.

1.2. General Idea

Some of the household robots mentioned above can write down what they have done
in form of logs. The idea of this thesis is to equip a robot with software learning and
using a model from these logs. Since the robot shall be able to deal with uncertainty,
probabilistic models are well suited as model. One of these model types is called Markov
Logic Network (MLN). It is a formalism for combining irst-order logic formulas such as
“all apples are located in the fruit basket” with a probabilistic semantic stating how often
this is true. Among other probabilistic models, MLNs have the advantage that they are
based on irst-order logic and thus they are very lexible. This is very useful here since
diferent queries can be executed on one MLN. Hence, the robot can decide at runtime
which information it needs and then create a appropriate query.
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Figure 1.2 shows abstractly how the software developed in this thesis works: After the
robot has executed a plan, it writes log iles. Then, the log iles are converted to a MLN.
Afterwards, as shown in the activity at the bottom of Figure 1.2, the MLN can be used
to infer probabilities for the queries mentioned in Figure 1.1. Results of these queries
might be:

• The parameter mug for the displace plan must be extended with the location on
cupboard to succeed.

• With this parametrization, the action will fail in 50% of the cases with a Manipu-
lation Failure.

• Apart from the mug, an expensive plate is also expected to be on the cupboard.

The robot can then analyze the situation and it might decide to use a diferent plan, e.g.
to ask a human to displace the mug. When the plan is executed, the plan parameters
inferred by the MLN can be used. Though learning and inference are depicted separately
in Figure 1.2, they can also be combined: The robot can use inferred plan parameters
and success probabilities and learn its experiences with these later on.

1.3. Contributions

The previous sections already explained the scope of this thesis. In particular, this thesis
contributes the following points:

• In Chapter 4, it shows how a Markov Logic Network capable of answering the
queries shown in Figure 1.1 can be designed. Diferent MLN designs are presented
and their advantages and disadvantages are worked out.

• In Chapter 5, it presents an algorithm able to perform eicient exact inference in
one of the MLN designs developed before. The algorithm is also applicable to other
MLNs as long as the formulas are conjunctions.

• In Chapter 6, it describes the software implemented in the scope of this thesis in
order to use the Markov Logic Network designed in Chapter 4 with a (simulated)
robot. Moreover, the algorithms manifested in this software are presented. The
software, and thus also the MLN design, are experimentally evaluated and discussed
in Chapter 7.

• In Appendix A, it provides a proof stating that the weights calculated for the MLNs
in the implementation are correct.

Before these contributions are explained in detail, Chapter 2 introduces the frameworks
and concepts used in this thesis and explains where they are used. Moreover, Chapter 3
presents works that are related to these contributions.
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( plan parameter ) activity learning learning[   ]

in plan parameter  : execute plan
plan parameter plan calls

 : learn MLN
plan log

MLN

 : record plan 
data

plan calls

plan log

«datastore»

log file

«datastore»

MLN file

( plan parameter ) activity usage usage[   ]

in plan parameter
 : infer needed 

information

plan parameter

plan parameter MLN

 : execute plan1

plan parameter

 : execute plan2

plan parameter

«datastore»

MLN file

Figure 1.2.: Abstract Concept of the Software Developed in this Thesis
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2. Foundations

This chapter introduces existing frameworks and algorithms used throughout this thesis.
Furthermore, it describes where they are used in this thesis.

2.1. The PR2 Robot and ROS

Figure 2.1 shows the PR2. It is a mobile robot manufactured by the company Willow
Garage. The PR2 is intended to operate in human environments such as the household.
Thus, it has two arms with grippers at their end to be able to manipulate objects.
Various sensors including cameras can be used to keep track of the environment. More
information can be found in [OCC+09]. Though the algorithms presented in this work
are not limited to the PR2, it is used as example. This is especially relevant in the case
study in Chapter 7. Due to limited resources, a simulated version of the PR2 will be
used.

Figure 2.1.: The PR2 Robot

The software on the PR2 is based on ROS [Cou10]. ROS is the short form of Robot
Operating System though it is actually an open source framework running on the actual
operating system. It provides a mechanism for inter process communication. Processes
in ROS are called nodes. They exchange messages through the ROS middleware. Nodes
can run on diferent hosts in a peer-to-peer network. ROS uses a publish/subscribe based
architecture: A node can publish a message to a topic. Other nodes subscribed to that
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topic are notiied when a new message arrives. Furthermore, a node can advertise a
service for synchronous communication: A service consists of a request and a response
message such that the service is called with the request message and responds with
the response message. Message deinitions are written in an own interface deinition
language converted by a code generator to classes or structures usable from diferent
programming languages. The software instantiated as nodes is aggregated in packages.
Several packages usable on diferent robots are available. Packages are built by a CMake
based build system and, as mentioned before, they can be written in diferent languages.
[QGC+09]

An example of a ROS node could be a simple safety node for a ictional robot: The node
issues a stop command to the drive engine when the space in front of the robot falls
below a certain threshold. In order to measure the space in front of the robot, a laser
range inder is used as sensor. It periodically publishes a distance message on the topic
“lrf/distance” whose IDL looks as in Listing 2.1.

float32 distance

Listing 2.1: Deinition of the Example ROS Message ”distance”

The ROS build system generates code for languages such as Python, C++ or Lisp.
Now, a “safety” package can be created with a program called “distance” in one of these
languages. The program calls a routine to start the node and afterwards it calls a routine
to subscribe to the topic “lrf/distance”. Every time the laser range inder publishes a new
message, a callback is invoked in the safety program to process the distance message. It
can now check whether the distance is below the threshold and send a stop command if
necessary. The drive engine advertises a service “de/stop” for receiving commands. Thus,
there must be a message deinition for the request and response message which is shown
in Listing 2.2.

uint8 STOP_COMMAND =0

# ... other commands ...

uint8 command

---

uint8 NO_ERROR =0

# ... other error codes ...

uint8 error

Listing 2.2: Deinition of the Example ROS Service ”command”

If the safety program decides to issue a stop command it calls the “de/command” service
with an instance of the response message deinition above. The drive engine processes
the request message and returns an instance of the response message. Now the control
low returns to the safety node and it can have a look at the error code.

To summarize it: The PR2 is a mobile robot usable in the household with software in
form of ROS packages communicating via the ROS middleware.
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2.2. KnowRob

Some of the ROS packages that could be installed on robots like the PR2 are provided by
KnowRob. It is a knowledge base that is implemented in SWI Prolog, a logic programming
language. KnowRob can, for example, be used to infer missing information on vague
speciied tasks. An example is the information which objects are present in the kitchen.
One use case for KnowRob is to represent encyclopedic knowledge such as “a glass is a
container for luids”. For this purpose, KnowRob is able to load OWL (Web Ontology
Language) iles in Prolog and use them in queries. As the name states, OWL is a ile
format to represent ontologies. An ontology contains concepts in form of a taxonomy
connected by relations. OWL iles are based on XML. The formal background is provided
by Description Logics. In Description Logics, there are the TBOX describing a taxonomy
of concepts (e.g. a glass is a container for luids) and the ABOX describing individuals
(e.g. The glass that is in the sink). Moreover, there are roles representing properties and
relations between individuals. The ontology that KnowRob primarily uses is an extended
version of the OpenCyc ontology. Thus, KnowRob is able to reason about concepts and
individuals. [TB13]

One use case for KnowRob mentioned in [TB13] is to gather the information where an
object might be found. They propose diferent mechanisms: First, KnowRob can be
queried for the location of similar objects. Another option is to use object properties
and classes. For instance, perishable objects are usually stored in the fridge. However,
they also mention that it is diicult to combine this information.

For information from other sources than the KnowRob ontology, KnowRob provides
virtual knowledge bases. This means that the information is extracted form the source
programmatically when it is needed in a query. It is achieved by using computables.
Computables can be attached to description logic classes or properties and thus they
either generate individuals or relations. One use case of computables is the integration
of ProbCog, a framework for statistical relational learning (See Section 2.4 for details).
This enables KnowRob to cope with uncertainty. [TB13]

Figure 2.2 shows an example of an ontology. The corresponding OWL ile is shown in
Listing B.1. It describes the classes Human, Bicycle and RoadBike. A RoadBike is a
sub class of a Bicycle. Moreover, relations and properties are present. Bicycles have a
color and they can have an owner which is a Human. Moreover, the ile contains two
instances: Marc is a Human. MarcsRoadBike is a RoadBike with the color black and the
owner Marc.

Now, using the KnowRob Prolog predicates, queries to the OWL ile using Prolog are
possible. Listing 2.3 shows some queries.
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Bycycle Ontologypackage KnowRob [ ]

color = "black"

owner = Marc

MarcsRoadBike
: RoadBike Marc : Human

HumanBicycle

attributes

+color : String

RoadBike

+owner

Figure 2.2.: Ontology Describing Bicycles

?- rdf_db:rdf_register_ns(bike , ’http :// localhost/bicycle.owl#’, [keep(true )]).

true.

?- owl_parse(’/home/marc/bicycle.owl’).

% Parsed "bicycle.owl" in 0.00 sec; 19 triples

true.

?- owl_individual_of(I, bike:’Bicycle ’).

I = bike:’MarcsRoadBike ’ ;

false.

?- owl_subclass_of(C, bike:’Bicycle ’).

C = bike:’Bicycle ’ ;

C = bike:’RoadBike ’ ;

false.

?- owl_has(bike:’MarcsRoadBike ’, K, V).

K = rdf:type ,

V = owl:’NamedIndividual ’ ;

K = rdf:type ,

V = bike:’RoadBike ’ ;

K = bike:color ,

V = literal(type(xsd:string ,black )) ;

K = bike:owner ,

V = bike:’Marc’ ;

false.

Listing 2.3: OWL Queries from Prolog

After registering the namespace bike for more comfortable queries and parsing the owl ile,
the system is asked for all individuals of the type Bicycle. Since MarcsRoadBike is of the
type RoadBike and RoadBike is a sub class of Bicycle, MarcsRoadBike is returned. Then,
the system is asked for all sub classes of the Bicycle which results in the Bicycle itself and
the RoadBike. Finally, it is queried for the properties and relations of MarcsRoadBike
which results in the type, the color and the owner. Similarly, the KnowRob ontology can
be queried.
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2.3. CRAM (Cognitive Robot Abstract Machine)

Robots like the PR2 are controlled by plans. These plans have very special requirements:
In domains like the household, robots must execute plans for vaguely formulated tasks.
An example of such a vague task is “Clean the windows”: This sentence omits information
such as which windows have to be cleaned and where the windows are located. Moreover,
the robot itself can only execute simple actions such as moving its arm or driving to a
position speciied by coordinates. However, the plan for cleaning the window should be
as general possible in order to execute it on diferent robots. The CRAM language aims
to solve these problems. Thus, CRAM is a framework for writing plans for robots like
the PR2. [WBMB12] [BMT10]

2.3.1. CRAM Plan Language

Figure 2.3 visualizes the concepts of CRAM: In CRAM, A plan is basically a common
Lisp function deined with special constructs from the CRAM Plan Language. This
difers from other systems where plans are formed by partially ordered action sequences.
The reason is that plan should be aware of failures or sensory information. [BMT10]
[WBMB12]

CRAM Languagepackage CRAM[   ]

Manipulation Process Module

Perception Process ModuleMove Head Process Module

Navigation Process Module

Sub Designator Property

CRAM Plan Language

Location Designator

Action Designator Object Designator

Process Module

attributes

+value : String

String Property

attributes

+key : String

Key Value Pair

Designator

LISP Function

CRAM Plan

-value

-properties
0..*

Process Module Call

-parameters

0..*

Sub Plan Call

-Called Plan

-parameters

0..*

«use»

Figure 2.3.: Description of the CRAM Language

As a Lisp function, the plan can call other plans by executing the function. These sub
plans might have parameters. As mentioned before, a parameter is usually a more or less
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vague description of an action, object or a location. Therefore, CRAM provides a special
construct for these parameters: Designators. A designator consists of key value pairs
where the key is a string. The value can either be a string or another designator. There
are diferent kinds of designators. The most important ones are action designators, object
designators and location designators. Action designators describe an action, such as an
action that tells the robot to perceive something. Object designators describe objects
in the real worlds, such as glasses. Finally, there are location designators describing a
location such as “on the table”. The Prolog reasoning mechanism in CRAM allows to
resolve the designator into a data structure. The mentioned Prolog reasoning mechanism
is written in Lisp and is not to be confused with KnowRob [cra16]. However, it can
execute KnowRob queries to resolve a designator. This makes the designator a means to
describe abstract concepts translatable to data structures. [WBMB12]

Figure 2.3 shows another call that can be made from a CRAM plan: The plan can call a
process module. In contrast to the existing plans, a process module is robot dependent. It
is capable of executing actions on the robot. Therefore, process modules are called with
action designators as parameters which describe the action to be executed. Diferent
process module types exist for diferent types of actions: First of all, there are the
navigation process modules. They are used to move the robot from one place to another.
Then, there are perception process modules used to perceive objects in the environment
of the robot. Manipulation process modules can be used to manipulate (e.g. grasp)
objects. Finally, move head process modules move the head of the robot. Thus, the
process module allows to abstract away the properties of single robots. [WBMB12]

For the robot, grasping actions are especially diicult since the robot must know where to
grasp an object. To solve this problem, CRAM has the concept of virtual handles. Each
object designator specifying an object to be grasped has a sub designator as property
describing where an object can be grasped. When the robot is supposed to grasp the
object, it resolves the designator and grasps the object at that point. [WBMB12]

To be able to reason about plans, they can be annotated with Prolog expressions. Again,
these Prolog annotations are only available in the Lisp Prolog interpreter and not in
KnowRob. The annotation is done by using special constructs from the CRAM Plan
Language mentioned before. A plan is therefore considered as a function that does
something with a goal. An example is a function that achieves that an object is in the
hand. The Prolog annotation for this plan would then be achieve (object-in-hand ?object).
Other plans might perform an action designator. With the help of these annotation, the
robot knows what it does. [WBMB12]
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Listing 2.4 provides an example of a CRAM plan which is adapted for the examples in
[Win13] and [Kaz16]. It will be used throughout the thesis.

(cpl:def-cram-function get-mug ()

(cram-language-designator-support:with-designators

(( handle-location :location ‘((:pose , (cl-transforms-stamped:make-pose

(cl-transforms:make-3d-vector -0.005 0.0 0.0)

(cl-transforms:euler- >quaternion :ax (/ pi 2))))))

(mug-handle :object ‘((:type :handle) (:at ,handle-location )))

(mug-location :location

‘((:on "Cupboard")

(:name "kitchen_sink_block")))

(mug :object ‘((:type :mug) (:at , mug-location) (: handle ,mug-handle ))))

(cram-plan-library:achieve ‘(cram-plan-library:object-in-hand ,mug ))))

Listing 2.4: Example CRAM Plan get-mug

The plan tells the robot to get a mug standing on a cupboard named “kitchen_sink_block”
in its hand. The with-designators function is used to create three designators: The irst
one (named handle-location) describes the location of the virtual handle of the mug. The
second one describes the handle itself. It uses the designator created before to specify
where the handle is located. The third designator describes the location of the mug
vaguely. Finally, there is the designator that describes the mug itself using the location
designator and the object designator for the handle created before. Then, these des-
ignators are used to call a sub plan that achieves that the mug is in the hand of the
robot. The called sub plan is actually deined inside the CRAM framework using the
goal semantics described above:

(def -goal (achieve (object -in -hand ?obj))

; ....

)

This is the deinition for the mentioned prolog expression achieve (object-in-hand ?object).

2.3.2. Bullet Reasoning

For some designators, the robot is actually required to imagine its environment. For
example, if it has to navigate to a pose where it can see an object. In this case, the robot
has to make sure that the line of sight between camera and object is not blocked by
another object. There is a CRAM extension that allows to do this job using the physics
engine Bullet1. It is usable through Prolog predicates that do a physics simulation of
the current world until the world is stable so that nothing changes. When location
designators should be resolved, the component uses a generative model: It generates
pose candidates and then uses the physics engine to verify them. [MB11]

1http://www.bulletphysics.org/
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Figure 2.4 shows a visualization of a bullet world representing the kitchen at the IAI Lab
in the University of Bremen. It is generated during the execution of the plan shown in
Listing 2.4 (The initialization is not shown there). In this situation CRAM tries to resolve
a designator that describes a pose suicient to see a mug standing on a cupboard with
the name “kitchen_sink_block”. The red sector shows the area in which pose candidates
are generated.

Figure 2.4.: The PR2 in the Bullet Visualization

Moreover, the simulation mechanism can do temporal projection: It can predict the efects
of a plan over a longer period of time. This is implemented by providing own process
modules. During the simulation, designator results are generated. Those designators for
which a plan is successful are then stored and used in the actual plan. To improve the
performance, only key points of a trajectory are simulated. This is a lack of precision
but it is slightly faster than executing a complete simulation. Thus, CRAM has its own
little simulation framework though it is not accurate. [MB13]

2.3.3. CRAMM

To be able to reason about previous plan executions CRAM provides a logging mecha-
nism called CRAMM. During the plan execution, this mechanism records the executed
plans in a task tree. This tree is similar to a stack trace in a debugger and contains
executed CRAM functions as well as designators, time stamps, and failures. Figure 2.5
shows the components involved in the logging process: semrec is used to process sym-
bolic information such as the task tree. It is able to export the task tree as OWL ile.
Continuous data such as poses as well as designators are processed by the component
mongodb_log. It stores the information in the NoSQL database MongoDB, a database
that stores its content in hierarchical documents. [WTBB14] [WB15]

Figure 2.6 shows a visualization of the log generated from the plan in Listing 2.4. Data
from the OWL ile and from the MongoDB are combined. On the left, tasks and des-
ignators are shown. There is the function get-mug itself and also the with-designators
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Logging Experiment CRAM Loggingclass [   ]

 : mongodb_log

 : CRAM  : semrec

Task Tree Node,
RTP

RTP

Designator

Figure 2.5.: Description of the Logging and Prediction Mechanism in CRAM

function as well as the achieve function. Furthermore, the transition to the data from
the MongoDB is visible: All sub nodes of the [MongoDB Designator] Document node
are stored in the MongoDB. This includes the whole designator structure. On the right,
properties of the highlighted node (the call of the achieve function) are displayed. There,
the mentioned Prolog representation of the plan appears. The parameter ?OBJ is then
displayed on the left (node [?OBJ] Document).

Figure 2.6.: Task Tree Generated from the Data Logged by CRAM
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Since KnowRob can process OWL iles, it can answer queries about the log iles. To be
able to also process the data in the MongoDB, computables are implemented. [WTBB14]
mentions some example queries, such as the query for failed fetch tasks due to an object-
not-found error or the query for the usual position of items in the refrigerator. Thus, it
is possible to reason about previous experiments using Prolog queries.

[WB15] explains another function of the semrec component: It can be used to predict
the result of a task in order to get the right task parameters using machine learning.
The result can, for example, be an error or success. In this case, the parameters are
not the designators but specially annotated parameters, called RTPs. An example of
such a parameter might be a torque value or a location name. The parameters are
annotated in the CRAM plans and after a learning phase, the best parameters are inferred
automatically. Figure 2.5 depicts this: CRAM sends the RTPs to semrec and in another
execution semrec sends parameters back to CRAM.

The reasoning is done using decision trees. On the one hand, the task trees of diferent
plan executions are combined in a so called condensed task tree that share sub trees if
they have an equal type in diferent execution. On the other hand, a decision tree is
trained from the RTPs and from the task results. To get a success probability, semrec
tracks the position of the current plan execution in the condensed task tree. Afterwards,
the sub nodes in the condensed task tree are processed and the decision trees attached
to the sub nodes are evaluated. Based on that, the probability for a result is calculated.
Furthermore, the decision trees can be inverted to get parameter ranges. To summarize
it: semrec allows to reason about parameters in logged executions speciied previously
during the plan design. [WB15]

16



2.4. Markov Logic Networks

A MLN (short form for Markov Logic Network) is an attempt to combine irst-order logic
with a probabilistic semantics in order to represent uncertainty [RD06]. Hence, they
allow to represent knowledge by using formulas such as “All computer science students
like pizza” as in irst-order logic. Afterwards, queries can be answered. In irst-order
logic, one of these queries could be “Does Marc like pizza given that he is a computer
science student” and the answer would be “yes” or “no”2. In contrast to irst-order logic,
MLNs assign a weight to the formulas that is relative to other formulas in the MLN.
Moreover, the queries difer. The irst-order query from above is translated to the MLN
query “What is the probability that Marc likes pizza given that he is a computer science
student”. Trough the weights it is possible that the resulting probability is between 0
and 100 percent.

A Markov Logic Network L is deined as a set of tuples (Fi, wi). Fi is a irst-order logic
formula and wi ∈ R is a weight for the formula [RD06]. The following sections explain
MLNs in detail.

2.4.1. Formula Structure

Figure 2.7 shows the structure of a MLN formula. It is an adapted version of the grammar
speciied in [RN10] with the elements from [RD06]. The basic building block are atoms
which are predicates applied to terms. An example is ComputerScienceStudent(Marc)
consisting of the predicate ComputerScienceStudent and the constant Marc which is a
term. It is also possible to apply a function such as FellowStudent(Marc) on a term.
The return value of the function can then again be part of an atom. Thus, a construct
like ComputerScienceStudent(FellowStudent(Marc)) is possible. However, due to the
decidability, functions are only supported by MLNs if the function value is known in
advance. [RD06]

More complex formulas such as ∀s : ComputerScienceStudent(s)∧Likes(s, P izza) can
be constructed using the quantiiers ∀ and ∃ as well as the connectives⇒, ∧, ∨ and⇔ and
the negation ¬. The universal quantiier ∀ states that a formula is valid for all assignments
of constants to a variable. The existential quantiier ∃ states that there is an assignment
of a constant to a variable for which the formula is true. The logical connectives and
(∧), or (∨), implication (⇒) and equivalence (⇔) can be used to connect two formulas.
To reduce the complexity of MLNs a typed logic is often used. This means that the
arguments of predicates have a type. Thus, variables and constants used as arguments in
atoms must have the type speciied in the predicate declaration. The argument type of
ComputerScienceStudent could for example be human with the domain Marc. In MLNs,
unquantiied formulas are implicitly assumed to be universal quantiied. [RD06]
2Actually, the query is: Does “Marc likes pizza” hold given that “Marc is a computer science student

and all computer science students like pizza” and the answer is true or false. For a better readability,

it has been rewritten here.

17



Formula →Atom

| (Formula Connective Formula)

| Quantifier V ariable, ... : Formula

| ¬Formula

Literal →Atom|¬Atom

Atom →Predicate(Term, ...)

Term →Function(Term, ...)

| Constant

| V ariable

Connective → ⇒ | ∧ | ∨ | ⇔

Quantifier →∃|∀

Constant →String

V ariable →string

Predicate →String|string

Function →String|string

GroundFormula →GroundAtom

| (GroundFormula Connective GroundFormula)

| ¬GroundFormula

GroundLiteral →GroundAtom|¬GroundAtom

GroundAtom →Predicate(Constant, ...)

Figure 2.7.: Grammar for First-order Logic Formulas

Other important terms are literals, ground formulas, ground literals and ground atoms.
Literals are atoms or their negation. Ground atoms are atoms containing only constants.
As mentioned before, function values have to be known in advance and thus ground
atoms do not contain functions. Similarly, ground literals are ground atoms and their
negations. Since there are ground atoms and ground literals, it is obvious that there are
also ground formulas which are formulas with atoms replaced by ground atoms. [RD06]

1 ComputerScienceStudent(human)
2 Likes(human,meal)
3 6.197 ComputerScienceStudent(s) ∧ Likes(s, P izza)
4 4.000 ComputerScienceStudent(s) ∧ ¬Likes(s, P izza)
5 9.794 ¬ComputerScienceStudent(s) ∧ Likes(s, P izza)
6 9.794 ¬ComputerScienceStudent(s) ∧ ¬Likes(s, P izza)

Listing 2.5: MLN for the Computer Science Student / Pizza Example
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Listing 2.5 shows a MLN. The irst two lines declare the predicates ComputerScienceStudent
and Likes as well as their argument types human and meal. The formula in Line 3 has
the weight 6.197 and it states that for all humans holds that they are computer science
students and that they like pizza. In contrast to the irst one, the formula in Line 4 states
that for all humans holds that they are computer science students and that they do not
like pizza. Similarly, the formulas in Line 5 states that all humans are no computer
science students and that they like pizza. Finally, there is the formula in line six stating
that all humans are no computer science students and that they do not like pizza. This
depicts the usage of irst-order logic formulas and implicitly universal quantiied variables
in MLNs.

2.4.2. Represented Probability Distribution

Listing 2.5 shows another interesting fact. On the one hand, all humans are computer
science students. On the other hand, all humans are no computer science students. On
the one hand, all humans like pizza. On the other hand, all humans do not like pizza.
In irst-order logic, this would be a contradiction in the knowledge base that is created
by conjugating all formulas. Hence, the knowledge base would be useless. However, in
MLNs these formulas make sense since a MLN deines a full joint probability distribution.

To calculate the exact full joint probability distribution it is necessary to create ground
formulas and ground atoms from formulas, predicates and constants. Thus, the set of
constants C has to be known when the joint probability distribution is calculated. Of
course, C contains tuples of types and their domain values since a typed logic is usually
used. As Figure 2.7 shows, ground atoms can be created from predicate declarations and
constants by simply replacing the argument types by their domain elements. The creation
of ground formulas is dependent on the quantiier type: Existentially quantiied formulas
are grounded by replacing them by disjunctions (∨). The operands of the disjunctions
are formed by replacing the existential quantiied variable in the quantiied formula by
an element of the variable domain for each element in the variable domain. In contrast
to this, universally quantiied formulas are grounded by creating one ground formula for
each element in the variable domain where the element replaces the variable. It might
be necessary to apply these rules recursively to ground a MLN formula. [RD06]

In the example in Listing 2.5, the constants could be composed of Marc, Svenja for the
domain human and of Pizza for the domain meal. Thus, the following ground atoms
exist: {ComputerScienceStudent(Marc), Likes(Marc, P izza), Likes(Svenja, P izza),
ComputerScienceStudent(Svenja)}. The formulas are all universally quantiied using
the variable s. Since the variable type of s is human and the domain of human consists
of two constants, two ground formulas can be generated from each formula. For the
irst formula for example, the ground formulas are ComputerScienceStudent(Marc) ∧
Likes(Marc, P izza) and ComputerScienceStudent(Svenja) ∧ Likes(Svenja, P izza).
If there was a formula ∃s : ComputerScienceStudent(s), this formula would produce one
ground formula: ComputerScienceStudent(Marc)∨ComputerScienceStudent(Svenja).
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To make the grounding process and the MLNs in general work, the authors of [RD06]
make three assumptions. First, it is assumed that diferent constants do not represent the
same object. Then, there are no domain members that are not present in C, in a formula
in L or in a function in L. Finally, as mentioned before, the value of each function has
to be known in advance. However, the authors also name ways to get around of some of
these restrictions.

Another important concept are worlds. A world is an assignment of the truth values true
or false to each ground atom that can be created from L and C [RD06]. Table 2.1 shows
the worlds that can be generated from Listing 2.5 using the constants mentioned before.

No. ComputerScienceStudent(Marc) Likes(Marc, Pizza) ComputerScienceStudent(Svenja) Likes(Svenja, Pizza)

1 false false false false
2 false false false true
3 false false true false
4 false false true true

5 false true false false
6 false true false true
7 false true true false
8 false true true true

9 true false false false
10 true false false true
11 true false true false
12 true false true true

13 true true false false
14 true true false true
15 true true true false
16 true true true true

Table 2.1.: Worlds for Listing 2.5

Now let L be an MLN with a set of m formula weight pairs (wi, Fi), let ni(x) be the
number of true groundings of the formula Fi in world x and let XL,C be the set of possible
worlds. Then the joint probability distribution in L grounded with the constants C is
deined in [RD06] as follows:

P (X = x|L,C) =
1

Z
exp

︃

m︁

i=1

wini(x)

︃

=

exp

︂

m︀

i=1
wini(x)

︂

︀

x∈�L,C

exp

︂

m︀

i=1
wini(x)

︂ (2.1)

If L is the MLN shown in Listing 2.5 the probability for the world no. 13 from Table 2.1
given the constants C from above would be:

P (X = World no. 13|L,C) =
exp(1 · 6.197 + 0 · 4 + 0 · 9.794 + 1 · 9.794)

Z

≈
8806494

1324785576
≈ 66 · 10−9

The joint probability distribution can then be used in queries as discussed in Section 2.4.4.
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Apart from the formulas, the weights are the most important factor inluencing the prob-
ability distribution. For some simple cases the weight of a formula F can be interpreted
as w = ln

︁

P (X=xt)
P (X=xf )

︁

where xt is a world where F is true and xf is a world where F is
not true while other things do not change. If the formulas are mutually exclusive and if
possible exhaustive, the weights wi can be set to ln(pi) where pi is the probability for the
formula. A set of formulas is mutually exclusive if in one world maximally one formula
is true. It is exhaustive if all combinations are modelled. Section 4.3 will analyze this
case more detailed. If the weights of all formulas tend to ininity, the formulas in the
MLN form a irst-order knowledge base. This means that all worlds in which all formulas
in the knowledge base are true are equally probable, whereas all other worlds have zero
probability. However, in general there is no easy interpretation of the weights that is
applicable to every case. [RD06] [Jai12].

2.4.3. MLNs and Markov Random Fields

The formula for the joint probability distribution has its origin in Markov Random Fields
(MRF s). They are means to represent full joint probability distributions. Actually, a
MRF is created when a MLN is grounded. [RD06]

Let X = (X2, X2, ..., Xn) be random variables and X be the domain of X. A MRF
consists of an undirected graph G = (X,E) and a set of potential functions φk : X{k} →
R0+ where X{k} is the set of variable assignments in the kth clique of the graph G. A
clique is a set of nodes that are all connected among each other. Let x{k} be the part
of x representing the variable assignment of the kth clique of G. The joint probability
distribution in a MRF calculates as follows:

P (X = x) =
1

Z

︁

k

φk(x{k}) =

︀

k

φk(x{k})

︀

x∈�

︀

k

φk(x{k})
(2.2)

In MLNs, the MRFs are represented as log linear models:

P (X = x) =
1

Z
exp

⎛

⎝

︁

j

wjfj(x)

⎞

⎠ =

exp

︃

︀

j

wjfj(x)

︃

︀

x∈�

exp

︃

︀

j

wjfj(x)

︃ (2.3)

The wj ∈ R are weights and the fj : X → R are features. The clique potentials can
be translated to the log linear form: For each variable assignment x′{k} of each clique

k, a feature fi(x) =

︂

1 if x = x′

0 otherwise
and a weight wi = ln(φi(x{k})) are created. This

explains the structure of MRFs. [RD06]
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Given some constants C, a MLN L and can be grounded to a MRF ML,C using the
following procedure: First, a node is created for each ground atom. An edge between two
nodes is created if they appear in the same ground formula. Figure 2.8 shows the MRF
that is grounded from the MLN in Listing 2.5 and from the constants in Section 2.4.2. If
the log linear representation is used, a feature is created for each ground formula which
is 1 if the formula is true and 0 otherwise. The weight assigned to the feature is the
formula weight. Of course, it would also be possible to create one feature per formula
which returns the number of true groundings, as in Equation 2.1. Thus, a MLN is a
template that can be used to generate MRFs. [RD06]

ComputerScienceStudent(Marc)

ComputerScienceStudent(Svenja)

Likes(Marc, P izza) Likes(Svenja, P izza)

Figure 2.8.: MRF Generated from the MLN in Listing 2.5

2.4.4. Inference Algorithms

Though the full joint probability distribution is known, one might ask how to answer
more complicated queries like “What is the probability that Marc likes pizza given that
he is a computer science student”. Since MLNs can be grounded to MRFs, there are
diferent inference algorithms that can answer such questions. Moreover, lifted inferences
might be possible such that the grounding process is not necessary. A small subset of
algorithms is presented here.

Exact Inference

As mentioned before, the joint probability distribution can be used to answer a query Q

given an evidence E as well as constants C and a MLN L. [RD06] points that out: Let Q
be a irst-order formula describing the query and let E be a irst-order formula describing
the evidence. Moreover, let XQ,L,C be the worlds where Q is true and let XE,L,C be the
worlds where E is true. Then

P (Q|E,L,C) =
P (Q ∧ E|L,C)

P (E|L,C)
=

︀

x∈�Q,L,C∩�E,L,C

P (X = x|L,C)

︀

x∈�E,L,C

P (X = x|L,C)
(2.4)
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With the joint probability distribution from Equation 2.1 this formula becomes

P (Q|E,L,C) =

︀

x∈�Q,L,C∩�E,L,C

exp

︂

m︀

i=1
wini(x)

︂

︀

x∈�E,L,C

exp

︂

m︀

i=1
wini(x)

︂ (2.5)

In the MLN in Listing 2.5, the question “What is the probability that Marc likes pizza
given that he is a computer science student and given the constants from Section 2.4.2”
can be answered using this formula. The worlds where both the formula Likes(Marc, P izza)
and the formula ComputerScienceStudent(Marc) are true are the worlds no. 13 to 16
from Table 2.1. The worlds where the formula ComputerScienceStudent(Marc) is true
are the worlds 9 to 16 from Table 2.1.

P (Likes(Marc, P izza)|ComputerScienceStudent(Marc), L, C)

=

︀

x∈{World no. 13,14,15,16}

exp

︂

m︀

i=1
wini(x)

︂

︀

x∈{World no. 9,10,11,12,13,14,15,16}

exp

︂

m︀

i=1
wini(x)

︂

≈
17881160

19868402
≈ 0.9

Thus, there is a 90% probability that Marc likes pizza.

Equation 2.4 can easily be implemented. Unfortunately, this kind of inference is P#
complete and thus unusable in larger domains [RD06]. Therefore, a brief introduction of
other inference methods follows.

Gibbs Sampling

A solution for those cases where exact inference is infeasible due to its complexity are
approximate inference methods. One class of approximate methods are Markov Chain
Monte Carlo (MCMC ) methods. These methods work by drawing state samples from a
Markov chain. [Jai12]

The Markov chain deines a distribution πt : X → [0, 1] assigning a probability to each
state (in this case: world) for each time step t. This is done by providing an ini-
tial distribution π0 and a transition model T (x → x′) = P (x′|x) providing the next
state x′ given the current state x. For cases where t > 0 holds, πt is deined as
πt(x) =

︀

x′∈�

πt−1(x
′) · T (x′ → x). If no further transitions are possible, i.e. if πt = πt−1,

the stationary distribution is reached. Important properties of Markov chains for MCMC
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algorithms are ergodicity, which causes the chain to inally reach the stationary distri-
bution, and being in detailed balance with a distribution π, causing π being the Markov
chains stationary distribution. [Jai12]

In the MCMC algorithms a Markov chain with the stationary distribution P (x|E,L,C)
is used to calculate P (Q|E,L,C). In the beginning, a state is sampled from the initial
distribution. That means that the start state x0 is randomly drawn from the set of state
whereas with probability π0(x

′) holds x0 = x′ for all x0 ∈ X . Then, n− 1 other states xi
are sampled from the distribution πi(xi−1). If a state xi satisies Q a counter c starting
at 0 is increased. The probability is then P (Q|E,L,C) = c

n
. [Jai12]

[RD06] show how to apply Gibbs sampling to MLNs. First, the grounded MRF is reduced:
Starting at the ground atoms in the query all nodes are expanded except if they are
evidence nodes. Nodes that are not expanded do not need to be considered. The parts
that vary in the diferent MCMC algorithm are the initial distribution and the calculation
of the transition model. In the Gibbs sampling algorithms, the initial state is sampled
using the MaxWalkSat SAT solver. The successor states are calculated by sampling a
new ground atom Xl given its Markov blanket Bl formed by all nodes directly connected
in the MRF by using the following probability:

P (Xl = xl|Bl = bl) =

exp(
︀

fi∈Fl

wifi(Xl = xl, Bl = bl))

exp(
︀

fi∈Fl

wifi(Xl = 0, Bl = bl)) + exp(
︀

fi∈Fl

wifi(Xl = 1, Bl = bl))

(2.6)

In this case, Fl is a set of ground formulas containing Xl. fi(Xl = xl, Bl = bl) is 1 if
the ground formula fl is true in a state where Xl has the value xl and Bl has the value
bl and 0 otherwise. This makes Gibbs sampling a random experiment to determine a
probability.

MC-SAT

Gibbs sampling has one disadvantage: If the weights get very large, the Markov chain is
not ergodic. This is not the case in another MCMC algorithm called MC-SAT. It uses a
SAT to sample successor states. A SAT solver is a tool able to determine a world given
logic formulas. [PD06]

Before the actual algorithm starts, all formulas having a negative weight are converted to
formulas with positive weight by negating the formula and multiplying the weight with
−1. Those formulas which have an ininite weight are called hard. The initial state is
sampled by sampling a world where all hard formulas are true. The next samples are
generated by creating a set M where formulas fk which were true in the last assignment
are added to with probability 1−exp(−wk). Then, the next world is created by sampling
from the uniform distribution of the worlds which are true in M . This can be done using
the SampleSAT algorithm. [PD06]
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Since the Markov chain generated by MC-SAT is in theory ergodic, it is an improvement
compared to Gibbs sampling. However, the samples that SampleSAT generates are only
nearly uniformly distributed. Moreover, the search for a solution for the SAT problem
takes time. Therefore, the algorithm is also imperfect. [PD06]

WCSP Inference

Sometimes, a probability distribution is not necessary. Thus, it is enough to get the most
probable world. This kind of inference is called maximum a posteriori (MAP) inference.
A MAP inference calculates

argmax
x

P (X = x|L,C) (2.7)

If evidence should be considered, it can be added to the MLN as a hard formula. A
method to perform a MAP inference is to convert the ground MRF to a Weighted Con-
straint Satisfaction Problem (WCSP). This problem can then be solved using a WCSP
solver. [JMW09].

A WCSP is deined as R = (Y,D,C) where Y = {Y1, ..., Yn} contains variables, D =
{dom(Y1), .., dom(Yn)} contains the domains of the variables and C = {c1, ..., cr} is a set
of constraints. Each constraint ci is a function from a set of variables to a cost value
v ∈ N. The WCSP can be solved by inding a consistent variable assignment for all

variables which minimizes
r︀

i=1
ci(y). [JMW09].

To convert a ground MRF to a WCSP, the formula weights are irst converted to positive
numbers as explained above. Then, the weights have to be scaled to natural numbers
since costs are usually natural numbers. Afterwards, mutually exclusive and exhaustive
ground atoms are mapped to one variable. The other ground atoms are mapped to an
own variable. Finally, one constraint per ground formula is deined: It returns wi if
the formula is false and 0 otherwise. After solving the WCSP problem, the variable
assignment that is the solution can be transferred back to the MRF. [JMW09].

In summary, diferent inference algorithms for diferent use cases are available.

2.4.5. Learning Methods

In some cases, one wants to automatically create MLNs from given training data. This
can be done with machine learning techniques. Since formulas and weights can be learned
independently, there is a diference between structure learning and parameter learning.
For this work, only parameter learning is needed. Parameter learning requires training
data in form of a database x which is essentially a world. Then, the learner tries to
determine weights w maximizing the probability P (w|x, L,C). [Jai12]

25



Finding appropriate weights can be done using diferent techniques. The irst is the
Maximum A Posteriori method. It uses the Bayes’ theorem to rearrange the desired
formula for the desired weight w* = argmax

w
P (w|x).

w* = argmax
w

P (w|x) = argmax
P (x|w) · P (w)

P (x)
= argmax

w
P (x|w) · P (w) (2.8)

P (x|w) is an abbreviation for P (X = x|Lw, C) and can thus be calculated using Equa-
tion 2.1. Since the exact weight distribution P (w) is not known, a Gaussian distribution
is assumed. Another option is to leave out the P (w) resulting in

w* = argmax
w

P (x|w) (2.9)

This is called the Maximum Likelihood method. If multiple databases x(i) should be used
for learning, they can be assumed to be independent and thus the weight can be learned
using

w* = argmax
w

n︁

i=1

P (x(i)|w) (2.10)

Compared to the maximum a posteriori method, the maximum likelihood method is more
vulnerable for overitting which results in weights that only model the training data and
that do not generalize. However, it is necessary to determine the parameters for the
Gaussian distribution. [Jai12]

Instead of computing Equation 2.9, it is also possible to use the logarithmized version
since it has the same maximum:

argmax
w

lnP (x|w) (2.11)

Unfortunately, computing Equation 2.9 or Equation 2.11 is P# complete. A workaround
is to use more approximation and maximize the pseudo likelihood:

P *
w(X = x) =

n︁

l=1

Pw(Xl = xl|MBx(Xl)) (2.12)

The deinition of Pw(Xl = xl|MBx(Xl)) is given in Equation 2.6. A drawback of this
solution is that it is only an approximation and thus it might not work in some cases.
The actual optimization is then done using an optimization algorithm such as L-BFGS
which employs the gradient of the pseudo log likelihood. [Jai12] [RD06]

In summary, learning MLN weights from example worlds is possible but might be com-
putationally expensive.
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2.4.6. Common Pitfalls

[Jai12] names some important things that have to be considered during the design of MLN
formulas. The perhaps most important one is that implications in formulas do not model
conditional probabilities. If an implication A ⇒ B with A and B being formulas is used
as MLN formula, the probabilities P (A) and P (B) are modiied by this formula. Instead
of using implications, the author proposes to replace the implication by conjunctions.
To model a conditional probability, the truth table of A and B has to be represented in
the formulas. This is the reason why the MLN in Listing 2.5 contains four conjunctions
instead of one implication ComputerScienceStudent(s) ⇒ Likes(s, P izza).

Another possible problem that [Jai12] mentions is that the so called shallow transfer
might not work in any case. Shallow transfer means that the MLN and thus the prob-
ability distribution is usable with domains of diferent size. Some formulas such as im-
plications having a hard weight might unintentionally change the probabilities of single
ground literals. A proposed solution is to extend MLNs with special constraints ixing
these probabilities. There is another issue when the domain size changes: Cardinality
restrictions (e.g. a tandem bicycle has maximally two drivers) might not be preserved.
To solve these restrictions, [Jai12] proposes AMLNs which are able to construct MLNs
dependent on the attributes of the domain. Finally, for a given domain there might be
more than one weight vector maximizing the likelihood. However, if the domain is then
enlarged, the wrong probability is the result. Thus, learning in MLNs can be diicult.

In summary, compared to irst-order knowledge bases, additional thoughts have to be
considered during the MLN design.

2.4.7. pracmln

There are frameworks providing learning and inference methods for MLNs. One of them
is pracmln. It is a fork of the ProbCog framework. Among others, it provides the
inference and learning algorithms in Section 2.4.4 and Section 2.4.5. There is a python
API for accessing pracmln programmatically. [Nyg16]

pracmln provides diferent grammars for creating MLNs. The StandardGrammar is the
one presented in Figure 2.7. Variables are identiied by having lower case letters in this
grammar. Apart from the StandardGrammar, there is the PRACGrammar. The most
important diference to the StandardGrammar is that variables are represented by a
question mark in front of the variable.

Apart from that, pracmln ofers diferent extensions. One example are soft functional
constraints: Predicate declarations can contain predicate types ending with a question
mark. In this case, worlds in which two true ground atoms of that predicate with the
same arguments except from the speciied one exist are not considered during the in-
ference. An example is a predicate bikeRider(bikeName, human?): A world in which
bikeRider(MarcsRoadBike, Marc) and bikeRider(MarcsRoadBike, Svenja) are true is not
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considered during inference and learning. Additionally, there are functional constraints
which are applied by using an exclamation mark instead of a question mark: They addi-
tionally exclude worlds where no ground atom is true given some arguments. To realize
functional and soft functional constraints, pracmln uses variables which are not to be
confused with the variables in irst-order logic. Without the constraints, every ground
atom gets its own variable which might be true or false. For functional or soft func-
tional constraints, there are special variables for each combination of non (soft) function
parameters whose values are speciied by the domain of the constrained argument.

Another extension are Fuzzy-MLNs. They allow predicates whose ground atoms are
exclusively appearing in the evidence to be declared as fuzzy predicates. Afterwards, the
ground atoms of these predicates can have a truth value between 0 and 1 instead of just
being true or false. During the inference, the formulas are evaluated using fuzzy logic
replacing the conjunction by the minimum and the disjunction by the maximum. In
Equation 2.1, the weights have to be multiplied by the number of true ground formulas.
FuzzyMLNs multiply the weights with the fuzzy truth value of each ground formula
instead. The fuzzy ground atoms are intended to represent similarities between concepts
in description logics. This allows to use description logics which can, for example, be
used in word sense disambiguation. [NB15]

Figure 2.9.: The MLN from Listing 2.5 in pracmln

Figure 2.9 shows a query asking whether Marc likes Pizza given that he is a computer
science student and given the domain of human in pracmln. On the right side, the
variables are visible. The inference algorithm used is the algorithm shown in Equation 2.4
and the resulting probability is 89.998 which is the probability calculated in Section 2.4.4.
All in all, Markov Logic Network combine irst-order logic and probability theory and
the framework pracmln implements inference and learning algorithms.

28



2.5. Usage in this Thesis

Figure 2.10 shows how the software frameworks presented before are used in this thesis.
The executed plans are actually CRAM plans. Hence, the activities displayed in Fig-
ure 2.10 are CRAM plans, too. Moreover, plan parameters are the Designators. Though
these plans are not necessarily executed on a PR2 robot, the PR2 is the robot used as
example. Semrec and mongodb_log from Figure 2.5 are used to record the plan logs.
In combination with the inference algorithm developed in this thesis, pracmln is used to
perform the MLN inference. The software implemented in Chapter 6 is used for the MLN
creation as well as for converting designators and plan calls to queries and vice versa.

For the use cases in Figure 1.1, this means that it shall be possible to perform inferences
on designators and tasks. More precisely, it must be possible to infer success probabilities
of CRAM plans as well as information about objects which is located in the designators.
A parameter of an incompletely parametrized CRAM plan can be a second designator,
but it is more likely a property of an existing designator. If, for example, the robot should
execute a object-in-hand plan for a mug, the software must infer that the at property of
the mug designator is needed and it must infer a value for this property. Thus, it is also
necessary to complete designators.
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( plan parameter : Designator ) activity learning learning[ ]

in plan parameter : Designator

semrec

: record plan 
data

plan calls

plan log

designator

mongodb_log

: record 
designators

designator
designator

CRAM

: execute plan

plan parameter

plan calls

this thesis

: learn MLN

plan log

MLN

designators

«datastore»

MLN file

«datastore»

log file

«datastore»

MongoDB

( plan parameter : Designator ) activity usage usage[   ]

in plan parameter : Designator

this thesis

 : create query for 
interesting information

plan parameter query

pracmln

 : execute query

query

results

MLN

this thesis

 : process 
query results

updated plan parameter

query results
plan parameter

CRAM

 : execute plan1

plan parameter

 : execute plan2

plan parameter

«datastore»

MLN file

Figure 2.10.: Assignment of Existing Software to the Thesis Concept
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3. Related Work

For the diferent contributions of this thesis there are diferent related publications.

3.1. Learning Models for Designators from Experience

Learning from logged data has already been investigated by the AG AI of the University
of Bremen in diferent approaches. First of all, as mentioned in Section 2.3.3, [WTBB14]
describes how the logged data can be used for reasoning in a Prolog knowledge base. In
theory, this knowledge base could also be queried for the probabilities calculated in this
work. However, there are some downsides: First of all, the Prolog knowledge base needs
the whole logs for reasoning while the approach presented here compresses these data.
Then, the probability calculation would have to be part of the query. This is diicult since
it would require a similarity measure for designators to achieve generalization. Finally,
the approach in this work is able to combine diferent experiments in one MLN. On the
other side, one does not have to worry that much about the efects of computational
complexity when querying the Prolog knowledge base.

Another approach, which is also mentioned in Section 2.3.3, is presented in [WB15]: As in
this work, tasks that occur more than once are aggregated in the memory representation.
Furthermore, reasoning about success probabilities and calculating the best plan param-
eters using decision trees is possible. But there are some diferences: The parameters
used for the decision trees are conceptually on a diferent level than the parameters in
this work. They are marked in the plan using a special plan construct. On the one hand,
this allows to concentrate on parameters which are really important. On the other hand,
the parameters used in this work are also available if they are not explicitly tagged1 and
thus parameters from very diferent plans can be used for reasoning. Moreover, this work
allows to reason about the parameters themselves. For instance if a parameter speciies
a telephone, it is possible to infer that telephones usually have a location and to infer
the most probable place. Another diference is that the decision tree approach in [WB15]
provides a better generalization for numeric values and that it is probably faster.

[Jai12] describes a Bayesian Logic Network (a concept similar to MLNs) for inferences
in a pick an place scenario where objects are picked from six diferent locations. It
allows to infer diferent probabilities such as the best hand to use, the ield name or the

1Of course, it is necessary to use the correct functions to make the parameters appear in the logs, but

they are not explicitly tagged as parameters for reasoning.
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outcome. However, it models designator properties such as ield name or the hand to use
as predicates. Thus, the network design has to be changed for diferent plans. Moreover,
it is not possible to complete the structure of a designator. The approach in this work
does not model designator properties as predicates and is thus able to do this kind of
reasoning.

[WB15] mentions diferent approaches that have been developed in the past to give robots
the opportunity to learn from experiences. Three of them are especially relevant here.
The irst one is [Moo90]. It describes how to use nearest neighbor learning of models
to infer an action given a robot state and a desired behavior or to infer a behavior
given an action and a robot state. While the model learned in this work is close to a
nearest neighbor method, the scope is another: This work learns about actions and their
parameters and the parameters are mostly symbolic rather than n dimensional vectors
of real numbers.

[TM95] provides a deinition of the term “lifelong learning” in the context of reinforce-
ment learning: It is stated that “for each diferent environment and each reward function
the robot agent must ind a diferent control policy”. Moreover, the principle of knowl-
edge transfer is shown in diferent scenarios where neural networks are combined. The
networks perform diferent tasks such as predicting the next robot state given a state and
an action, modeling the evaluation function used in reinforcement learning or modeling
collision reward or sensor reliability given sensor data. As the title states, the lifelong
learning connects [TM95] with this work. However, there are large diferences: In [TM95]
reinforcement learning is used while in this work a statistical relational model is learned.
Moreover, this work learns models of designators representing abstract concepts while in
[TM95] concrete inputs and outputs such as sensor values or states are used.

For RPL, a predecessor of the CRAM planning language, [Kir09] shows how learning
from experiences can be integrated into the planning language with minimal changes
to the plan itself. This is done by mapping the plan to a hybrid automation to deine
experiences. They can then be abstracted and the abstracted experiences are available
for learning algorithms. Special language extensions allow the use of leaned models. In
this work, the experiences are already present in form of logs. Therefore, they only need
to be integrated into the plan and thus no such framework is used for the integration of
the learning itself.

Another framework that incorporates learning is [RNZ+13]: Knowledge is represented
using OWL ontologies. Learning in this framework includes an approach called Con-
straint Generalization. It is used to learn models for object categorization. Moreover,
the paper mentions a method for learning how to perform a task such as serving a dish
from examples which described in detail in [NHRL14]. This is similar to the plan param-
eter completion learning in this work. Anyhow, they describe the single parts of a task
while the focus of this work lies in inferring parameters for an existing plan.

In general, there are diferent examples for learning from experience. In [HPK+12] ex-
periences are used in a distance metric matching perceived object descriptors to object
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descriptors from a database in order to ind appropriate grasp parameters. In [HLRB13]
support vector regression is used to learn a function from experience that returns a push-
ing score given an object shape. This score can then be used to predict how good a robot
can push an object from a location.

One relation that is represented in the MLNs created in this work is the relation between
objects having certain properties and actions. This relation is similar to afordances
as introduced by [Gib14]: An afordance describes what something or someone having
certain properties is good for. An example is a mug: As an object having a handle it is
graspable for a human (and for some robots). Since the concept of afordances is also used
in robotics, there exist diferent approaches for learning afordances. [PG15] for example
presents a solution where robots learn which combination of objects afords which action
in a dialogue with a human. The connection between objects and actions is modeled
with an m-estimate. Apart from the diferent representation, the data are collected by
interacting with a human and the object properties are not considered in contrast to this
work. In [WHB14] a neural network is used to predict the efect of an action given an
object state and the action itself. There is an exploration phase guided by reinforcement
learning in which the neural network is trained. However, the approach is diferent to
this work since it focusses on object poses and numeric values for the actions rather than
on symbolic descriptions. Additionally, only the outcome can be predicted.

[MLBSV07] shows how to learn Bayesian networks representing afordances from data
collected during an experimentation phase: A variable in the Bayesian network is created
for each object feature (e.g. color, shape or size). Moreover, there is one variable for the
action (e.g. grasp) and one for each efect caused by the action (e.g. a velocity). To be
able to use continuous variables, the values are clustered. A similar approach is presented
in [SHKK10] where afordance models for grasping are learned from data collected by a
GraspIt!2 simulation and labelled manually. In this approach, the efect is not modeled
but there are additional variables for action parameters (for the GraspIt! framework)
as well as for environment information (e.g. the free space). Moreover, the structure
of the Bayesian network is modeled manually in this approach. Both [MLBSV07] and
[SHKK10] are similar to the approach presented in this work since probabilities about
objects and actions can be calculated.

In spite of that, there are diferences: The afordances are not exactly comparable to the
designators since designators can describe objects as well as actions or locations while
there are only objects along with their afordances in the Bayesian networks. Further-
more, the MLNs do not contain efects. Then, the object features are diferent: The
Bayesian network approach assumes them to be equal for all objects whereas this work
allows diferent objects to have diferent properties. Apart from that, this work allows
reasoning about the designator structure itself such as inferring additional properties
which is diicult to realize with the Bayesian network approach. The reasoning about
multiple objects is also impossible using the Bayesian approach. Thus, there are some
diferent use cases for this work and the Bayesian network approaches.
2http://graspit-simulator.github.io/
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However, there are diferent extensions to the approach presented in [MLBSV07].
[MMO+12] uses the ProbLog language to learn a probabilistic knowledge base for multi
object afordances from experience. ProbLog is, similar to MLNs, a means for statis-
tical relational learning. It is an extension of the Prolog programing language. First,
a Bayesian network is learned as in [MLBSV07] which is then converted to a ProbLog
knowledge base. Due to additional, manually modeled formulas it is possible to reason
about multiple objects. This approach is extended by [MDR14a]. There, Distributional
Clauses are used which are in turn an extension of ProbLog allowing continuous vari-
ables. That allows learning a model for one-armed object manipulation as Bayesian
network, converting it to Distributional Clauses, adding some more formulas and using
the knowledge for two-armed object manipulation. Distributional clauses are also used
by [MDR14b] to ind objects hidden behind other objects.

These approaches are quite similar to this work, but there are still diferences. First of all,
there is the diference between object afordances and designators mentioned above. The
approaches presented above focus on object properties relevant for object classiication
and thus all objects have the same property types such as an object weight. In contrast
to this, the designators consist of arbitrary key-value pairs where values can be strings
or designators. This is considered in this work. Then, there is the diferent modeling
language. The Distributional Clauses allow continuous variables such as an object size,
while this work can only handle symbolic variables. Thus, continuous values are treated
as symbols. Another diference is that this work focusses on lifelong learning and thus
the model can be updated incrementally which is not considered by the other approaches.
So there are some diferences to this approach primarily due to the use cases.

More similar concerning the model created are approaches using MLNs. [ZFFF14] ex-
plains how a MLN representing object attributes, visual attributes of objects and object
afordances is created. The information used to train the MLN is extracted from the web,
from databases as WordNet and from images. The irst diference to this work is the in-
formation source: This work uses the experience of the robot as source. Additionally,
the MLN is diferent: In this work, object properties are not represented by predicates.
Thus, it is possible to infer which properties are present without knowing the possible
properties.

[AMPSQ14] presents another MLN based approach. They convert a semantic knowledge
base in form of an OWL ontology to a MLN. The MLN is used in a robot task planner,
for example to infer an object location. Though the CRAM log iles are OWL iles, this
approach is not applicable here since the objects are not part of the log ile. Moreover, the
approach represents relations between objects, such as the object location, as predicates.
The predicates are also generated from the semantic knowledge base. In contrast to that,
this work uses a ixed set of predicates which allows to query for the relations themselves.

To summarize, various publications treat learning from experience. There are some
approaches having similar use case as this work and some using the same probabilistic
representation. However, to the best of my knowledge no work is combining exactly the
use cases, the modeling language and the designators that this work combines.
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3.2. Improved Exact MLN Inference

There is also some related work for the inference algorithm developed in this thesis.
The probably irst improvement of exact inference algorithms is presented in the paper
introducing MLNs: [RD06]. Instead of reasoning over the full grounded MRF, only
those variables between query and evidence are considered. The approach in this work
also reduces the search space. However, it removes diferent and, in some cases, more
variables. On the other hand, the approach presented in this work is not applicable to
all kinds of formulas compared to the approach presented in [RD06].

Especially in the ield of lifted inference, there are algorithms speeding up the exact infer-
ence by omitting the grounding process. An important algorithm is the FOVE algorithm
[DSBAR05]. It tries to eliminate ground atoms in some cases by replacing them. There
are several extensions such as [MZK+08]. The process described there is especially useful
if the individual ground atom is unimportant for calculating a probability. In contrast
to that, the approach in this work does not try to avoid the grounding process. Instead,
it tries to generate the all the worlds having a larger probability from the formulas. It
is thus suited if the number worlds in which a formula is true is much smaller than the
total number of worlds.

Similar to the inference algorithm developed in this work [JGMS10] uses the logical
formulas in the inference. This is accomplished by converting the MLNs to another
formalism called counting programs. In the counting programs, simpliication rules are
applied until the program is so far decomposed into other counting programs that the
inference task is easy to solve. Although both approaches perform inference on the logical
formulas, decomposing the formulas is the opposite of the technique used in this work.
Here, the formulas are composed to generate worlds. Again, a conceptual diference is
that the algorithm in this work is not lifted.

The formula structure is used in the algorithm shown in the lifted inference algorithm
in [GD10]. They create a so called AND/OR tree describing the variable assignment
in clauses which are disjunctions of literals. By introducing special nodes, repeated
structures are combined. To be able to exploit clauses, the formulas are assumed to be
in conjunctive normal form while the algorithm developed here assumes formulas to be
conjunctions. Furthermore, the tree in the algorithm developed in this work represents
the combination of formulas rather than the assignment of variables.
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Another algorithm using the formula structure is the FROG algorithm presented in
[SN09]. FROG reduces the number of groundings by not considering those which are
deinitely true given the evidence. Instead, only the number of those groundings is stored
to use it later. Again, in contrast to this algorithm assuming formulas to be conjunctions,
FROG assumes the formulas to be a set of clauses. The FROG algorithm yields especially
high performance if the closed world assumption is used and there are negated literals
in the clauses. In contrast to that, the closed world assumption is rather unimportant in
this work while it is more important that there are few true ground formulas.

Similar to the algorithm in this work, the probabilistic theorem proving algorithm pre-
sented in [GD16] uses the number of worlds in which a formula is true in the inference. It
also exploits the formula structure. More speciically, the authors provide a lifted version
of the DPLL algorithm able to cope with formula weights. However, the algorithm works
diferently than the algorithm in this work. It can cope with formulas in CNF while
the algorithm in this work works with formulas which are conjunctions. Furthermore, it
decomposes the formulas while the algorithm developed in this work combines them.

In summary, there are diferent inference algorithms performing well on diferent kinds
of MLNs. This work adds another one for another special case.
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4. MLN Design

The design of the MLN predicates and formulas is the key factor to a successfully learning
robot. Unfortunately, inding such a design is nontrivial as pointed out by [Jai12] and
summarized in Section 2.4.6. Therefore, this chapter describes the development of a
MLN design extracting as much useful information from the CRAM log iles as possible.
At the same time, the design has to omit as much useless information as possible. Of
course, a good MLN design must also keep the use cases in Figure 1.1 in mind.

The fact that the MLNs shall be learned from CRAM log iles raises the question which
information is available in these log iles. Section 2.3.3 and especially Figure 2.6 already
mentioned that the CRAM log iles are OWL iles and they stated that designators are
stored in a MongoDB. Figure 4.1 presents the log iles in detail. It shows the OWL
classes as well as data and object properties as UML class diagram. The most important
classes in Figure 4.1 are the sub classes of the Task1 class: They represent classes of
CRAM plans. CRAMAchieve for example represents all the achieve plans, for example
object-in-hand ?obj or loc ?obj ?loc.

However, the name of a CRAM plan can better be reconstructed from the taskContext
property. It contains a more precise description of the plan name, especially for plans
deined with def-cram-function. The Prolog annotation introduced in Section 2.3.1 is
represented in the property goalContext2. An example of such a Prolog annotation has
already been mentioned: OBJECT-IN-HAND ?OBJ. Since plans can call sub plans,
the sub plan call relationship is represented in the log iles by the subAction property.
The order of the sub plans is speciied by the nextAction and previousAction predicates.
Failures are indicated by the eventFailure and caughtFailure properties referencing the
failure. As with the tasks, the failure type is indicated by the OWL class name of the
failure, but the label property of the failure yields the correct failure type in more cases.
Start and end time are also represented as classes referenced by the properties startTime
and endTime. Finally, the task can have a designator property referencing a designator.
These are the most important classes and properties in the OWL ile.

Then, there is the MongoDB. In a MongoDB, the data are stored as documents which
might contain other documents. Similar to the designators in CRAM, these documents
consist of key value pairs where the key is a string and the value can be either a string

1There is actually no class named Task in the OWL ile. Instead, the properties are applied directly

on the sub classes. However, the Task class is introduced for a better visualization.
2This information can also be taken from the MongoDB.
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Log File Structure Log File Structurepackage [ ]

OWL

attributes

+taskContext : String
+goalContext : String

Task

ManipulationFailed

CRAMDesignator

ObjectNotFound

CRAMPerceive

Navigate

CRAMAchieve

FailureTimePoint

This super class 
does not exist in 
the OWL ontology!

MongoDB

Document Or String

Document

attributes

-key : String

Key Value Pair

String

+designator

+caughtFailure

*

{incomplete}

+eventFailure

*+startTime 1 +endTime1

0..1    +nextAction

0..1    +previousAction

*    +subAction

{incomplete}

*

+value 1

Figure 4.1.: The Structure of the CRAM Log Files

or a document. This makes it easy to store designators in a MongoDB3, which is done in
CRAM as shown by the package at the bottom of Figure 4.1. The mapping between the
designator object in the OWL ile containing no key value pairs and the more detailed
designator in the MongoDB is done via the name of the OWL instance describing a
designator: With this ID, the MongoDB can be queried for the correct designator. Apart
from the designators, there is other information stored in the MongoDB such as the robot
pose. However, it will not be used in this thesis. In summary, the log iles consist of tasks
connected by calling relationships, as well as of properties. Instead of directly describing
designators, a reference to a MongoDB document is stored.

3Unfortunately, the designators are sometimes stored diferently using empty keys, but this is an im-

plementation detail.
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An example of a log ile is shown in Figure 4.2. It describes execution of a ictional plan
similar to the one referenced in the last line of Listing 2.4. The instances of the OWL
classes described above are depicted as a UML object diagram. As the log iles represent
sub plan calls, they have the form of a tree. The root node Achieve_AbC is the call to the
achieve goal stating that the robot should have a mug standing on the cupboard with the
name kitchen_sink_block in its hand4 The corresponding designator describing the mug
is stored in the MongoDB. It is assumed that this plan calls three sub plans: In the irst
sub node Perceive_GhI, the mug on the cupboard with the name kitchen_sink_block is
perceived. The second sub node Navigate_MnO describes a plan call to a navigate goal
causing the robot to move around. Finally, the robot tries to pick up the mug standing
at the pose with the position (1.5, 0.0, 0.9) and the orientation (0, 0, 0, 1) in the node
Achieve_PqR. This simple example of a log ile will be used throughout the chapter.

Figure 4.2.: An Example Log File as UML Object Diagram

4Due to a better visualization, the document objects actually do not it to the class deinition in this

diagram.
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The following sections will introduce diferent MLN designs developed in the creation
process of this thesis. Moreover, a method for eiciently computing formula weights
is introduced. Finally, the MLN design used in the implementation in Chapter 6 is
introduced.

4.1. A Naive Approach

The perhaps irst thing that comes into ones mind when thinking about a MLN design
is to simply convert the OWL ile structure in Figure 4.1 to irst-order predicate logic.
Since the concept of plans and sub plans is very generic and not only applied by CRAM,
it is obvious not to model designators but to replace them by something more generic.
This idea was translated to a MLN. Listing 4.1 shows the predicate declarations for this
MLN.

1 taskType(task , taskType !)

2 goal(task , goal?)

3 parentTask(task , task?)

4 successor(task , task?)

5 error(task , error)

6 usedInTask(task , object)

7 perceives(task , object)

8 acts(task , actionType , actionParameter)

9 duration(task , abstractDuration)

10 objectType(object , objectType)

11 objectProperty(object , objectProperty)

12 objectLocation(object , abstractLocation)

13 executedAt(task , abstractLocation)

14 causedRobotPositionDifference(task , spatialRelation)

15 causedObjectPositionDifference(task , object , spatialRelation)

Listing 4.1: Predicate Declarations for a Naive MLN

As mentioned before, the design translates the types and relations from the OWL ile
to irst-order logic. Hence, the type task conforms to the abstract task in Figure 4.1.
Furthermore, the predicates are related to the relations and properties: The predicate
taskType corresponds to the taskContext property, while the goal predicate corresponds
to the goalContext property. Moreover, the subAction relation is represented by the
predicate parentTask and the successor predicate models nextAction. eventFailure and
caughtFailure are aggregated in the predicate error. Finally, time points are aggregated
in the duration predicate. All in all, these predicates are very close to the log ile.

The designators are very CRAM speciic. To make the MLN applicable for other planning
languages, the information from the designators is modeled with an agent system in mind.
[RN10] deines an agent as a system able to perceive its environment and act there. Thus,
there are the predicates perceives and acts. The robot is expected to perceive objects,
such as mugs. Since an action does not only afect objects, the acts predicate is modeled
without any object relation. In return, the predicate usedInTask additionally deines
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the relation between executed tasks and objects. The objects are modeled as separate
type. There are predicates specifying the objectType as well as objectProperties and an
objectLocation. Another rather general concept is the attempt to specify the pose of the
robot as well as the pose diferences of the robot and the objects achieved by the execution
of the tasks. This is done using the predicates executedAt, causedRobotPositionDiference,
and causedObjectPositionDiference.

Every training database for the MLN contains a whole log ile. This is necessary due to
the connection of the diferent tasks and objects. Listing 4.2 for example shows an extract
of the training database for the log shown in Figure 4.2. It shows the object-in-hand and
the navigate task.

1 taskType (" Achieve_AbC", "ACHIEVE ")

2 goal(" Achieve_AbC", "OBJECT -IN-HAND ?OBJ")

3 usedInTask (" Achieve_AbC", mug -1)

4 duration (" Achieve_AbC", medium)

5 objectType(mug1 , "MUG")

6 objectLocation(mug1 , "kitchen_sink_block ")

7 /* ... */

8 taskType (" Navigate_MnO", "NAVIGATE ")

9 parentTask (" Navigate_MnO", "Achieve_AbC ")

10 duration (" Navigate_MnO", medium)

11 /* ... */

Listing 4.2: Extract of the Training Database for a Naive MLN

Concerning the formula design, [Jai12] states that conditional probabilities are best mod-
eled as conjunctions. Therefore, those atoms believed to be dependent on each other are
tied together with a conjunction. An extract of the formulas for this naive MLN design
is shown in Listing 4.3. The full MLN is shown in Listing B.2.

1 0.0 taskType (?t, +?tt) ^ goal(?t, +?g)

2 0.0 taskType (?pt , +?tt) ^ parentTask (?t, ?pt) ^ taskType (?t, +?tt2)

3 0.0 taskType (?t, +?tt1) ^ successor (?t, ?t2) ^ taskType (?t2, +?tt2)

4 /* ... */

5 0.0 taskType (?t, +?tt) ^ perceives (?t, ?o) ^ objectType (?o, +?ot)

6 0.0 goal(?t, +?g) ^ perceives (?t, ?o) ^ objectType (?o, +?ot)

7 /* ... */

Listing 4.3: Extract of the Template Formulas for a Naive MLN

To make the MLN independent of a single execution, object and task names are replaced
by variables. However, some constants are required in the formulas in order to state
relationships between them. Fortunately, pracmln ofers the + operator to replace a
variable by the constants of its domain: If the variable domain is D, the operator replaces
the formula with |D| formulas using a constant from D instead of the variable. An
example is depicted in Listing 4.4: It shows the formulas generated from the irst formula
in Figure 4.2 with replaced variables.
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1 0.0 taskType (?t, "ACHIEVE ") ^ goal(?t, "OBJECT -IN-HAND ?OBJ")

2 0.0 taskType (?t, "ACHIEVE ") ^ goal(?t, "A ?OBJ -DESIG")

3 0.0 taskType (?t, "ACHIEVE ") ^ goal(?t, "OBJECT -PICKED ")

4 0.0 taskType (?t, "PERCEIVE -OBJECT ") ^ goal(?t, "OBJECT -IN -HAND ?OBJ")

5 0.0 taskType (?t, "PERCEIVE -OBJECT ") ^ goal(?t, "A ?OBJ -DESIG ")

6 0.0 taskType (?t, "PERCEIVE -OBJECT ") ^ goal(?t, "OBJECT -PICKED ")

7 0.0 taskType (?t, "NAVIGATE ") ^ goal(?t, "OBJECT -IN-HAND ?OBJ")

8 0.0 taskType (?t, "NAVIGATE ") ^ goal(?t, "A ?OBJ -DESIG")

9 0.0 taskType (?t, "NAVIGATE ") ^ goal(?t, "OBJECT -PICKED ")

Listing 4.4: One Expanded Template Formula for a Naive MLN

From a semantic point of view, the irst formula in Listing 4.3 states which goal exists for
which task type. In the example, the combination of the ACHIEVE task type and the
OBJECT-IN-HAND ?OBJ goal is shown in the training data and will thus get one of the
highest weights in Listing 4.4. The second formula tries to model the relationship between
task types and the parent task type, which can be useful for determining potential parent
or child tasks. The third formula is intended to model the relationship between tasks and
their successor tasks. Then, the formula in line 5 states which object types are perceived
in which tasks. Since a plan is actually represented by the combination of task type and
goal, the same relation is represented for the goal in line 6.

If the robot wants to query for the objects which are expected at the kitchen_sink_block,
as required by the irst use case in Figure 1.1, it could execute the query in Listing 4.5. To
infer the success probability for the achieve object-in-hand task, the robot would execute
the query in Listing 4.6. Finally, it would execute the query in Listing 4.7 to get the
missing location of a mug to pick up.
P( objectType(o1, ?t) |

taskType(T, "PERCEIVE -OBJECT ")

^ goal(T, "A ?OBJ -DESIG")

^ perceives(T,O)

^ objectLocation(O, "kitchen_sink_block ") )

Listing 4.5: Query for an Object Expected at a Location in the Naive MLN

P( !( EXIST ?e (error(T, ?e))) |

taskType(T, "ACHIEVE ")

^ goal(T, "OBBJECT -IN -HAND ?OBJ")

^ usedInTask(T,O)

^ objectType(O,"MUG")

^ objectLocation(O, "kitchen_sink_block ") )

Listing 4.6: Query for a Success Probability in the Naive MLN

P( objectLocation(O, ?l) |

!(EXIST ?e (error(T, ?e)))

^ taskType(T, "ACHIEVE ")

^ goal(T, "OBBJECT -IN -HAND ?OBJ")

^ usedInTask(T,O)

^ objectType(O,"MUG") )

Listing 4.7: Query for a Plan Parametrization in the Naive MLN
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Nevertheless, this approach causes several problems: First of all, the number of formulas
gets far too large. Moreover, the size of the training databases is very large, too. This is
especially important since one has to bear the computational complexity in mind when
designing MLNs. However, there are more serious problems concerning the represented
probability distributions. More precisely, the inferred probabilities do not conform with
the expected probabilities when executing queries on a manually created example MLN.
[Jai12] actually requires the conjunctions to be exhaustive to model a conditional proba-
bility distribution. As a consequence, this would require even more formulas containing
the negation of each atom.

The problem here is especially that atoms created with the predicate taskType are present
in almost every conjunction. That makes it diicult to query for those atoms since dif-
ferent formulas containing atoms of this predicate inluence each other. This is especially
a problem if the number of objects in the training database does not conform to the
number of objects in the query. Then, a formula and thus its weight might not be avail-
able during the inference due to a missing object. However, this weight was used during
the training and thus, the inference produces wrong probabilities. An example is the
formula in line 5 in Listing 4.3: If the variable ?o has an empty domain since objects are
uninteresting in a query for the task type of a sub task, the formula is not used during
the query. However, this weight is necessary to determine the probability for taskType
atoms. What results is a wrong probability.

In summary, this approach is too naive to work.

4.2. A Generic Approach

The experiences from Section 4.1 were used for creating an improved MLN design. It is
still generic in the sense that it models an agent system rather than a CRAM speciic
system. Listing 4.8 shows the predicate declarations of this MLN design.

1 currentTask(timeStep ,taskType ?)

2 currentTaskFinished(timeStep)

3 currentParameter(timeStep ,propertyKey ,propertyValue ?)

4 currentParentTask(timeStep ,taskType ?)

5 parentParameter(timeStep ,propertyKey ,propertyValue ?)

6 childTask(timeStep ,taskType)

7 nextTask(timeStep ,taskType ?)

8 nextTaskFinished(timeStep)

9 nextParameter(timeStep ,propertyKey ,propertyValue ?)

10 duration(timeStep ,duration ?)

11 error(timeStep ,error ?)

12 objectType(object ,objectType ?)

13 objectProperty(object ,objectPropertyKey ,objectPropertyValue ?)

14 objectLocation(timeStep ,object ,location ?)

15 perceivedObject(timeStep ,object)

16 usedObject(timeStep ,object)

Listing 4.8: Predicate Declarations for the Generic MLNs
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The most obvious diference to the previous MLN is the replacement of tasks by time
steps. When looking at the time steps of the tasks in the OWL ile, one might get the
idea to view the task tree as an execution of a state machine. The start and end time
can be considered as two diferent states of the executed plan. Thus, the MLN models
a probabilistic state machine. currentTask deines the state of the state machine at a
speciic time point. Since two time points of each task are used, the predicate current-
TaskFinished allows to distinguish start and end time. The idea to use probabilistic
state machines in CRAM is not new: this has already been done in [Kir09], as well as in
[BG05] for the predecessor of CRAM.

Furthermore, the semantics of nextTask changes: For tasks having children, the next task
is the irst child task instead of a parallel task. The order of the nextTask relationship
for the tasks in Figure 4.2 is visualized in Figure 4.3. Since all but the root task have no
child tasks, there is only one state for them.

state machine MLN Designs MLN Designs[   ]

ACHIEVE OBJECT-IN-HAND

{finished=true}

ACHIEVE OBJECT-IN-HAND

{finished=false}

ACHIEVE OBJECT-PICKED

{finished=true}

PERCEIVE

{finished=true}

NAVIGATE

{finished=true}

Figure 4.3.: State Machine for the Example in Figure 4.2

Another diference to the previous MLN is the disappearance of the goal predicate since
it was too CRAM speciic. Moreover, it is possible to deine task parameters now. There
are still predicates for modeling child and parent task relations and the objects are treated
similar to the objects in the naive MLN.

The result of the new MLN structure is an increased number of smaller training databases
since the objects do not depend on each other anymore. For the example in Figure 4.2,
four training databases will be created. Listing 4.9 shows the training database for the
object-in-hand task.
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1 currentTask (0," ACHIEVE OBJECT -IN -HAND ?OBJ")

2 currentParameter (0,"?OBJ",

"(: type :mug) (:at (:on Cupboard) (:name kitchen_sink_block))")

3 childTask(0, "ACHIEVE OBJECT -PICKED ?OBJ")

4 childTask(0, "PERCEIVE -OBJECT A ?OBJ -DESIG")

5 childTask (0," NAVIGATE ")

6 nextTask (0,"PERCEIVE -OBJECT A ?OBJ -DESIG ")

7 nextTaskFinished (0)

8 nextParameter (0,"?OBJ -DESIG",

"(: type :mug) (:at (:on Cupboard) (:name kitchen_sink_block))")

9 duration(0, Long)

Listing 4.9: One Training Database for a Generic MLN

In contrast to the previous MLN, the formulas are constructed by conjugating ground
literals from the training databases instead of using the + operator. Thus, only one
formula per training database is created if this formula does not already exist. Again,
constants which are too special, such as object names or time steps, are replaced by
variables. To avoid the inluence of other formulas, three diferent MLNs are created for
diferent use cases. In each MLN, every formula has the same structure.

The formulas of the object MLN can be used to infer object properties, types, locations or
the task in which an object is used or perceived. In this MLN design, it is assumed that
there is a correlation between the task type, the parent task and the used or perceived
objects. Therefore, the task types in the training databases which perceive or manipulate
objects are conjugated with the parent task type, the perceived or used object, as well
as the object properties. Listing 4.10 shows these formulas for the example scenario
depicted in Figure 4.2.

1 0.0 currentTask (?t0 ,"PERCEIVE -OBJECT A ?OBJ -DESIG ")

^ currentParentTask (?t0 ," ACHIEVE OBJECT -IN -HAND ?OBJ")

^ perceivedObject (?t0 ,?o1) ^ objectType (?o1 ,"MUG")

^ objectLocation (?t0 ,?o1 ," kitchen_sink_block ")

^ !objectProperty (?o1 ,?k,?v)

2 0.0 currentTask (?t0 ," ACHIEVE OBJECT -PICKED ?OBJ")

^ currentParentTask (?t0 ," ACHIEVE OBJECT -IN -HAND ?OBJ")

^ usedObject (?t0 ,?o1) ^ objectType (?o1 ,"MUG")

^ objectLocation (?t0 ,?o1 ,"(1.5,0.0,0,9,0,0,0,1)")

^ !objectProperty (?o1 ,?k,?v)

Listing 4.10: Example Formulas of a Generic Object MLN

Concerning the use cases in Figure 1.1, the object MLN can be used to infer what is
perceived at a speciic location. Listing 4.11 shows the query for the object type which
is usually perceived at the kitchen_sink_block.

P ( objectType(O,?t)

^ currentTask (0,"PERCEIVE -OBJECT A ?OBJ -DESIG")

^ objectLocation (0,O," kitchen_sink_block ")

^ perceivedObject (0,O) )

Listing 4.11: Query for an Object Perceived at a Location in the Generic Object MLN

45



The state machine MLN is designed for inferring which will be the next executed task.
Fur this purpose, the relation between the current task, the parameters of the current
task, the next task and the parameters of the next task are important. Moreover, it is
important whether these tasks are inished or not. Therefore, the atoms which represent
this information and which appear together in a training database are conjugated to
a formula. One of the formulas for the example scenario is shown in Listing 4.12. A
typical query for the state machine MLN is the query for the next task which is shown
in Listing 4.13.

1 0.0 currentTask (?t0 ," ACHIEVE OBJECT -IN -HAND ?OBJ")

^ currentParameter (?t0 ,"?OBJ",

"(: type :mug) (:at (:on Cupboard) (:name kitchen_sink_block))")

^ !currentTaskFinished (?t0)

^ nextTask (?t0 ,"PERCEIVE -OBJECT A ?OBJ -DESIG")

^ nextTaskFinished (?t0)

^ nextParameter (?t0 ,"?OBJ -DESIG",

"(: type :mug) (:at (:on Cupboard) (:name kitchen_sink_block))")

Listing 4.12: Example Formula of a Generic State Machine MLN

P ( nextTask(0, ?t) |

^ currentTask (0," ACHIEVE OBJECT -IN-HAND ?OBJ")

^ currentParameter (0,"?OBJ", "(: type :mug) (:at (:on Cupboard)

(:name kitchen_sink_block))")

^ !currentTaskFinished (0) )

Listing 4.13: Query for the Next Task in the State Machine MLN

One might ask why the nextTask predicate is deined instead of using currentTask

with the next time step as argument. There are two reasons: The irst one is that
other formulas would be true in worlds where a formula is true due to the newly created
ground atom and thus have an inluence on the probability. The second reason is the
computational complexity: Introducing a new currentTask ground atom due a broader
timeStep domain creates more worlds and thus it makes the inference harder.

The task MLN is similar to the state machine MLN. However, in contrast to the state
machine MLN, the task MLN is able to infer the most probable child or parent task
as well as the duration or errors, but not the next task or the next task parameters.
Hence, the conjugation of atoms is retained, but instead of including the next task, its
parameters and the information whether the task is inished, the duration, errors, child
tasks and the parent task are included. A formula of the task MLN in the example is
shown in Listing 4.14.
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1 0.0 currentTask (?t0 ," ACHIEVE OBJECT -PICKED ?OBJ")

^ currentParentTask (?t0 ," ACHIEVE OBJECT -IN -HAND ?OBJ")

^ parentParameter (?t0 ,"?OBJ",

"(: type :mug) (:at (:on Cupboard) (:name kitchen_sink_block))")

^ currentParameter (?t0 ,"?OBJ",

"(: type :mug) (:at (:pose (1.5,0.0,0,9,0,0,0,1)))")

^ !childTask (?t0 ,?tt)

^ duration (?t0,Medium) ^ !error (?t,?e)

Listing 4.14: Example Formula of a Generic Task MLN

The task MLN is able to perform inferences for the last two use cases mentioned by
Figure 1.1. Listing 4.15 shows the query for the success probability of a parametrized
achieve object-in-hand plan. The reversed query is shown in Listing 4.15, where a plan
parameter is inferred given that the task is successful.

P ( !( EXIST ?e (error(0, ?e))) |

currentTask (0," ACHIEVE OBJECT -IN -HAND ?OBJ")

^ currentParameter (0,"?OBJ", "(: type :mug) (:at (:on Cupboard)

(:name kitchen_sink_block))") )

Listing 4.15: Query for a Success Probability in the Task MLN

P ( currentParameter (0, ?p) |

currentTask (0," ACHIEVE OBJECT -IN -HAND ?OBJ")

^ !( EXIST ?e (error(0, ?e))) )

Listing 4.16: Query for a Successful Parametrization of a Task in the Task MLN

Nevertheless, there are also problems with this approach. Most importantly, the pseudo
log likelihood learner returns the wrong weights in contrast to the log likelihood learner.
Unfortunately, log likelihood learning is intractable for larger databases. Moreover, both
learners do not allow to update weights when new training data is available. However,
this is required to achieve lifelong learning. Thus, there are problems with the available
learning algorithms.

Another problem arises from the type of negation that is used in the formulas: Sometimes,
it is necessary to state that no other ground atom of a certain predicate is true. Otherwise,
all other atoms of that predicate would get the probability 0.5 which is not desirable,
for example for object properties. Therefore, the formulas contain a negation of this
predicate. For instance, the literal !objectProperty(?o1,?k,?v) is used for negating the
objectProperty predicate. However, the grounding process creates one ground formula for
each variable assignment to the variables ?k and ?v. Hence, if an atom of the predicate
appears non negated, there is one less ground formula for this case due to a contradiction.
This results in incorrect probabilities.
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4.3. Simple Weight Calculation

One problem in the MLNs presented in the previous section was the intractable learning.
However, the MLNs learned with the log likelihood learner showed one useful conspic-
uousness: It can be observed that the weights have a special form in most cases. This
form is c + ln(pi) where c is a constant (for example 40) and pi states how often the
ground formulas created from the formula are true in the training databases.

Section 2.4.1 already mentioned that [Jai12] describes a case where weights can easily
be calculated: If the formulas are mutually exclusive and if possible exhaustive, the
weights wi can be set to ln(pi) where pi is the probability for the formula. A set of
formulas is mutually exclusive if in one world maximally one formula is true. It is
exhaustive if all combinations are modeled. [Jai12] also mentions that it is possible to
add arbitrary constants to those weights. While the mutual exclusiveness mentioned by
[Jai12] is necessary, it turns out that a constant c, which is large enough, replaces the
exhaustiveness under certain circumstances.

The claim that assigning the formula weight c + ln(pi) replaces learning the formula
weights with an optimization algorithm under certain conditions has to be proven. In
other words, it has to be proven that the log likelihood is maximized. This is done in
Theorem A.1. For the proof, it was necessary to formulate the conditions mentioned
above. These conditions are:

• exp(c) is much larger than the number of worlds generatable from the constants in
the training data and in the MLN.

• Every formula has to appear at least once in the training data.

• The formulas are mutually exclusive for all worlds generatable from the constants
in the training data and in the MLN.

• Every formula must be true in the same number of worlds t in every training
database.

• In every training database, there must be exactly one true ground formula.

Thus, in a MLN meeting all these conditions, there is a simple algorithm for fast and at
the same time exact weight learning. Moreover, updating the MLN with new training
data is easy: The weights of existing formulas just have to be increased. However, these
conditions are very restrictive. Nevertheless, it is possible to create useful MLNs meeting
them as the following sections will show.
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4.4. A Reined Generic Approach

The weight calculation described in Section 4.3 allows tractable learning and updating
the weights if new training data is available. But before it can be applied to the MLNs
in Section 4.2, it is necessary to modify the MLN design to match the requirements
for the easier weight calculation. Though the predicate declarations stay the same, it
is necessary to get rid of the negation literal since it results in a diferent amount of
worlds for some formulas. One solution to achieve that is to equip every formula with
a negation of all but the contained atoms of the predicate to negate, if a negation of
that predicate is required. A simple implementation of this solution is to hard-code all of
these negated atoms. However, this causes problems as soon as the domains are enlarged.
A more intelligent implementation is the usage of a negated existential quantiier. This
implementation is, for instance, applied in Listing 4.17 in the example object MLN.

1 0.0 currentTask (?t0 ,"PERCEIVE -OBJECT A ?OBJ -DESIG ")

^ currentParentTask (?t0 ," ACHIEVE OBJECT -IN -HAND ?OBJ")

^ perceivedObject (?t0 ,?o1) ^ objectType (?o1 ,"MUG")

^ objectLocation (?t0 ,?o1 ," kitchen_sink_block ")

^ (!( EXIST ?ol0 ((!(? ol0=kitchen_sink_block))

^ objectLocation (?t0 ,?o1 ,?ol0))))

^ (!( EXIST ?op0 , ?op1 (objectProperty (?o1 ,?op0 ,?op1))))

2 0.0 currentTask (?t0 ," ACHIEVE OBJECT -PICKED ?OBJ")

^ currentParentTask (?t0 ," ACHIEVE OBJECT -IN -HAND ?OBJ")

^ usedObject (?t0 ,?o1) ^ objectType (?o1 ,"MUG")

^ objectLocation (?t0 ,?o1 ,"(1.5,0.0,0,9,0,0,0,1)")

^ (!( EXIST ?ol0 ((!(? ol0="(1.5,0.0,0,9,0,0,0,1)"))

^ objectLocation (?t0 ,?o1 ,?ol0))))

^ (!( EXIST ?ol0 , ?op1 (objectProperty (?o1 ,?ol0 ,?op1))))

Listing 4.17: Example Formulas of a Reined Generic Object MLN

These formulas use the fact that existential quantiication is replaced by a large dis-
junction in MLNs. With the domains timeStep={0}, object={mug1}, propertyKey={},
as well as location={“kitchen_sink_block”, “pancake_table”, “(1.5,0.0,0,9,0,0,0,1)”}, the
irst formula of Listing 4.17 for example is grounded to the one shown in Listing 4.18.
What the formulas actually do is restricting the set of worlds considered during the
inference exactly to those seen in the training databases.

1 0.0 currentTask (0,"PERCEIVE -OBJECT A ?OBJ -DESIG ")

^ currentParentTask (0," ACHIEVE OBJECT -IN-HAND ?OBJ")

^ perceivedObject (0,mug1) ^ objectType(mug1 ,"MUG")

^ objectLocation (0,mug1 ," kitchen_sink_block ")

^ !objectLocation (0,mug1 ," pancake\_table ")

^ !objectLocation (0,mug1 ,,"(1.5,0.0,0,9,0,0,0,1)\")

Listing 4.18: Grounded Formula of a Reined Generic Object MLN
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As one might expect, this approach is still problematic. One problem is that far more
negated existential quantiiers are actually required to make the weight calculation really
applicable. In Listing 4.17 for example, a negated existential quantiier for the childTask
predicate is required. Thus, the formulas get larger and larger.

Other problems get visible if one tries to convert real CRAM logs to this MLN structure.
First of all, the designators in CRAM cannot be represented well with the MLN structure:
Since designators model both objects in the world and plan parameters, they are complex,
recursive data structures. However, these recursive structures have to be pressed into one
string to serve as plan parameter. An example is the ?OBJ parameter in Listing 4.14.

Then, the generic agent approach for modeling the interaction of the robot within an
environment is not well suited for CRAM. The reason is that the perception routines in
CRAM work diferently: Instead of perceiving all objects in the environment, a perception
request is executed. This request tells the robot to perceive a mug on the counter top
for example. Therefore, the perceived objects and the parameter for the perception task
contain the same information. Concerning the actions the robot is executing, there is a
similar problem: The actions that are passed to the process modules executing them are
action designators which are recursive structures, too.

Finally, use cases for a probabilistic state machines and sub task relations are rare.
Though it would be possible to learn how a plan like “prepare breakfast” is composed,
this information would be useless: This plan already exists. A probabilistic state machine
predicting which task might be executed next might be possible, but the bullet reasoning
approach does already provide a simulation mechanism.

Hence, the concept of a generic MLN design is no good idea.

4.5. A Designator Based Approach

The problems encountered in the previous approach lead to the decision to make the
MLN CRAM speciic. Due to the fact that the designators carry most of the important
information about objects, locations, and actions, a designator based MLN design was
created. In this MLN design, reasoning about objects and actions is done by reasoning
about designators. Moreover, reasoning about the relationships between tasks is omitted.
Listing 4.19 shows the predicate declarations for the designator based MLN.
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1 name(task ,taskName !)

2 success(task)

3 goalPattern(task ,goalPattern ?)

4 goalProperty(task ,goalKey ,goalPropertyValue)

5 goalDesignator(task ,goalKey ,designatorHash)

6 designatorHash(designator ,designatorHash ?)

7 designatorType(designator ,designatorType ?)

8 designatorProperty(designator ,designatorPropertyKey ,

designatorPropertyValue)

9 subDesignator(designator ,subDesignatorKey ,designatorHash)

Listing 4.19: Predicate Declarations of a Designator Based MLN

Since the relationships between tasks are not considered in the MLN, it is possible to
replace the time step type by the task type again. To be able to reason about success
probabilities as well as to restrict the search for designators to special tasks, there are
predicates like name and success for this task type. As mentioned before, the designa-
tors are modeled explicitly as recursive key value structure in this approach. Only those
designators which are referenced by the goalPattern, which is the Prolog annotation of
the task, are used in the MLN. They are bound to a task by the predicate goalDesig-
nator. Since the Prolog annotation can also contain values which are no designators as
parameters, these parameters can be modeled as goalProperty. An example of such a
property is a pose.

To avoid having one large formula with all the sub designators and to create smaller
MLNs, each sub designator gets its own formula. Designators have an ID to be able to
reference sub designators. In order to update an existing formula, the IDs of two desig-
nators must be equal if they have the same properties. Therefore, the ID is implemented
as hash. This ID is represented by the predicate designatorHash. Apart from that, a
designator can have a designatorType, identifying the designator as object, location or
action designator. The key value pairs of the designator are modeled by the predicates
designatorProperty for string values and subDesignator for sub designators.

Similar to the previous approaches, formulas are constructed by creating conjunctions
from the training databases. More precisely, one formula is created for each (sub-)
designator in the training data. A formula consists of the designator hash identifying
the (sub-) designator, as well as the designator type, designator properties and the sub
designators. This information is extended by the name and the goal pattern of the
plan parametrized with the designator as well as the information whether this task was
successful. The corresponding atoms are considered as a unit and thus conjugated. A
goalDesignator atom connects the task with the designator. To be able to use the simple
weight calculation presented in Section 4.3, negated existential quantiiers are used again.
Again, the formulas actually restrict the set of worlds considered during the inference
exactly to those seen in the training databases. As an example, Listing 4.20 shows the
formulas created from the object-in-hand task shown in Figure 4.2
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1 0.0 name(?t1 ," ACHIEVE ") ^ success (?t1)

^ goalPattern (?t1 ,"OBJECT -IN -HAND ?OBJ")

^ goalDesignator (?t1 ,"?OBJ","69 d54d73b9 ")

^ designatorHash (?d0 ,"69 d54d73b9 ") ^ designatorType (?d0 ," object ")

^ designatorProperty (?d0 ,"TYPE","mug")

^ subDesignator (?d0 ,"AT"," c4eb4c6730 ")

^ !( EXIST ?p0 ((?p0=/=" OBJECT -IN-HAND ?OBJ") ^ goalPattern (?t1 ,?p0)))

^ !( EXIST ?p0, ?p1 ((?p0=/="? OBJ" v ?p1 =/="69 d54d73b9 ")

^ goalDesignator (?t1 ,?p0 ,?p1)))

^ !( EXIST ?p0, ?p1 ((?p0=/="AT" v ?p1=/=" c4eb4c6730 ")

^ subDesignator (?d0 ,?p0 ,?p1)))

^ !( EXIST ?p0, ?p1 ((?p0=/=" TYPE" v ?p1=/=" mug")

^ designatorProperty (?d0 ,?p0 ,?p1)))

^ !( EXIST ?p0, ?p1 (goalProperty (?t1 ,?p0 ,?p1)))

2 0.0 name(?t1 ," ACHIEVE ") ^ success (?t1)

^ goalPattern (?t1 ,"OBJECT -IN -HAND ?OBJ")

^ goalDesignator (?t1 ,"?OBJ","69 d54d73b9 ")

^ designatorHash (?d0 ," c4eb4c6730 ") ^ designatorType (?d0 ," location ")

^ designatorProperty (?d0 ,"NAME"," kitchen_sink_block ")

^ designatorProperty (?d0 ,"ON","Cupboard ")

^ !( EXIST ?p0 ((?p0=/=" OBJECT -IN-HAND ?OBJ") ^ goalPattern (?t1 ,?p0)))

^ !( EXIST ?p0, ?p1 ((?p0=/="? OBJ" v ?p1 =/="69 d54d73b9 ")

^ goalDesignator (?t1 ,?p0 ,?p1)))

^ !( EXIST ?p0, ?p1 ((?p0=/=" NAME" v ?p1=/=" kitchen_sink_block ")

^ (?p0=/="ON" v ?p1=/=" Cupboard ")

^ designatorProperty (?d0 ,?p0 ,?p1)))

^ !( EXIST ?p0, ?p1 (goalProperty (?t1 ,?p0 ,?p1)))

^ !( EXIST ?p0, ?p1 (subDesignator (?d0 ,?p0 ,?p1)))

Listing 4.20: Extract of a Designator Based MLN

Compared to the previous MLN designs, one task is divided into diferent formulas.
Therefore, there are also diferent databases for each task. Listing 4.21 shows the training
database for the achieve object-in-hand task in Figure 4.2 as example.

1 name(" Achieve_AbC ","ACHIEVE ")

2 success (" Achieve_AbC ")

3 goalPattern (" Achieve_AbC ","OBJECT -IN -HAND ?OBJ")

4 goalDesignator (" Achieve_AbC ","?OBJ","69 d54d73b9 ")

5 designatorHash ("123" ,"69 d54d73b9 ")

6 designatorType ("123" ," object ")

7 designatorProperty ("123" ," TYPE","mug")

8 subDesignator ("123" ,"AT"," c4eb4c6730 ")

9 ---

10 name(" Achieve_AbC ","ACHIEVE ")

11 success (" Achieve_AbC ")

12 goalPattern (" Achieve_AbC ","OBJECT -IN -HAND ?OBJ")

13 goalDesignator (" Achieve_AbC ","?OBJ","69 d54d73b9 ")

14 designatorHash ("456" ," c4eb4c6730 ")

15 designatorProperty ("456" ," NAME"," kitchen_sink_block_counter_top ")

16 designatorProperty ("456" ,"ON","Cupboard ")

17 designatorType ("456" ," location ")

Listing 4.21: Training Databases for one Task in the Designator Based MLN
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Of course, this MLN design is suited for the use cases shown in Figure 1.1. Listing 4.22
shows the query for the type of an object perceived at the kitchen_sink_block. The calcu-
lation of a success probability for the achieve object-in-hand plan is shown in Listing 4.23.
Finally, there is the use case to ind a parametrization for a plan to be successful. This
is realized by the query in Listing 4.24. There, two atoms are conjugated in the query in
order to get the key for the sub designator as well as the properties of the sub designator.

P ( designatorProperty(D,"TYPE", ?p) |

EXIST ?dh ,?sdh (name(T, "PERCEIVE -OBJECT ")

^ success(T)

^ goalPattern(T, "A OBJ -DESIG ?OBJ -DESIG")

^ goalDesignator(T, "?OBJ -DESIG", ?dh)

^ designatorType(D, "object ")

^ designatorHash(D, ?dh)

^ subDesignator(D, "AT", ?sdh)

^ designatorType(SD ," location ")

^ designatorHash(SD, ?sdh)

^ designatorProperty(SD ,"ON","Cupboard ")

^ designatorProperty(SD ,"NAME"," kitchen_sink_block "))

)

Listing 4.22: Query for Objects Perceived at a Location Using the Designator Based MLN

P ( success(T) |

EXIST ?dh ,?sdh (name(T, "ACHIEVE ")

^ goalPattern(T, "OBJECT -IN -HAND ?OBJ")

^ goalDesignator(T, "?OBJ", ?dh)

^ designatorType(D, "object ")

^ designatorProperty(D, "TYPE", "mug")

^ designatorHash(D, ?dh)

^ subDesignator(D, "AT", ?sdh)

^ designatorType(SD ," location ")

^ designatorHash(SD, ?sdh)

^ designatorProperty(SD ,"ON","Cupboard ")

^ designatorProperty(SD , "NAME", "kitchen_sink_block "))

)

Listing 4.23: Query for a Success Probability Using the Designator Based MLN

P ( designatorProperty(SD ,?sdk , ?sdv) ^ subDesignator(D, ?k, ?sdh) |

EXIST ?dh, ?sdh , ?k (name(T, "ACHIEVE ")

^ success(T)

^ goalPattern(T, "OBJECT -IN -HAND ?OBJ")

^ goalDesignator(T, "?OBJ", ?dh)

^ designatorType(D, "object ")

^ designatorProperty(D, "TYPE", "mug")

^ designatorHash(D, ?dh)

^ subDesignator(D, ?k, ?sdh)

^ designatorHash(SD, ?sdh))

)

Listing 4.24: Query for the Completion of a Designator Using the Designator Based MLN
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One problem in this approach is the large number of worlds to be considered when execut-
ing a query. An example is the query in Listing 4.22. This query leaves several variables
open, such as the designator hashes. Since there is almost one designator hash per for-
mula, a large amount of worlds must be generated. Even for the MLN in Listing 4.20,
the normal exact inference algorithm reports 5 435 817 984 worlds to enumerate. Thus,
the inference with all existing inference methods in pracmln is intractable. Therefore, an
inference algorithm able to cope with this case was developed. It is described in detail
in Chapter 5.

Though this approach is already pretty usable, it has some drawbacks. First of all, the
large number of worlds requires a high weight constant for the weights. This can be
problematic, since exp(709.79) extends the range of double precision loating point types
on normal 64 bit computers. However, this problem is solvable. A more diicult problem
is that the approach does not generalize. If the robot has for example picked up a mug
during the training, the approach will not be able to estimate the success probability
for picking up a green mug. Therefore, it is not really an improvement over the Prolog
reasoning described in [WTBB14].

4.6. The Final Approach

The inal approach is the one that will be used in the implementation in Chapter 6. Since
the mapping of the CRAM log iles to the MLN design in the previous attempt works
pretty well, the concept of a MLN primarily modeling designators was retained. However,
it was tried to build a generalizing approach. Furthermore, the MLN was designed to
work with as few worlds as possible. At the same time, the weight calculation mentioned
in Section 4.3 had to be applicable to be able to update existing formulas. Listing 4.25
shows the predicate declarations of the inal MLN.

1 name(task ,taskName !)

2 failure(task ,failureName !)

3 goalPattern(task ,goalPattern !)

4 goalParameter(designator ,task!)

5 goalParameterKey(designator ,goalParameter !)

6 designatorProperty(designatorProperty ,designator ?)

7 propertyKey(designatorProperty ,designatorPropertyKey !)

8 propertyValue(designatorProperty ,designatorPropertyValue !)

Listing 4.25: Predicate Declarations of the Final MLN

Again, the task itself is an object. The name property does not specify the task name,
but the plan name. Each task must have a plan name since the name predicate is modeled
using a functional constraint which is indicated by the quotation mark. It appears strange
that a task must also have a failure, but this is a simple method for avoiding negated
existential quantiiers: If there is a failure, the failure name is referenced. Otherwise, an
empty string is used as failure name. The same is true for the Prolog annotation modeled
as gaolPattern.

54



Similar to the previous MLN design, the designators appearing in the Prolog annotation
can be mapped to the task using the predicate goalParameter. More precisely, the task
is mapped to the designator in order to avoid a negated existential quantiier. The key
specifying the parameter name is assigned to the designator in an extra predicate named
goalParameterKey. As the MLN should generalize over diferent designator properties, it
seems natural to model the designator properties as objects. Therefore, properties can be
assigned to a designator with the designatorProperty predicate. Again, the designator is
actually assigned to the property to avoid a negated existential quantiier. Each property
can then have a propertyKey and a propertyValue.

The most diicult part is the formula design: On the one hand, the MLN should general-
ize. On the other hand, it should be possible to use the weight calculation in Section 4.3.
A solution is to model the co-occurrence of properties as it is done in [ZFFF14]. How-
ever, in contrast to [ZFFF14] the formulas here use conjunctions as connective instead of
implications. More speciically, for each combination of two properties of one designator,
one formula and thus one conjunction is created. As in the last MLN design, the task
speciic information such as name, goal pattern and failures for one task is part of more
than one formula. Apart from the task speciic information, the conjunction contains the
property speciic atoms. In Listing 4.26 for example, the formulas for the object-in-hand
task in Figure 4.2 are shown.

1 0.0 name(?t2 ," ACHIEVE ") ^ failure (?t2 ," ")

^ goalPattern (?t2 ,"OBJECT -IN -HAND ?OBJ") ^ goalParameter (?d3 ,?t2)

^ goalParameterKey (?d3 ,"?OBJ") ^ designatorProperty (?dp0 ,?d3)

^ propertyKey (?dp0 ," object.AT:: location.ON")

^ propertyValue (?dp0 ," Cupboard ") ^ designatorProperty (?dp1 ,?d3)

^ propertyKey (?dp1 ," object.TYPE") ^ propertyValue (?dp1 ,"MUG")

2 0.0 name(?t2 ," ACHIEVE ") ^ failure (?t2 ," ")

^ goalPattern (?t2 ,"OBJECT -IN -HAND ?OBJ") ^ goalParameter (?d3 ,?t2)

^ goalParameterKey (?d3 ,"?OBJ") ^ designatorProperty (?dp0 ,?d3)

^ propertyKey (?dp0 ," object.AT:: location.NAME")

^ propertyValue (?dp0 ," kitchen_sink_block ")

^ designatorProperty (?dp1 ,?d3) ^ propertyKey (?dp1 ," object.TYPE")

^ propertyValue (?dp1 ,"MUG")

3 0.0 name(?t2 ," ACHIEVE ") ^ failure (?t2 ," ")

^ goalPattern (?t2 ,"OBJECT -IN -HAND ?OBJ") ^ goalParameter (?d3 ,?t2)

^ goalParameterKey (?d3 ,"?OBJ") ^ designatorProperty (?dp0 ,?d3)

^ propertyKey (?dp0 ," object.AT:: location.NAME")

^ propertyValue (?dp0 ," kitchen_sink_block ")

^ designatorProperty (?dp1 ,?d3)

^ propertyKey (?dp1 ," object.AT:: location.ON")

^ propertyValue (?dp1 ," Cupboard ")

Listing 4.26: Example Formulas of a MLN Using the Final Design
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The idea of this design is that only those training designators should be taken into account
by the inference which have the most properties in common with the evidence. Through
the (soft) functional constraints in combination with a restricted set of properties, only
those formulas are satisiable given the evidence which contain the property keys and
values speciied in the evidence. In Listing 4.27 for example, only formulas containing
propertyKey(MugProperty, "object.TYPE") and propertyValue(MugProperty, "MUG")
are satisiable. When the number of property objects is increased and the new property
object was also part of the training data, the number of true formulas grows rapidly since
one property is part of more than one formula. Due to the constant component in the
formula weights as speciied by Section 4.3, a world having one more true ground formula
than another one is far more probable. Hence, only those worlds, and thus those training
examples, which are most similar to the evidence are considered during the inference. If
there is a new property which did not occur in a training example, the property is ignored
and there are still worlds with true formulas since there is no negation. Therefore, the
approach generalizes.

P ( PropertyKey(OtherProperty , ?k) |

name(Task , "ACHIEVE ")

^ failure(Task , " ")

^ goalPattern(Task , "OBJECT -IN-HAND ?OBJ")

^ goalParameter(Designator , Task)

^ goalParameterKey(Designator , "?OBJ")

^ designatorProperty(MugProperty , Designator)

^ propertyKey(MugProperty , "object.TYPE")

^ propertyValue(MugProperty , "MUG")

^ designatorProperty(OtherProperty , Designator) )

Listing 4.27: Query for Completing a Designator Property Key with the Final MLN

It is noticeable that the property keys, for example object.AT::location.ON, are diferent
compared to the property keys in the other MLNs. Moreover, there are no predicates
for the designator type or for sub designators. The reason is that all sub designators
are aggregated into one large designator. In this large designator, the boundary between
the diferent sub designators is visible by two colons in the property key. To keep the
designator type of both, the parent designator and the sub designator, the designator
type is also encoded in the property key: It is represented by the string ending at the
period. Thus, a small workaround is applied here.

Similar to the MLN design in the previous section, splitting the formulas also requires
splitting the training database. Listing 4.28 shows one of the three training databases
belonging to the MLN in Listing 4.26.
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1 name(" Achieve_AbC ","ACHIEVE ")

2 failure (" Achieve_AbC "," ")

3 goalPattern (" Achieve_AbC ","OBJECT -IN -HAND ?OBJ")

4 goalParameter (123," Achieve_AbC ")

5 goalParameterKey (123 ,"? OBJ")

6 designatorProperty (1230 ,123)

7 propertyKey (1230 ," object.TYPE")

8 propertyValue (1230 ," MUG")

9 designatorProperty (1231 ,123)

10 propertyKey (1231 ," object.AT:: location.ON")

11 propertyValue (1231 ," Cupboard ")

Listing 4.28: One Training Database for a MLN Using the Final Design

Finally, there is a MLN design which meets the conditions for learning introduced in
Section 1.1, in particular the generalization, and which is suited for the use cases in
Figure 1.1. The irst use case is to infer what is expected to be perceived at a speciic
location. For this inference, the robot has to know the designator properties. Listing 4.29
shows the query that the robot can use in the example to infer what to expect at the
kitchen_sink_block.

P ( propertyValue(ObjectTypeProperty , ?v) |

name(Task , "PERCEIVE -OBJECT ")

^ failure(Task , " ")

^ goalPattern(Task , "A ?OBJ -DESIG ")

^ goalParameter(Designator , Task)

^ goalParameterKey(Designator , "?OBJ -DESIG")

^ designatorProperty(OnProperty , Designator)

^ propertyKey(OnProperty , "object.AT:: location.ON")

^ propertyValue(OnProperty , "Cupboard ")

^ designatorProperty(NameProperty , Designator)

^ propertyKey(NameProperty , "object.AT:: location.NAME ")

^ propertyValue(NameProperty , "kitchen_sink_block ")

^ designatorProperty(ObjectTypeProperty , Designator)

^ propertyKey(ObjectTypeProperty , "object.TYPE") )

Listing 4.29: Query inferring what to Expect on a Cupboard Using the Final MLN

The second use case describes that the robot wants to know the success probability for
the execution of a parametrized plan. For the example, this probability is inferred in
Listing 4.30. There, the success probabilities for the achieve object-in-hand plan given a
mug on the kitchen_sink_block is inferred.
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P ( failure(Task , " ") |

name(Task , "ACHIEVE ")

^ goalPattern(Task , "OBJECT -IN-HAND ?OBJ")

^ goalParameter(Designator , Task)

^ goalParameterKey(Designator , "?OBJ")

^ designatorProperty(OnProperty , Designator)

^ propertyKey(OnProperty , "object.AT:: location.ON")

^ propertyValue(OnProperty , "Cupboard ")

^ designatorProperty(NameProperty , Designator)

^ propertyKey(NameProperty , "object.AT:: location.NAME ")

^ propertyValue(NameProperty , "kitchen_sink_block ")

^ designatorProperty(ObjectTypeProperty , Designator)

^ propertyKey(ObjectTypeProperty , "object.TYPE") )

^ propertyValue(ObjectTypeProperty , "MUG") )

Listing 4.30: Query for Failure and Success Probabilities Using the Final MLN

Finally, there is the use case to infer how to parametrize the object-in-hand task for
a mug to be successful. To get to know this, it has to extend an existing designator.
Therefore, the robot irst has to infer the most likely designator key, which is done in
Listing 4.27. When the key, for example object.AT::location.ON, has been inferred, the
respective ground atom propertyKey(OtherProperty, "object.AT::location.ON") can be
appended to the evidence of the next query. The next query is used to infer the most
likely property value, as shown in Listing 4.31. This procedure can be repeated until
the designator is completed. The conditions for completion are explained in detail in
Section 6.3. A big advantage of this designator completion is that the robot does not
need to know which keys are necessary. Hence, this feature can be used when processing
incomplete instructions, for example gathered by natural language processing.

P ( PropertyValue(OtherProperty , ?v) |

name(Task , "ACHIEVE ")

^ failure(Task , " ")

^ goalPattern(Task , "OBJECT -IN-HAND ?OBJ")

^ goalParameter(Designator , Task)

^ goalParameterKey(Designator , "?OBJ")

^ designatorProperty(MugProperty , Designator)

^ propertyKey(MugProperty , "object.TYPE")

^ propertyValue(MugProperty , "MUG")

^ designatorProperty(OtherProperty , Designator)

^ propertyKey(OtherProperty , "object.AT:: location.ON"))

Listing 4.31: Query for Completing a Designator Property Value with the Final MLN

It is worth mentioning that all those queries can easily be executed with the normal exact
inference algorithm. Of course, the algorithm in Chapter 5 performs also very well on
these queries.

In summary, diferent MLN designs have been developed. The last one is a compromise
between intuitive modeling, simple learning and generalization. Nevertheless, it is well
suited for all the use cases presented in the use case diagram in Figure 1.1.
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5. Improved Inference

One problem of the design of the designator based MLN in Section 4.5 is the intractable
inference. None of the inference algorithms described in Section 2.4.4 is able to perform
an inference in these MLNs. For the exact inference, the reason is the huge amount of
possible worlds. The equation for the exact inference, which had already been introduced
in Equation 2.5, explains that:

P (Q|E,L,C) =

︀

x∈�Q,L,C∩�E,L,C

exp

︂

m︀

i=1
wini(x)

︂

︀

x∈�E,L,C

exp

︂

m︀

i=1
wini(x)

︂ (2.5)

If this formula is implemented, every world in which the evidence ground atoms are
true must be enumerated. Concerning the MLN design in Section 4.5, this is somehow
frustrating since one can easily estimate the probability manually. The thoughts leading
to this claim are best explained by an example.

1 name(task , name!)

2 success(task)

3 designatorHash(designator ,designatorHash !)

4 designatorProperty(designator ,propertyKey ,propertyValue !)

5

6 name ={" ACHIEVE", "PERFORM "}

7

8 40.0 success (?t) ^ designatorHash (?d, "a3f")

^ designatorProperty (?d, "TYPE", "MUG")

9 40.69 !success (?t) ^ designatorHash (?d, "a3f")

^ designatorProperty (?d, "TYPE", "MUG")

10 40.0 success (?t) ^ designatorHash (?d, "4e7")

^ designatorProperty (?d, "TYPE", "APPLE")

Listing 5.1: Simpliied Designator Based MLN

P ( success(T) | designatorProperty(D, "TYPE", "MUG") )

Listing 5.2: Query for the Success Probability of a Plan Parametrized with a Mug
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Listing 5.1 shows a simpliied designator based MLN. It can be used to calculate the
success probability for a plan parametrized with a designator describing a mug, as
shown in Listing 5.2. The only two formulas which are satisfyable given the evidence
designatorProperty(D, "TYPE", "MUG") are the irst ones. Moreover, the only formula
satisfyable given the query success(T) and the evidence is the irst one. Thus, the only
weight used in the numerator is the one for formula 1, whereas the only weights used in
the denominator are the irst two weights. Therefore, the probability must be mainly in-
luenced by these two formulas. Since the weight of the second one is larger, the resulting
probability will approximately be:

exp(40)

exp(40.69) + exp(40)
≈ 0.334

In the example, several interesting thoughts have been applied: First of all, worlds com-
patible with the evidence but incompatible with all formulas do not need to be consid-
ered explicitly. In the example, some of these worlds are those where the ground atom
designatorHash(D, “4e7”) is true. Since no formula is true in these worlds, the sum in the
exponentiation is 0 and the exponentiation becomes 1. Hence, only a 1 must be added to
the numerator or the denominator for each of the worlds incompatible with all formulas.

Another interesting thought is that there might be diferent worlds where the same
weights are applied. For example, the ground atoms name(D, “ACHIEVE”) and
name(D, “PERFORM”) do not appear in any formula. Thus, there are diferent worlds
where the irst formula is true: one for each name atom. However, the exponentiated sum
is equal for all of these worlds. In summary, the formulas are actually used to specify a
set of worlds1: In this case, the worlds that can be outsourced from the actual calculation
are speciied.

From these principles, an inference algorithm for formulas consisting of conjunctions of
literals evolved. Though inference in MLNs having the inal deisgn is also possible with
the normal exact inference algorithm, the algorithm is explained in the following sections
since it might be usable in other areas in the future.

5.1. Algorithm Description

To explain the inference algorithm descriptively, the MLN in Listing 5.3 will be used. It
is assumed that the MLN is grounded with the evidence shown in Listing 5.4. Thus, the
worlds shown in Table 5.1 are possible. Apart from that, Table 5.1 also shows how often
a formula is true. This information can be used to validate the results later on.

1This idea actually origins form the lecture “Theorie reaktivier Systeme” by Jan Peleska, where system

states were speciied by irst-order logic.
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1 foo(x)

2 bar(y)

3 baz(y,z)

4

5 40.0 foo(?v) ^ bar(?w)

6 40.0 !foo(?v)

7 40.0 baz(?v, ?w) ^ bar(?v)

Listing 5.3: Example MLN Used for Explaining the Inference Algorithm

1 foo(a)

2 x={a,b}

3 y={0}

4 z=α

Listing 5.4: Evidence Database for the MLN in Listing 5.3

foo(a) foo(b) bar(0) baz(0, α) !foo(?v) foo(?v) ∧ bar(?w) baz(?v,?w) ∧ bar(?v)
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 0
1 0 1 1 1 1 1
1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 1 0 0 2 0
1 1 1 1 0 2 1

Table 5.1.: Worlds for the MLN in Listing 5.3

Figure 5.1 shows the entry point of the algorithm. First of all, the evidence is converted
to a hard logical formula by conjugating the ground atoms. Since there is only one ground
atom in the example, the resulting formula is foo(a). Moreover, the query is conjugated
with the evidence. In the example, this might result in foo(a) ∧ foo(b) if the query is
foo(b). Then, a subroutine2 is called to eiciently calculate both the numerator and the
denominator of the following equation:

P (Q|E,L,C) =

︀

x∈�Q,L,C∩�E,L,C

exp

︂

m︀

i=1
wini(x)

︂

︀

x∈�E,L,C

exp

︂

m︀

i=1
wini(x)

︂ (2.5)

This is the equation for the exact inference introduced in Equation 2.5 irst. After both,
the numerator and the denominator have been calculated, the numerator is divided
by the denominator and returned. Up to now, there is no diference to the normal
implementation of the exact inference except from the fact that the evidence is treated
as hard formula.
2Of course, in the real implementation the numerators for the diferent queries and the denominator

are calculated together in one routine for eiciency reasons.
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( query, evidence, probability ) Inference Algorithm Inference Algorithmactivity [ ]

return probability

in query

in evidence : convert to hard formula

hard formula

evidence

: get numerator or

denominator

evidence

sum

: get numerator or 

denominator

evidence

sum

: conjugate
formula1 formula2

conjunction

: divide
numerator denominator

result

Figure 5.1.: Top Level Activities in the Inference Algorithm

Figure 5.2 shows how the numerator or the denominator is calculated. The steps shown
in this diagram will be introduced in the following sections. Considering the example
from Listing 5.3, it will be referred to the calculation of the denominator in the following.
However, this calculation can easily be transferred to the numerator as well.

5.1.1. Get Ground Formulas and Conjugate

As in other inference algorithms, the irst step is to generate ground formulas from the
MLN formulas. This process is known as grounding. In the example, the following ground
formulas are generated:

a) !foo(a)

b) !foo(b)

c) foo(a) ∧ bar(0)

d) foo(b) ∧ bar(0)

e) baz(0, α) ∧ bar(0)
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get numerator or denominator (evidence) get denominator

Figure 5.2.: Calculating the Numerator or Denominator in the Inference Algorithm

In general, the formula grounding is one of the bottle necks in the MLN inference. There-
fore, specialized grounding algorithms are suited to pass this bottle neck. For the desig-
nator based MLN design from Section 4.5, the negated existential quantiiers are causing
problems: They are actually expanded to a large disjunction. Through the equality com-
parison in the disjunction, too many values are generated. Moreover, the result needs to
be simpliied to get formulas consisting of conjunctions. Hence, a specialized grounder
is implemented for negated existential quantiiers. This grounder simply determines the
atoms not to negate and negates all other ground atoms of the given predicate. The
results are a faster grounding and a simpliied formula structure.

The inal MLN design developed in Section 4.6 does not contain negated existential quan-
tiiers. However, the grounding process is still slow. The reason are formulas with several
designator properties. A naive grounding algorithm assigns one of the properties in the
domain to each property variable. This assignment is not necessarily satisiable given the
evidence. If, for example, the evidence states that propertyKey(MugProp, “MUG”) is true
and the literal propertyKey(?dp1, “APPLE”) is grounded, a naive algorithm would try
propertyKey(MugProp, “APLLE”) although the functional constraint in the propertyKey
predicate forbids that. Thus, the grounding process is non trivial even for conjunctions.
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The pracmln framework already contains an improvement for conjunctions: It grounds
(soft) functional literals irst and it returns only those groundings which are true given
the evidence. However, it still tries too many possibilities since it does not take variables
occurring in two literals into account. An example is the formula in line 8 of Listing 5.3:
If the ground formulas given the constants in Listing 5.5 should be determined, the nor-
mal grounding algorithm would irst select a literal, e.g. designatorHash(?d, “a3f”) and
assign a value to the variable ?d, e.g. D3. Then, it would select the next literal, e.g.
designatorProperty(?d, “TYPE”, “MUG”), detect that the variable value D3 is incompat-
ible to the evidence and backtrack. This can be very ineicient, especially for the inal
MLN design. Therefore, a further improved variant applicable for conjunctions consisting
of atoms has been developed.

P ( success(T) |

designatorHash(D1 , "4e7")

^ designatorProperty(D2 , "TYPE", "MUG")

^ designatorHash(D3, "a3f")

^ designatorProperty(D3 , "TYPE", "APPLE") )

Listing 5.5: Advanced Success Query in Listing 5.1

In a irst step, all possible ground atoms of a predicate given the evidence are determined.
Table 5.2 shows the results for the MLN in Listing 5.3 and the constants in Listing 5.5.

designatorHash
designatorHash(D1, "4e7")
designatorHash(D2, "a3f")
designatorHash(D2, "4e7")
designatorHash(D3, "a3f")

designatorProperty
designatorProperty(D1, "TYPE", "MUG")
designatorProperty(D1, "TYPE", "APPLE")
designatorProperty(D2, "TYPE", "MUG")
designatorProperty(D3, "TYPE", "APPLE")

success
success(T)

Table 5.2.: Possible Ground Atoms of the Predicates from Listing 5.1

Then, the atoms of the conjunction are sorted by the number of ground atoms. In
Table 5.2, the success atom would be grounded irst. Since the variable T is only con-
tained in this atom, the atom is grounded normally. The other two predicates both
have four possibly true ground atoms. Thus, their order is not changed. Finally, the
possible variable values are determined by an intersection of the possible variable val-
ues of the diferent atoms. They are in turn determined by the ground atoms. In the
designatorHash(?d, “a3f”) atom, the variable values for ?d are determined by the left
table of Table 5.2: Only D2 and D3 are possible. The possible variable values for ?d
in the designatorProperty(?d, “TYPE”, “MUG”) atom are D1 and D2, as the right table
shows. Thus, the only possible assignment for ?d is {D2, D3}∩ {D1, D2} = {D2}. This
leads to an improved performance, especially in the inal MLN design from Section 4.6.
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Now that the ground formulas have been generated, they must be conjugated with the
evidence. Since the evidence is also in the form of a logical formula, the conjugation
process is easy. It is important that hard formulas are treated like evidence formulas and
thus they are also part of this conjunction. In the example in Listing 5.3, the following
formulas are the result of the conjugation process:

a) !foo(b) ∧ foo(a)

b) foo(a) ∧ bar(0) ∧ foo(a)

c) foo(b) ∧ bar(0) ∧ foo(a)

d) baz(0, α) ∧ bar(0) ∧ foo(a)

This enumeration contains one formula less than the enumeration of the ground formulas
above. The reason is that !foo(a)∧ foo(a) contains a contradiction. Thus, it is omitted.
Another special case are hard formulas which are no conjunctions. They have to be in
the disjunctive normal form. Then, one conjunction is created from each formula and
each part of the disjunction. In the end, the conjunctions created here will lead to a
decreased number of worlds to consider.

5.1.2. Combine Formulas

The most important part in the algorithm is the combination of the formulas with each
other. In a nutshell, all combinations of an arbitrary number of formulas generated in the
step before are generated until a ixed point is reached. Table 5.3 lists the combination
creatable from the example.

Index Formula Maximum Number of Worlds
a) !foo(b) ∧ foo(a) 4
b) foo(a) ∧ bar(0) 4
c) foo(b) ∧ bar(0) ∧ foo(a) 2
d) baz(0, α) ∧ bar(0) ∧ foo(a) 2
e) foo(a) ∧ bar(0)∧!foo(b) 2
f) baz(0, α) ∧ bar(0) ∧ foo(a) ∧ foo(b) 1
g) baz(0, α) ∧ bar(0) ∧ foo(a)∧!foo(b) 1

Table 5.3.: Combined Ground Formulas of the MLN in Listing 5.3

One can imagine that a naive implementation is computationally very expensive. There-
fore, special algorithms are needed again. Since the development of these algorithms is
quite complex, the problem is reduced to another problem instead. Figure 5.3 shows how
the reduction works.
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combine formulas combine formulas( formulas ) activity [ ]

return formula combinations

in formulas

: get all satisfiable combinations of

 two formulas
formulas

combinations

: create satisfiable combinators of 

formula sets

formula sets

formula combinations

: find maximal cliques

graph

cliques

: create graph

edges

nodes

graph

Figure 5.3.: Combining Formulas in the Inference Algorithm

Initially, all combinations of two formulas are generated. From these combinations, a
graph is generated: The nodes are the formulas and an edge is created if two formulas can
be combined. Now, existing algorithms3 can be used to ind maximal cliques in this graph.
Afterwards, only the combinations of the maximal cliques have to be generated. The
graph for the example is shown in Figure 5.4. It’s cliques are {{a, b}, {a, d}, {b, c, d}} and
thus only the combinations of these cliques have to be generated. This is an improvement,
since the check whether a combined formula is satisiable is computationally expensive,
at least in pracmln. Some of these checks are removed by the algorithm.

5.1.3. Assign World Number

One thing that has not been discussed previously is the column Maximum Number of
Worlds in Table 5.3: As mentioned before, formulas can be used to specify sets of worlds
in which they are true. Hence, the column speciies the number of worlds in which the
formula combination is true. However, one world might be referenced by two formula
combinations. Since the formula combinations are used to specify sets of worlds later on,
a unique assignment of worlds to formulas is needed.

3In the implementation, the networkx package is used: https://networkx.github.io/
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a)

b) c)

d)

Figure 5.4.: Formula Graph for the Ground Formulas of Listing 5.3

The solution is to determine which combination contains worlds of which other combina-
tion. In Table 5.3 for example, the combination baz(0, α) ∧ bar(0) ∧ foo(a) contains the
combination baz(0, α)∧ bar(0)∧ foo(a)∧!foo(b) since the former is also true in the only
world in which the latter is true (Line 4 in Table 5.1). The purpose of the containment
relation is to assign a world to the most special combination which is true in this world.
Starting at those formulas containing no other formulas, the containment can be calcu-
lated. Afterwards, the number of worlds can be calculated by subtracting the number of
worlds of the contained formulas from the maximum number of worlds. Table 5.4 shows
the result for the example. It is important to notice that this process guarantees that no
world is assigned to two combinations4.

Index Contains Generated Worlds
g) - 1=1
f) - 1=1
e) f 2-1=1
d) f,g 2-1-1=0
c) g 2-1=1
b) c,d,e,f,g 4-4=0
a) e,f 4-2=2
Sum 6

Table 5.4.: Containment of the Formula Combinations in Table 5.3

4Assume there is a world assigned to two combinations. Then, there would be a combination of these

combinations to which the world would be assigned. Thus, the world would not be assigned to both

of the formulas, which is a contradiction.
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5.1.4. Calculate Sum

Now that there is a unique assignment of world numbers to formulas, the denominator
can be calculated. One trick that will be used to do so is shown in the following equation:

︁

x∈�

exp(

|F |
︁

i=0

wini(x)) = |Xf |+
︁

x∈Xt

exp(

|F |
︁

i=0

wini(x)) (5.1)

with Xf = {x′|x′ ∈ X ∧ ∄f ∈ F : x′ |= f}

and Xt = {x′|x′ ∈ X ∧ ∃f ∈ F : x′ |= f}

(5.2)

All the worlds for which the exponentiated sum is 0 are represented by Xf . Thus, the
sum has to be calculated over less worlds Xt. To use the formula combinations C instead
of the worlds X , this expression can be further reined:

|Xf |+
︁

x∈Xt

exp(

|F |
︁

i=0

wini(x)) = |Xf |+
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c∈C

a(c) · exp(
︁

g(c)

g) (5.3)

In this case, g(c) represents the set of weights of the ground formulas which are part
of the formula combination c. a(c) represents the actual world counts calculated above.
Hence, only the formula combinations must be enumerated. In the example, the following
calculation results:

︁

x∈�E,L,C

exp(

|F |
︁
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wini(x)) = |Xf |+
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a(c) · exp(
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= (23 − 6)

+ 1 · exp(wb + wc + we)

+ 1 · exp(wc + wd + we)

+ 1 · exp(wb + wc)

+ 0 · exp(wc + we)

+ 1 · exp(wc + wd)

+ 0 · exp(wc)

+ 2 · exp(wb)

wb, wc, wd and we represent the weights of the ground formulas. They are actually all
40 in Listing 5.3. If one compares the calculation above with the true ground formulas
in Table 5.1, it gets clear that the calculation is correct. Afterwards, the sum is returned
and can then be used to calculate the actual probability, as described in Figure 5.1.
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5.2. Applicability

Though the algorithm is applicable in any MLN that uses formulas consisting of conjunc-
tions, it might work either better or worse than the normal exact inference. However, this
is highly dependent on the MLN. The algorithm is especially eicient if there are only
few ground formulas which are true given the evidence and if there are only few combina-
tions of true formulas. This is the case for the MLNs in Section 4.5, where it is the only
applicable inference method compared to the algorithms mentioned in Section 2.4.4.

However, the algorithm reduces some of its work to the search for maximal cliques. The
clique problem in turn is known to be NP complete [Sch08]. Thus, the algorithm is
at least NP complete in the number of formula combinations. In practice, there are
other bottlenecks which are computationally even more expensive, such as the formula
consistency check.

To sum it up, a new inference algorithm was developed. It works by generating world
counts from formula combinations. This algorithm is especially useful for the designator
based MLN design developed in Section 4.5, but also applicable in the inal MLN design
described in Section 4.5.
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6. Implemented Software

A good MLN design and an eicient inference algorithm are very important steps towards
a lifelong learning robot. However, this is not enough: First of all, the logs must be
converted to a MLN automatically. Then, MLN queries have to be executable from
within a CRAM plan. To keep the plans as simple and maintainable as possible, the
code accessing the MLNs should be on a high level. That means that routines to convert
CRAM constructs, such as designators, to a MLN database are needed. Furthermore,
it is desirable to encapsulate common queries, such as the queries for the designator
completion. Therefore, software has been developed. This chapter is dedicated to give
an overview of this software in order to use and maintain it later on. Before some
interesting algorithms are explained, an overview of the components needed to create a
lifelong learning robot is presented.

6.1. Overview

Figure 6.1 and Figure 6.2 show a reined version of the activity diagram from Figure 2.10.
It depicts which components, implemented mainly in the form of ROS packages, are
involved in a lifelong learning robot. The communication relationships among these
components are shown in Figure 6.3. Files which are written by one component and read
by another component, as well as ROS messages exchanged between two components,
are displayed as IO lows. ROS services are displayed as provided or required interfaces
in the lollipop notation.

The CRAM plans do not actually trigger the logging of function calls explicitly. Instead,
macros such as def-cram-function, which are used to deine the plan functions, call hooks.
These hooks trigger Lisp functions located in the ROS package cram_beliefstate, which
are sending the logging information to semrec. They communicate using the operate
service of type DesignatorCommunication ofered by semrec. Then, a running node in
the semrec ROS package creates the OWL ile and sends the designators as ROS message
to a running mongodb_log node. This node stores the designators in the MongoDB via
its C++ API. Therefore, the logging mechanism is actually composed of the components
semrec, cram_beliefstate and mongodb_log.

71



( plan parameter : Designator ) activity learning learning[   ]

in plan parameter : Designator

 : learn MLN

mlntask tree

robot_memoryowl_memory_converter

 : combine

designators

task tree

task tree

«datastore»

MLN file

mongodb_log

 : record 
designators

designators

designators
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 : record plan data

plan calls

plan log

designators

«datastore»

log file
«datastore»

MongoDB

cram_beliefstate

 : send plan 
data

plan calls

plan calls

CRAM

 : execute plan

plan parameter

plan calls

Figure 6.1.: Assignment of ROS Packages to the Learning Part of the Thesis Concept

The ROS package owl_memory_converter is responsible for combining log iles and des-
ignators to a task tree again. It uses the OWL API 1 for parsing the OWL iles. Though
the owl_memory_converter is implemented in Java, the MongoDB C API 2 is used for
extracting the designators from the MongoDB. This is required since the MongoDB Java
API3 is unable to cope with duplicate empty keys used to store designators in some cases.

1http://owlapi.sourceforge.net/
2https://api.mongodb.com/c/current/
3https://api.mongodb.com/java/

72

http://owlapi.sourceforge.net/
https://api.mongodb.com/c/current/
https://api.mongodb.com/java/


( plan parameter : Designator ) activity usage usage[ ]

in plan parameter : Designator

cram_robot_memory

: create query for 
interesting information

plan parameter query

pracmln

: execute query

query

results

MLN

CRAM

: execute plan1

plan parameter

: execute plan2

plan parameter

cram_robot_memory

: process 
query results

updated plan parameter

query results

plan parameter

«datastore»

MLN file

Figure 6.2.: Assignment of ROS Packages to the Inference Part of the Thesis Concept

The owl_memory_converter provides a ROS node able to publish the tasks and desig-
nators in the form of RobotState messages to a ROS topic. Before this is done, a Trigger
service is called to signalize that messages will be sent. Afterwards, a LearningTrigger ser-
vice is called to signalize that the learning can start. The mentioned messages are actually
located in the task_tree_messages ROS package. To start the extraction of the OWL ile,
the ile name can be passed to the owl_memory_converter via the command line or via
the Conversion ROS service. Apart from that, the owl_memory_converter contains a
utility to visualize the task tree as shown in Figure 2.6. Thus, the owl_memory_converter
encapsulates the calls to the MongoDB and the OWL ile.

The conversion of the task tree from the owl_memory_converter to a MLN is done in a
node from the robot_memory ROS package. Its functionality is explained in Section 6.2
in greater detail.

After the MLN has been learned or updated by the robot_memory node, it can be queried.
For this purpose, the cram_robot_memory ROS package provides a comfortable Lisp
API. It encapsulates the MLN queries. Section 6.3 describes the cram_robot_memory
package in detail.
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Figure 6.3.: Communication Relationships Between the ROS Packages

The pracmln framework introduced in Section 2.4.7 is used to execute MLN queries.
In the version used here, an implementation of the inference algorithm developed in
Chapter 5 is included. It is named FastExact in the GUI. For querying pracmln from
ROS, pracmln provides a ROS interface in the ROS package rosmln. It is available in
the form of a ROS service of the type MLNInterface, provided by nodes of the type
mln_server. To make the use of this service easier, a Lisp API for accessing this service
is provided in the ROS package cram_rosmln.

Figure 6.4 depicts the dependencies between the diferent ROS packages and explains
which software is implemented in the scope of this thesis. Noticeably, there are ROS pack-
ages not shown in other diagrams. The reason is that cram_robot_memory_demo and
cram_robot_memory_evaluation provide CRAM plans using the APIs provided by the
cram_robot_memory package. Hence, they are represented by the CRAM plan in these
diagrams. cram_robot_memory_demo actually provides a small number of demonstra-
tions of the cram_robot_memory functionality while cram_robot_memory_evaluation
contains the code for the evaluation conducted in Section 7.1. Both use utilities, e.g.
to spawn a kitchen in the bullet environment, from the cram_robot_memory_test_utils
package. They are adapted from the utilities in the spatial_relations_demo.

The following chapters will describe the most important components in greater detail.
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Figure 6.4.: Origin of the Diferent ROS Packages

6.2. robot_memory

As mentioned above, the robot_memory ROS package is responsible for creating or up-
dating a MLN given a task tree. To achieve this, the package contains a python executable
providing a service of the type Trigger. As soon as the service is called, the ROS node
listens for RobotState ROS messages. When the calling node has inished sending the
RobotState messages, it calls the LearningTrigger service which is also advertised by the
robot_memory node. Then, the robot starts learning MLNs.

The learning process is illustrated in Figure 6.5. First of all, the task tree has to be assem-
bled from the ROS messages. Afterwards, unneeded task tree nodes are iltered out. On
the one hand, designators with multi lined parameters are iltered out since these param-
eters are usually not useful. Then, nodes having the task context with-failure-handling,
with-designators, perform-action-designator, anonymous-top-level, motion-planning, ind-
objects, at-location, goal-monitor-action or goal-perform are iltered out. The reason is
that these nodes are either redundant (e.g. with-designators), they contain no useful
information (e.g. anonymous-top-level) concerning the use cases or they are too detailed
(e.g. goal-perform). Moreover, poses which are absolute regarding the map tf frame are
replaced by the string <hard-coded-pose> since a hard coded pose is too special. These
irst steps result in the task tree that will be used for learning.
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( task tree, old MLN ) learn MLN learn MLNactivity [   ]

return mln

in task tree

in old MLN

 : decode task tree
task tree

task tree

 : filter task tree

task tree

task tree

 : create databases

task tree

databases

 : create formulas

databases

formulas

 : assign weights

weighted formulas

formulas

 : merge MLNs

new MLN

old MLN

merged MLN

Figure 6.5.: Conversion of Task Trees to MLNs

Now, a MLN having the design described in Section 4.6 is created4. Therefore, the task
tree is converted to a set of MLN training databases. Then, the databases are converted
to formulas by conjugating the ground atoms and replacing the task, designator, and
designatorProperty objects by variables. During the whole process, it is assured that one
formula is created for each combination of two designator properties. Thus, more than
one formula with the same task name might be created.

The next step is to calculate the formula weights. In the inal MLN, duplicate formulas
will be removed. However, the number of duplicates is used for the weight calculation.
Based on the number of duplicates, the weight is assigned as described in Section 4.3.
Finally, if an old MLN exists, both MLNs are merged: If the merged MLN contains
duplicate formulas with the weights w1 and w2 using c as constant, the weight of the
merged formula becomes w = c+ ln(exp(w1 − c) + exp(w2 − c)). The inal MLN is then
written to a ile and the control low returns to the caller of the LearningTrigger.

This process allows a lifelong learning through incrementally updated formula weights,
even if the expressiveness of the MLN formulas is limited.

4Actually, two MLNs are created: One does not contain task information which is better suited if the

task information is neither present in the query nor in the evidence.
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6.3. cram_robot_memory

One important requirement for the software is that it is easily usable from CRAM.
Therefore, the ROS package cram_robot_memory provides Lisp code encapsulating most
of the MLN queries for the use cases mentioned in Figure 1.1. The most basic function
provided by the package is one allowing diferent queries. To be usable for every query,
MLN queries in the form of ground atoms or formulas still have to be passed as arguments
to this function. However, it converts task names and designators to ground atoms for the
evidence database automatically, if needed. It can for example be used to query which
object type has been perceived at a speciic location. Based on that function, there is a
function for comfortably inferring a probability distribution for the task success without
providing any literal. Hence, there are functions usable in two of the three use cases
mentioned in Figure 1.1.

The third use case mentioned in the use case diagram is the inference of parameters caus-
ing a plan to be successful. For this inference, it is not suicient to simply encapsulate
one query. Instead, the designator completion broached in Section 6.3 has to be imple-
mented. Figure 6.6 shows how this designator completion works. It will be explained
using an example.

Figure 6.6.: The Designator Completion Algorithm

In the beginning, task name, parameter name and the existing designator properties
are converted to a MLN database. As example, the database in Listing 6.1 will be
used. Afterwards, this evidence is used to complete the key as shown in Figure 6.7.
This is achieved with the query propertyKey(OtherProperty, ?p), which has already been
shown in Listing 4.27. The result is a probability distribution. This distribution could for
example state that the key is object.AT::location.ON with probability 2

3 or that the key is
object.AT::location.NAME with probability 1

3 . Obviously, there are diferent probabilities
for diferent keys and none has been tried yet, so the execution is neither aborted nor
complete. Thus, the irst key from this probability distribution is taken. Together with
the evidence, it is used to call the completeValue function depicted in Figure 6.8
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Figure 6.7.: The completeKey Function of the Designator Completion

1 name(Task , "ACHIEVE ")

2 failure(Task , " ")

3 goalPattern(Task , "OBJECT -IN -HAND ?OBJ")

4 goalParameter(Designator , Task)

5 goalParameterKey(Designator , "?OBJ")

6 designatorProperty(MugProperty , Designator)

7 propertyKey(MugProperty , "object.TYPE")

8 propertyValue(MugProperty , "MUG")

9 designatorProperty(OtherProperty , Designator) )

Listing 6.1: Evidence for the propertyKey Query in Listing 4.27
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Figure 6.8.: The completeValue Function of the Designator Completion

The irst thing the completeValue function does is merging the evidence with the ground
atom propertyKey(OtherProperty, “object.AT::location.ON”). Then, it infers the most
probable value for this key with the query propertyValue(OtherProperty, ?v). This query
has already been shown in Listing 4.31. Again, the result is a probability distribu-
tion. For the example, it is assumed that the most probable value in this distribution is
Cupboard with probability 3

4 and the second most probable is CounterTop with proba-
bility 1

4 . As in the key completion, there are diferent probabilities for diferent values
and none has been tried yet, so the execution is neither aborted nor complete. Hence,
propertyValue(OtherProperty, “Cupboard”) is appended to the evidence. Then, the algo-
rithm recurses and calls the completeKey function again.

In the next step, it is assumed that completeKey infers a probability of 1 for the key
object.AT::location.NAME. Afterwards, completeValue is called and infers a probability
of 3

5 for kitchen_sink_block and a probability 2
5 for pancake_table. This results in a

recursive call to completeKey with an updated evidence. This time, the most probable key
is object.TYPE. Again, there is a recursive call to CompleteValue. Finally, completeValue
infers a probability of 1 forMUG. Since this property is already present in the designator,
the completion seems to be inished.
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Therefore, the evidence is converted to a designator. This designator is used to call a
given function, for example to pick up the object. It is assumed now that this did not
work. Thus, the algorithm tracks back and assigns the pancake_table instead of the
kitchen_sink_block as property value. Again, the completion is continued and detects
that the designator is complete. This time, picking up the object is successful and the
algorithm terminates. This example showed how a completion works in principle.

What has been left out are the conditions for aborting or completion. Among other
conditions, a designator is considered complete if:

• a property is inferred that is already contained in the designator.

• no more keys or values are available.

• there is a uniform distribution of the remaining keys or values.

The recursion is backtracking (“aborted”) if:

• the designator seems to be completed, but a designator with the same properties
or a superset of the properties has already been tried before.

• The result would be a hard coded pose.

This completes the description of the designator completion algorithm.

In summary, with the general query, the query for the success probability and the des-
ignator completion, the robot can easily cope with the situations depicted in the use
case diagram in Figure 1.1. Finally, the designator completion shows one advantage of
probabilistic models: It is possible to use the next probable value if the previous failed.

80



7. Evaluation

This chapter assesses how well the software mentioned in the previous chapter and thus
the MLN design and the inference algorithm work in practice. Therefore, the suitabil-
ity for the use cases in Figure 1.1 is examined. Furthermore, the opportunities of the
algorithms and the MLN design, as well as their limitations are discussed.

7.1. Experiments

To check whether the software described in Chapter 6 and thus the MLN design in
Section 4.6 is suited for the use cases in Figure 1.1, an experimental evaluation inspired
by the one in [WB15] has been executed. The scenario in the experiments consists of
a simulated PR2 robot operating in diferent kitchen environments. There, the PR2 is
learning and updating a MLN from log iles recorded while it is told to displace objects
in the kitchens. Afterwards, diferent tests representing the use cases are executed.

7.1.1. Experiment Description

More speciically, the robot operates in the bullet reasoning environment introduced in
Section 2.3.2. It is supposed to learn a model for the storage location of diferent objects.
Therefore, 25 diferent kitchens are generated. Actually, the kitchen itself stays the
same: It is the kitchen representing the IAI Lab at the University of Bremen provided by
CRAM. Instead, the kitchens difer in the objects in the kitchen, as well as their location.

One can distinguish the 25 kitchens between 20 training kitchens and 5 test kitchens as
shown in Figure 7.1. As mentioned before, each of these kitchens consists of 10 objects.
Each object in the kitchen has a pose where it is spawned in the simulation environment.
Moreover, there is a training object designator for each of the objects. This training
object designator consists of a type property describing the object type (e.g. :type :mug)
and of a location designator. The location designator in turn consists of a location
property (e.g. :on “Cupboard”) and, if there is more than one location of this type,
a name property (e.g. :name “kitchen_sink_block”). In the test kitchens, the object
designator also contains a dummy property (e.g. :dummy-key-1 “dummy-value-1”) used
to show that the MLN generalizes. Apart from the training object designator, the test
kitchens contain a test object designator which is equal to the training object designator
except that it does not contain the location designator.
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package Evaluation Kitchens[   ]

Location Designator Location Designator

Object Designator Object DesignatorObject Designator

Location Property Location Property

Dummy Property
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Object
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String
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String

«primitive»

String

«primitive»

String

Object
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String

«primitive»
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String
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«primitive»

String
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Figure 7.1.: Training and Test Kitchens Used in the Evaluation

Examples for training and test kitchens are provided in Listing 7.1 and Listing 7.2. These
examples also show why the dummy property shows the generalization: When the MLN
is used to execute a query given the test object at the bottom of Listing 7.2 as evidence,
useful results are returned, even if an object with the dummy key and the dummy value
is not part of the training data. The objects of the irst training kitchen in the bullet
environment are shown in Figure 7.2.

‘(((1.4477 0.8845 0.9500)(0 0 0 1))

,(cram-designators :: make-designator

:object ‘((:type :apple)

(:at ,(cram-designators :: make-designator

:location

’((:on "CounterTop")

(:name "kitchen_sink_block_counter_top")))))))

Listing 7.1: Example Object of a Training Kitchen
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‘(((1.4044 -0.1155 0.9500)(0 0 0 1))

,(cram-designators :: make-designator

:object ‘((:type :apple)

(: dummy-key-0 "dummy-val-3")

(:at ,(cram-designators :: make-designator

:location

’((:on "CounterTop")

(:name "kitchen_sink_block_counter_top"))))))

,(cram-designators :: make-designator

:object ‘((:type :apple)

(: dummy-key-0 "dummy-val-3"))))

Listing 7.2: Example Object of a Test Kitchen

Figure 7.2.: PR2 Robot in the irst Training Kitchen

The kitchens described above are sampled randomly1: During the generation, the object
type is sampled uniformly from the set of objects in Table 7.1. Then, the dummy key, as
well as the dummy value, are sampled randomly from a set of 5 keys and a set of 5 values.
Moreover, the location type is sampled uniformly from the location types available for this
object in the table. The actual location name is then sampled uniformly from the subset
of location names in Table 7.2 having the correct location type. Finally, the position
part of the pose is sampled uniformly from the coordinate range for the location name
speciied by Table 7.2. The orientation is always speciied by the quaternion (0, 0, 0, 1).

Since the CRAM plans for opening doors were not working when the evaluation was
conducted, all doors and drawers are opened in the bullet environment initially. Never-
theless, the dishwasher is always unreachable for the robot. Furthermore, there are some
poses at other locations which are unreachable. Thus, the robot will not always succeed
during training and test.

1The random number generator is seeded with 0 to achieve reproducible results.
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Type Location Type 1 Location Type 2 Location Type 3

plate Oven Drawer Dishwasher
fork Drawer Dishwasher
knife Drawer Dishwasher
mug Drawer Dishwasher
pot Oven Refrigerator
bowl Oven Refrigerator
mondamin Refrigerator CounterTop
spatula Drawer CounterTop
pancake-maker Drawer CounterTop
orange CounterTop Refrigerator
apple CounterTop Refrigerator
sugar-box CounterTop
cereal CounterTop

Table 7.1.: Objects Used in the Evaluation

Prep. Type Name xmin xmax ymin ymax z

in Dishwasher drawer_sinkblock_dishwasher 1.40 1.60 0.10 0.25 0.25
in Drawer drawer_island_left_upper -0.75 -0.55 0.85 1.00 0.55
in Drawer drawer_island_right_upper -0.75 -0.55 2.45 2.60 0.55
in Oven drawer_oven_upper 1.30 1.50 1.80 2.00 0.95
in Refrigerator drawer_fridge_upper 1.35 1.60 -1.10 -0.95 0.60
on CounterTop kitchen_island_counter_top -1.30 -1.00 0.60 2.80 0.95
on CounterTop kitchen_sink_block_counter_top 1.40 1.50 -0.50 1.10 0.95

Table 7.2.: Locations Used in the Evaluation

After the kitchens have been generated, the robot performs 20 experiments, one in each
training kitchen. Before each experiment, the needed ROS nodes are started and the
objects in the kitchen are spawned at the sampled pose. Then, the robot is told to
displace one object after another to the pancake_table by calling the achieve loc ?obj
?loc plan with the training object designator and a location designator describing the
pancake_table. After all objects have been displaced, the robot exports a log ile and
updates the MLN using this log ile. This simulates the lifelong learning since the log iles
are learned incrementally. Finally, all the ROS nodes shut down and the next kitchen
is processed. Thus, the robot tries to displace 200 objects to the pancake_table in total
during the training phase.

When the training is inished, diferent tests corresponding to the use cases in Figure 1.1
are executed in each of the test kitchens. In general, the result of each test is a CSV ile.
Before each test is executed, the needed ROS nodes are started and the objects in the
kitchen are spawned at the sampled pose in the bullet environment. After each test, the
ROS nodes are shut down. The four diferent tests are explained in detail now.
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First of all, there is the informed test : There, the robot displaces the training objects
just like it did during the training. The generated CSV ile contains the information for
which object the robot succeeded. This test will serve as reference to check whether the
inference of the success probability produces correct values.

Then, there is the naive completion test : Again, the robot displaces objects to the
pancake_table. However, this time the test objects are used. Since the objects need
a location designator to be found, the test object is completed with a location designator
constructed from Table 7.2. More speciically, the robot tries each line of Table 7.2 until
it successfully displaced the object. This time, the CSV ile contains the information
whether the robot succeeded and how many locations were tried. The test will serve as
reference to check how good the designator completion works.

Moreover, there is a MLN completion test : Now, the robot tries to complete the test
objects using the designator completion described in Section 6.3. As in the naive test,
the completed designator will be used as argument for the achieve loc ?obj ?loc function
in order to displace the object to the pancake_table. If this does not work, it tries the next
designator proposed by the completion until no completion is left or until it succeeded.
Again, the number of tries and the information whether the robot succeeded are written
to the CSV ile.

Finally, there is the theoretical test : As the name implies, the robot does not execute
any plan that modiies the environment. Instead, some inferences are executed. First of
all, the success probability for the achieve loc ?obj ?loc plan given the training object is
inferred. Then, the most likely object type of a parameter of the perceive a ?obj-desig
plan is inferred. The designator used as ?obj-deisg parameter only consists of the location
of the training object. Moreover, the test designator is completed using the designator
completion described in Section 6.3. Instead of trying to execute the achieve loc ?obj ?loc
plan, the success of the completion is determined by comparing the completed designator
with the training object. The same is done with the naive completion. Hence, the CSV
ile contains the inferred success rate, the rank of the actual object type in the probability
distribution for the object types, as well as the success and the number of tries for the
designator completion using a MLN and using the naive completion.

In the end, the three CSV iles containing information about 50 displace attempts are
used to calculate statistics.
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7.1.2. Results

Table 7.3 shows the statistics calculated from the CSV iles generated during the executed
evaluation.

Fully Informed Object Displacement
Successful grasps (%): 62
Average estimated success rate (%): 64
Correctly guessed success assuming threshold 0.5 (%): 78
Successfully guessed objects for a location (%): 98
Average location rank: 3.16

MLN Completion
Successful grasps (%): 54
Average tries for successful grasps: 1.41
Average tries for unsuccessful grasps: 1.83

Naive Completion
Successful grasps (%): 66
Average tries for successful grasps: 2.45
Average tries for unsuccessful grasps: 7.0

MLN Completion (in Theory)
Successful grasps (%): 80
Average tries for successful grasps: 1.63
Average tries for unsuccessful grasps: 1.50

Naive Completion (in Theory)
Successful grasps (%): 100
Average tries for successful grasps: 4.58
Average tries for unsuccessful grasps: None

Table 7.3.: Evaluation Results

The use case that the robot wants to infer what is expected to be perceived at a location
has been tested in the theoretical test. In Table 7.3, the results for this task are shown
in the last two lines of the irst part. With 98%, the current training object is expected
almost every time at the given location. However, the actual type is the third-most
probable type inferred in average. With said that there are in average 5.42 possible
objects at a location, the rank 3.16 is not the best but acceptable. Thus, the approach
is suited for the irst use case.

The second use case in Figure 1.1 is the success estimation. The result for the success
estimation using the MLN based approach is shown in the second and third line of the
irst part of Table 7.3. At the irst glance, the result for the success estimation looks
pretty good: With 64%, the average estimated success rate is very close to the real
average success rate of the informed test shown in the irst line of Table 7.3.
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However, the result gets a little worse if one takes a closer look: To get a more precise
value of the quality of the success estimation, the estimated value for each object was
binarized with the threshold 0.5. All values below this threshold are considered as unsuc-
cessful and all values above the threshold are considered as successful. Then, the actual
results were compared with this estimate. The comparison shows that the result of 78%
of the displace tasks were successfully predicted. Of course, this value is not perfect but
better than guessing. Hence, the approach is also suited for the second use case, even if
the results are not perfect.

Finally, there is the designator completion as third use case. The results of the cor-
responding tests are shown in the second and third part of Table 7.3. If the displace
operation is successful, the MLN completion needs approximately one less try to ind
an object compared to the naive completion. More importantly, the MLN completion
saves time when the object cannot be found: The naive completion has to look at all 7
locations while the MLN completion can exclude some locations. Thus, the robot saves
time if an object is not found.

Unfortunately, the robot is less successful when using the MLN based completion ap-
proach. One thing that makes one wondering is that the success rate of the naive com-
pletion is higher than the one of the informed test. The reason is that the semantic map
of the robot seems to be imperfect. Thus, the robot takes the wrong object in some cases.
If it is supposed to displace an apple on the kitchen_island_counter_top and there is an
apple on the pancake_table, it will displace the one at the pancake_table. This behavior
also explains the low number of tries needed by the naive completion.

Therefore, the completion was also executed in the theoretical test. The result of this test
stresses the theoretical power of the MLN based designator completion: It needs 1.63 tries
in average when it successfully displaces an object, while the naive completion needs 4.58
tries. This is a diference of almost 3 tries. However, the naive completion is still more
successful. If one has a closer look at the objects that could not be completed, it becomes
clear why this is the case: The combination of these objects with the expected locations
was tried during the training, but it always failed. Since the designator completion
tries to make the plan successful, these values were not considered. Thus, this result
is acceptable. This means that the learning approach developed in this thesis is also
suitable for the last use case.

In summary, the lifelong learning approach developed in this thesis is not perfect, but it
works in most of the cases. On the other hand, humans are also not perfect and since
the environment is usually not fully observable, a perfect result is often not achievable.
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7.1.3. Performance

It remains to show that the inference algorithm developed in Chapter 5 is applicable. A
complete evaluation of the algorithm would require a comparison of the performance of
the algorithm with the performance of the algorithms presented in Section 3.2. However,
these algorithms are not implemented in pracmln. Thus, they would have to be imple-
mented to make the comparison possible. Unfortunately, this is beyond the scope of this
thesis.

As mentioned throughout the last chapters, the algorithm performs especially well in the
designator based MLN design where it is the only working inference algorithm in pracmln.
However, the designator based MLN design has not been used in the end. Therefore,
the performance of the new inference algorithm containing the improved grounding was
evaluated in the inal MLN design. It was compared to the performance of the normal
exact inference algorithm with the normal grounding in pracmln. The test was to com-
plete an object designator with the property :type :mug given an achieve object-in-hand
plan using the MLN learned in the previous section. Section 6.2 mentioned that the
goal-perform nodes and thus the action designators for the process modules are not part
of the MLN. In order to show what a broader variable domain of the MLNs causes, the
same completion was also executed on a MLN containing these action designators. This
causes the number of formulas to grow from 547 to 5169.

Inference Algorithm Without GOAL-PERFORM With GOAL-PERFORM
Algorithm from Chapter 5 3s 128s
Normal Exact Inference 8s 256s

Table 7.4.: Performance for one Designator Completion

Table 7.4 shows the results of the experiment. First of all, the new inference algorithm
is twice as fast as the normal exact inference algorithm for the inal MLN design from
Section 4.6. Moreover, it becomes clear that the performance of the designator completion
becomes worse if the domains get very large. The time needed for a designator completion
does not grow linearly in the size of formulas. Thus, the new inference algorithm is an
improvement, but it does not solve all problems.

The experiments were executed on a machine with Intel Core i5-3320M CPU and 8GB
of RAM. Since the materialization process replacing template formulas takes very long
in pracmln when goal-perform nodes are included, the materialization process was com-
mented. It is not needed here, anyway. For a better comparability, the multiprocessor
CPU support of the normal exact inference was switched of.

However, the new inference algorithm is not the best in every case: For the taxonomies
example supplied by pracmln, it needs 93 seconds to get an inference result. The normal
exact inference algorithm needs only 2 seconds. Hence, the performance of the algorithm
is highly dependent on the MLN.
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7.2. Opportunities and Limitations

The previous section showed the general suitability of the developed software and thus
the MLN design for the use cases in Figure 1.1. Apart from that, the question arises in
which other cases the software might be used and what limitations are to be considered
when using it. Therefore, this section looks at some interesting cases to discuss these
opportunities and limitations.

First of all, there is the case that a plan requires two designators as parameter. An
example is the achieve loc ?obj ?loc plan for displacing the object ?obj to ?loc. Since
the MLN handles these designators independently, there is no formula modeling the
connection between both designators. On the one hand, this is good for this plan since
it results in less, more general formulas. This in turn provides a better generalization
and a faster inference. On the other hand, there might be some cases where this special
knowledge is required, e.g. when the robot tries to place a bottle in a small drawer.
However, the irst arguments were chosen to be more important in this case.

Another detail worth looking at is the functionality of the designator completion. If
the robot was, for example, trained to perceive objects with designators like the one in
Listing 7.3 including a symbolic location and if it was also trained to grasp objects like
the one in Listing 7.4 including a handle2, then it is possible to merge these designators:
The robot can irst execute the designator completion for the object in Listing 7.5 given
the perceive task. After it perceived the object correctly, it can further complete the
designator resulting from the last completion given the grasp task. Subsequently, the
designator completion will return a designator containing both, the symbolic location
and the handle.

However, this example only works since the location of the designator in Listing 7.4 has
been speciied by a pose. If it was a symbolic location as in the designator in Listing 7.3
and if no grasp attempt of the object has been executed at this location, this wold not
work: The handle would be assigned based on the highest number of true formulas. Thus,
it might be possible that the handle would be assigned based on an equal location rather
than based on the type property. Even if the correct handle would be assigned based
on the type property since no matching location was available, the location of the grasp
designator would additionally be added. This has not been done with the pose since
hard coded poses are excluded. Thus, the designator completion provides the ability to
combine two completely diferent designators, but only under certain conditions.

(cram-designators:make-designator

:object ‘((:type :mug)

(:at ,(cram-designators:make-designator

:location ’((:on "Cupboard")

(:name "kitchen_sink_block"))))))

Listing 7.3: Designator Describing a Mug on the Kitchen Sink Block

2One might wonder how it was possible to grasp an object in the previous section without a handle:

Handles are not required in the bullet environment.
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(cram-designators:make-designator

:object ‘((:type :mug)

(:at ,(cram-designators:make-designator

:location

‘((:pose

,(cl-transforms-stamped:make-pose-stamped

"map"

0

(cl-tf:make-3d-vector 1.7 0.6 0.9)

(cl-tf:make-quaternion 0 0 0 1))))))

(: handle

,(cram-designators:make-designator

:object

‘((:type :handle)

(:at ,(cram-designators:make-designator

:location

‘((:pose ,(cl-tf:make-pose

(cl-tf:make-3d-vector

-0.005 0 0)

(cl-tf:make-quaternion

0 0 0 1)))))))))))

Listing 7.4: Designator Describing a Mug with a Handle

(cram-designators:make-designator :object ‘((:type :mug)))

Listing 7.5: Designator Describing a Mug

The MLN design also allows to add further properties for a better generalization. For
instance, the designator in Listing 7.6 has a category property which is actually not
required by CRAM. This allows to transfer knowledge. If such a designator is used as an
argument for a perception task during the MLN training, it can be used to complete the
glass designator in Listing 7.7. Again, there are some limitations: The irst limitation is
that the glass must not be included in the log iles. Otherwise, the existing designator for
the glass will be inferred. Then, the algorithm must be modiied not to accept duplicate
keys. If it remained unchanged, the glass would also have the type :mug. Thus, there is
the possibility to introduce category properties to generalize on unseen object types.

(cram-designators:make-designator

:object ‘((:type :mug)

(: category :drinking-vessel)

(:at ,(cram-designators:make-designator

:location ’((:on "Cupboard")

(:name "pancake_table"))))))

Listing 7.6: Designator Describing a Mug with a Category Property

(cram-designators:make-designator

:object ‘((:type :glass)

(: category :drinking-vessel )))

Listing 7.7: Designator Describing a Glass with a Category Property
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However, all the generalization described above has one downside: Diferent designators
inluence each other. This is, for example, the case if the robot picks up one mug as
speciied in Listing 7.3, one mug as speciied in Listing 7.8 and one plate as speciied
in Listing 7.9 during the training. Normally, one would expect a probability of 1

2 both
for the pancake_table and for the kitchen_sink_block when inferring the location name
given that there is a pickup action of a mug on a cupboard. However, the result will
be a probability of 2

3 for the pancake_table and a probability of 1
3 for kitchen_island.

The reason is that the weight for the formula connecting the :on “Cupboard” property
with the :name “pancake_table” property is also increased by the plate designator. This
inluence can be desirable on the one hand if objects placed together at one location are
usually also placed together at another location, but it can also be disturbing if the exact
probability is needed.

(cram-designators:make-designator

:object ‘((:type :mug)

(:at ,(cram-designators:make-designator

:location ’((:on "Cupboard")

(:name "pancake_table"))))))

Listing 7.8: Designator Describing a Mug on the Pancake Table

(cram-designators:make-designator

:object ‘((:type :plate)

(:at ,(cram-designators:make-designator

:location ’((:on "Cupboard")

(:name "pancake_table"))))))

Listing 7.9: Designator Describing a Plate on the Pancake Table

One thing that has not yet been addressed by this thesis is learning actions. At the
moment, actions are exclusively represented by plans and thus, it is not possible to
complete actions. However, there are the action designators in CRAM. Instead of using
them only for commands to the process modules, one could also use the action designators
for more abstract actions. Listing 7.10 shows such a designator. It describes an extract
of a table setting action. If CRAM was able to interpret such an action designator, one
could irst train a MLN by executing a designator as shown in Listing 7.10. Afterwards, it
would be enough to pass the action designator in Listing 7.11 to the robot and it could use
the designator completion to get the one in Listing 7.10. Unfortunately, it is not directly
possible to further complete this designator, e.g. to infer the mug location automatically.
The reason is that the property keys of all sub designators are merged together into one
key, e.g. object.AT::location.ON. However, it is possible to call the designator completion
separately for the sub designators, i.e. for the mug and the pancake table. Thus, there
is the opportunity to also use the learning approach developed here for learning actions.
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(cram-designators:make-designator

:action ‘((: action "set-table")

(: occasion "breakfast")

(:do ,(cram-designators:make-designator

:action ‘((:goal achieve)

(: context loc)

(: argument1

,(cram-designators:make-designator

:object ‘((:type :mug ))))

(: argument2

,(cram-designators:make-designator

:location

‘((:name "pancake_table")))))))))

Listing 7.10: Designator Describing a Table Setting Action in Detail

(cram-designators:make-designator

:action ‘((: action "set-table")

(: occasion "breakfast")))

Listing 7.11: Designator Describing a Part of the Table Setting Action

In the end, the approach developed in this thesis provides many opportunities, especially
through the provided generalization. However, not everything is possible and there are
undesired side efects on the probability distribution in some cases, which is the price to
pay for the generalization.
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8. Conclusions

This thesis presented one approach to make household robots learn models about plan
parameters from their experience and to use these models in everyday activities. The
developed approach is grounded on a MLN design representing a compromise between
intuitive modeling, simple learning and generalization. In particular, this MLN design
allows updating the weights of the MLN and thus a lifelong learning. Apart from that,
an exact inference algorithm for MLNs has been developed which is faster in some of the
MLN designs presented in this work. Then, software was implemented to create MLNs
from log iles and to use these MLNs from CRAM. A system consisting of this software,
pracmln and CRAM was eventually evaluated.

All in all, the evaluation showed that the approach is already usable, even if it does
not work perfectly. Moreover, the evaluation showed that there is the opportunity to
apply the approach to more advanced problems. To achieve this, the MLN design and
especially the generalization provided by the MLNs could be further optimized. It would
be worth trying to get rid of the inluence of diferent designators on each other while
keeping the possibility to generalize. Then, one could try to get even more generalization
by using the FuzzyMLNs provided by pracmln as mentioned in [NB15]. On the one hand,
they could be useful to deine a similarity between diferent plans. If an object can, for
example, be picked, it should also be possible to place it somewhere. On the other hand,
they could deine a similarity between object types. However, this has not been used yet
since it would make the :type designator property special and thus the implementation
would be less generic. Another interesting possibility would be the combination of the
designator based MLN design in Section 4.5 with the inal MLN design in Section 4.6 to
get a better generalization for nested designators. Moreover, the tasks with no parameter
or designators with only one property are not considered yet. The handling of numeric
values would also be interesting, either by clustering or by modifying the MLN formalism.
Thus, more research can be done on the MLN design.

Furthermore, the performance could be improved to be able to include more information
in the MLNs, e.g. the action designators for the process module calls. This can in turn be
achieved by improving the performance of the inference algorithm developed in this thesis.
Its implementation in pracmln would beneit the most from a more eicient formula
consistency check. Of course, the performance could also be improved dramatically if
the inference would be executed in parallel on a GPU. Then, an approximate inference
algorithm based on the idea of the algorithm developed here would be worth thinking
of. Moreover, a comparison of the algorithm with other inference algorithms would be
interesting. Hence, one could also dig deeper in the ield of MLN inference algorithms.
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Finally, the implemented software could be more eicient if a semrec plugin would com-
municate directly with the robot_memory service in order to bypass the log iles. The
decision to use the log iles instead has been made to be able to learn from older expe-
riences as well. However, this improvement can easily be implemented due to the ROS
based architecture. Considering the evaluation, it would be interesting to implement the
handling of higher level action designators in CRAM, as mentioned Section 7.2, in order
to use the designator completion there.

In the end, one can say that the system consisting of CRAM, pracmln and the MLN
creation software developed in this thesis is already able to provide a lifelong learning for
everyday robot manipulation, even if there is the possibility to improve some parts.
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A. Proofs

Theorem A.1. Let D be a set of training databases, F the set of formulas, ni(x) the
number of true ground formulas of formula fi ∈ F in world x, wi the weight of formula
fi ∈ F , Cx the set of constants in the training database x ∈ D and let XL,C be the worlds
creatable from the MLN L and the set of constants C.
The (log) likelihood function is maximized if:

1. The weights are determined by the number of true groundings in the training data:

∀i ∈ {1, ..., |F |} : wi = c+ln

︂

︀

x′∈�

ni(x
′)

︂

with exp(c) >> |XL,Cx | for all Databases

x used during the learning process

2. Every formula has to appear at least once in the training data (ln(0) is undeined):
∀i ∈ {1, ..., |F |}∃x ∈ D : ni(x) > 0

3. The formulas are mutually exclusive for all worlds generatable from the constants
in the training data and in the MLN:

∀xd ∈ D∀x ∈ XL,Cxd

︃

|F |︀

i=1
ni(x)

︃

≤ 1

4. Every formula must be true in the same number of worlds t:
∃t∀xd ∈ D∀i ∈ {1, ..., |F |} : |{x|ni(x) > 0 ∧ x ∈ XL,Cxd

}| = t

5. In every database there must be exactly one true ground formula:

∀x ∈ D :

︃

|F |︀

i=1
ni(x)

︃

= 1

To Show.

For calculating the maximum of a function, one has to determine the candidates by calcu-
lating the zero of the irst gradient. Then, one can use the second gradient to determine
whether the candidate is a maximum [Har06]. The optimization problem for Markov
Logic Networks is convex [LD07]. This means that the log likelihood function must be
convex since a maximum should be found. In other words, every candidate is a maximum
and the second gradient does not need to be evaluated. Thus, it has to be shown that
the following condition is true for each weight wi:

0 = ∂
∂wi

ln(
︀

x∈�

P (X = x|L,C)) =
︀

x∈�

︃

ni(x)−
︀

x′∈�L,Cx

ni(x
′) · P (X = x′|L,C)

︃

[Jai12]
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Proof.

0 =
︁

x∈�

⎛

⎝ni(x)−
︁

x′∈�L,Cx

ni(x
′) · P (X = x′|L,C)

⎞

⎠ (A.1)

=
︁

x∈�

ni(x)−
︁

x∈�

︁

x′∈�L,Cx

ni(x
′) · P (X = x′|L,C) (A.2)

= pi −
︁

x∈�

︁

x′∈�L,Cx

ni(x
′) · P (X = x′|L,C) with pi =

︁

x∈�

ni(x) (A.3)

= pi −
︁

x∈�

︀

x′∈�L,Cx

ni(x
′) · exp

︃

|F |︀

j=1
wj · nj(x

′)

︃

︀

x′∈�L,Cx

exp

︃

|F |︀

j=1
wj · nj(x′)

︃ (A.4)

= pi −
︁

x∈�

|XL,Cx,f |+
︀

x′∈XL,Cx,t

ni(x
′) · exp

︃

|F |︀

j=1
wj · nj(x

′)

︃

|XL,Cx,f |+
︀

x′∈XL,Cx,t

exp

︃

|F |︀

j=1
wj · nj(x′)

︃ (A.5)

with XL,C,f = {x′|x′ ∈ XL,C ∧ ∄i ∈ {1, ..., |F |} : ni(x
′) > 0}

and XL,C,t = {x′|x′ ∈ XL,C ∧ ∃i ∈ {1, ..., |F |} : ni(x
′) > 0}

≈ pi −
︁

x∈�

︀

x′∈XL,Cx,t

ni(x
′) · exp

︃

|F |︀

j=1
wj · nj(x

′)

︃

︀

x′∈XL,Cx,t

exp

︃

|F |︀

j=1
wj · nj(x′)

︃ (A.6)

= pi −
︁

x∈�

t · exp (wi)
|F |︀

j=1
t · exp (wj)

(A.7)

= pi −
︁

x∈�

t · exp (c+ ln(pi))
|F |︀

j=1
t · exp (c+ ln(pj))

(A.8)

= pi −
︁

x∈�

t · exp(c) · pi

t · exp(c) ·
|F |︀

j=1
pj

(A.9)

= pi − pi
|D|

|F |︀

j=1
pj

= pi − pi
1

1
= 0 (A.10)
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Justiication.

The proof starts with the ith (i is representing any formula index) gradient of the log
likelihood function in Equation A.1. It is rewritten in Equation A.2. Due to Assumption
5,
︀

x∈�

ni(x) can be replaced by the number of true ground formulas pi of the formula

i in Equation A.3. In Equation A.4 the formula for P (X = x′|L,C) is plugged in. In
Equation A.5, the worlds XL,Cx,f where the weighted sum of the applied formulas is zero
are extracted from the sum. Afterwards, Equation A.6 shows an approximation: Since
exp(c) (and thus the weighted sum) is much larger than |XL,Cx | (see Assumption 1),
the sum representing the worlds with weighted sum zero afects the whole equation only
marginally. Thus, it is removed. In Equation A.7, diferent assumptions are used: In
the sum inside the exponentiation, maximally one nj can be 1 due to Assumption 3.
All others are 0. Since the sum runs over XL,Cx,t, exactly one nj is 1. Finally, the total
number of worlds for each ground formula is restricted to t as speciied by Assumption 4.
Hence, the term can be rewritten. Equation A.8 plugs in the deinition of wj respective
wi as deined in Assumption 1. After some simpliications in Equation A.9, the fraction
is canceled and rearranged in Equation A.10. Finally, Assumption 5 asserts that the

total number of true ground formulas
F︀

j=1
pj is equal to the number of databases.
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B. Code Listings

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [<!ENTITY owl "http: //www.w3.org /2002/07/ owl#" >

<!ENTITY xsd "http://www.w3.org /2001/ XMLSchema#" >

<!ENTITY owl2xml "http: //www.w3.org /2006/12/ owl2 -xml#" >

<!ENTITY rdfs "http: //www.w3.org /2000/01/rdf -schema#" >

<!ENTITY rdf "http://www.w3.org /1999/02/22 -rdf -syntax -ns#" >

<!ENTITY bike "http: // localhost/bicycle.owl#" >

]>

<rdf:RDF xmlns="http:// localhost/bicycle.owl#"

xml:base="http:// localhost/bicycle.owl"

xmlns:rdfs="http: //www.w3.org /2000/01/ rdf -schema#"

xmlns:owl2xml="http: //www.w3.org /2006/12/ owl2 -xml#"

xmlns:xsd="http: //www.w3.org /2001/ XMLSchema#"

xmlns:owl="http: //www.w3.org /2002/07/ owl#"

xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:bike="http: // localhost/bicycle.owl#">

<owl:Ontology rdf:about="http: // localhost/bicycle.owl"/>

<owl:Class rdf:about="&bike;Human"/>

<owl:Class rdf:about="&bike;Bicycle"/>

<owl:Class rdf:about="&bike;RoadBike">

<rdfs:subClassOf rdf:resource="&bike;Bicycle"/>

</owl:Class >

<owl:ObjectProperty rdf:about="&bike;owner">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:range rdf:resource="&bike;Human"/>

<rdfs:domain rdf:resource="&bike;Bicycle"/>

</owl:ObjectProperty >

<owl:DatatypeProperty rdf:about="&bike;color">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="&bike;Bicycle"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty >

<owl:NamedIndividual rdf:about="&bike;Marc">

<rdf:type rdf:resource="&bike;Human"/>

</owl:NamedIndividual >

<owl:NamedIndividual rdf:about="&bike;MarcsRoadBike">

<rdf:type rdf:resource="&bike;RoadBike"/>

<bike:owner rdf:resource="&bike;Marc"/>

<bike:color rdf:datatype="&xsd;string">black </bike:color >

</owl:NamedIndividual >

</rdf:RDF >

Listing B.1: OWL File Describing Bicycles
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1 parentTask (?t, ?pt) ^ successor (?t, ?st) => parentTask (?st , ?pt).

2 !parentTask (?t, ?pt) v !successor (?t, ?pt).

3 !parentTask (?t, ?pt) v !successor (?pt, ?t).

4 0.0 taskType (?t, +?tt) ^ goal(?t, +?g)

5 0.0 taskType (?pt, +?tt) ^ parentTask (?t, ?pt) ^ taskType (?t, +?tt2)

6 0.0 taskType (?t, +?tt1) ^ successor (?t, ?t2) ^ taskType (?t2, +?tt2)

7 0.0 taskType (?t, +? taskType) ^ error(?t, +?error)

8 0.0 goal(?t, +?goal) ^ error (?t, +? error)

9 0.0 error (?t1, ?e1) ^ successor (?t1 , ?t2) ^ error(?t2 , ?e2)

10 0.0 successor (?t1 ,?t2) ^ taskType (?t1 ,?tt) ^ taskType (?t2 ,?tt) ^ error(?

t1 ,?e)

11 0.0 taskType (?t, +? taskType) ^ usedInTask (?t, ?o) ^ objectType(o, +?

objectType)

12 0.0 goal(?t, +?goal) ^ usedInTask (?t, ?o) ^ objectType (?o, +? objectType)

13 0.0 taskType (?t, +? taskType) ^ executedAt (?t, +? abstractLocation)

14 0.0 objectType (?o, +? objectType) ^ usedInTask (?t,?o) ^ executedAt (?t, +?

abstractLocation)

15 0.0 taskType (?t, +? taskType) ^ duration (?t, +? abstractDuration)

16 0.0 executedAt (?t, +? abstractLocation) ^ duration (?t, +? abstractDuration)

17 0.0 usedInTask (?t, ?o) ^ objectType (?o, +? objectType) ^ duration (?t, +?

abstractDuration)

18 0.0 goal(?t, +?goal) ^ duration (?t, +? abstractDuration)

19 0.0 objectType (?o, +? objectType) ^ objectProperty (?o, +? objectProperty)

20 0.0 objectType (?o, +? objectType) ^ objectLocation (?o, +? abstractLocation)

21 0.0 taskType (?t, +? taskType) ^ usedInTask (?t, ?o) ^ objectLocation (?o, +?

abstractLocation)

22 0.0 taskType (?t, +? taskType) ^ causedRobotPositionDifference (?t, +?

spatialRelation)

23 0.0 goal(?t, +?goal) ^ causedRobotPositionDifference (?t, +?

spatialRelation)

24 0.0 causedRobotPositionDifference (?t, +? spatialRelation) ^ duration (?t,

+? abstractDuration)

25 0.0 taskType (?t, +? taskType) ^ usedInTask (?t, ?o) ^

causedObjectPositionDifference (?t, ?o, +? spatialRelation)

26 0.0 goal(?t, +?goal) ^ usedInTask (?t, ?o) ^

causedObjectPositionDifference (?t, ?o, +? spatialRelation)

27 0.0 causedObjectPositionDifference (?t, ?o, +? spatialRelation) ^ duration

(?t, +? abstractDuration)

28 0.0 taskType (?t, +? taskType) ^ perceives (?t, ?o) ^ objectType (?o, +?

objectType)

29 0.0 goal(?t, +?goal) ^ perceives (?t, ?o) ^ objectType (?o, +? objectType)

30 0.0 perceives (?t, ?o) ^ objectType (?o, +? objectType) ^ error (?t, +? error)

31 0.0 perceives (?t, ?o) ^ objectType (?o, +? objectType) ^ duration (?t, +?

abstractDuration)

32 0.0 taskType (?t, +? taskType) ^ perceives (?t, ?o) ^ objectType (?o, +?

objectType) ^ duration (?t, +? abstractDuration)

33 0.0 goal(?t, +?goal) ^ perceives (?t, ?o) ^ objectType (?o, +? objectType) ^

duration (?t, +? abstractDuration)

34 0.0 taskType (?t, +? taskType) ^ acts(?t, +?actionType , +? actionParameter)

35 0.0 goal(?t, +? taskType) ^ acts(?t, +? actionType , +? actionParameter)

36 0.0 acts(?t, +? actionType , +? actionParameter) ^ error(?t, +?error)

37 0.0 acts(?t, +? actionType , +? actionParameter) ^ duration (?t, +?dur)

Listing B.2: Template Formulas for a Naive MLN
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C. Airmation

Herewith I airm that I composed this work single-handed and that I did not use any
sources or facilities other than listed here. Especially, I did not use any internet sources
which are not listed in the bibliography. I did not submit this work for another exami-
nation. All passages which have been taken from other works literally or whose gist have
been taken from other works are marked in combination with the source.1

Syke,

1http://www.uni-bremen.de/fileadmin/user_upload/single_sites/zpa/pdf/

pruefungsordnungen/allgemeiner_teil/master/AT_MA_2010-01-27.pdf
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D. CD

The CD contained in the paper envelope at the bottom contains the source code of the
implementation. Furthermore, it contains this document and the evaluation data.
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