
MASTER'S THESIS
FB3 Informatik

To See What No Robot Has Seen Before
Recognizing Objects Based On Natural Language Descriptions

Sehen, was noch kein Roboter zuvor gesehen hat
Objekterkennung auf Basis natürlichsprachlicher Beschreibungen

Author: Mareike Picklum

Advisors: Prof. Michael Beetz, Ph.D.

Dr. Karsten Sohr

Supervisor: Daniel Nyga, M.Sc.

Submission Date 05.01.2015

DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

ERKLÄRUNG

Ich erkläre eidesstattlich, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benutzt und die
den benutzten Quellen entnommenen Stellen als solche gekennzeichnet habe. Die
Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbe-
hörde vorgelegt.

Bremen, January 23, 2019

(signature)

ABSTRACT

This thesis investigates an approach for using natural-language descriptions in the
context of object recognition. In particular, we propose a transformation from
phrases in natural language to a formalized, computer-understandable representa-
tion. We generate a probability distribution of objects and property attributes, in
which the attributes are represented by abstract symbols of features. We introduce
a number of similarity calculations to measure the relatedness of features and
therefore determine the overall similarity between objects. We also design different
modelings of a probabilistic relational model and propose a solution for the
modeling that suits our object recognition task best. We approve our findings by
an evaluation on data sets generated from natural-language descriptions acquired
from the internet.

CONTENTS

1 INTRODUCTION 1

1.1 MOTIVATION . 1

1.2 ROBOSHERLOCK . 4

1.3 ROBOSHERLOCK WITH KB FEATURES 5

1.4 RELATED WORK . 8

1.5 THESIS CONTRIBUTIONS . 9

2 OBJECT RECOGNITION 11

2.1 USING NATURAL LANGUAGE FOR ROBOTS 11

2.2 CONCEPT - BASIC . 12

2.3 MARKOV LOGIC NETWORKS . 17

2.3.1 LEARNING AND INFERENCE IN MARKOV LOGIC NETWORKS . . . 18

2.3.2 ADVANTAGES OF MARKOV LOGIC NETWORKS 20

2.3.3 EXAMPLE OF A MARKOV LOGIC NETWORK 21

2.4 CONCEPT - DETAIL . 23

2.4.1 TRANSFORMING NATURAL LANGUAGE 23

2.4.2 OBJECT INFERENCE . 28

2.4.3 SIMILARITY . 30

2.5 MODELING MLNS . 41

2.6 SUMMARY . 44

3 IMPLEMENTATION 51

3.1 FEATURE EXTRACTION . 52

3.2 OBJECT RECOGNITION . 52

3.3 USAGE . 53

4 EXPERIMENTS AND RESULTS 59

I

4.1 SETUP . 59

4.2 EVALUATION . 61

4.2.1 COMPARING MODELINGS . 62

4.2.2 COMPARING RESULTS UNDER OW AND CW ASSUMPTIONS . . . 65

4.2.3 COMPARING CONFIGURATIONS 67

4.2.4 INCORPORATING SIMILARITY 68

4.3 SUMMARY . 70

5 SUMMARY 73

5.1 CONCLUSIONS . 73

5.2 PERSPECTIVE . 75

ACRONYMS 76

BIBLIOGRAPHY 77

APPENDIX 83

MLN TEMPLATES - MODELING I . 83

MLN TEMPLATES - MODELING II . 84

MLN TEMPLATES - PROPERTY ATTRIBUTES 85

SYNTACTIC EVIDENCE EXAMPLE . 86

ATTRIBUTE FEATURES . 88

CONFUSION MATRICES . 91

II

LIST OF FIGURES

1.1 LOOKING UP UNKNOWN OBJECTS . 2

1.2 FEATURE TYPES . 4

2.1 PIPELINE . 13

2.2 EXAMPLE PARSE TREE . 25

2.3 PIPELINE REVISITED . 46

2.4 SYNSET INFO . 47

2.5 ADJECTIVE CLUSTER . 47

2.6 HSV CYLINDER . 48

2.7 SIMILARITY IN RELATION TO TAXONOMY 48

2.8 HYPERNYM RELATION . 48

2.9 DERIVATIONALLY RELATED FORMS 49

2.10 TAXONOMY BRANCH RELATION . 49

3.1 PRAC QUERY TOOL . 55

3.2 PRAC QUERY TOOL . 56

4.1 COMPARING MODELINGS . 63

4.2 COMPARING CLOSED WORLD AND OPEN WORLD 66

4.3 COMPARING CONFIGURATIONS . 71

4.4 COMPARING WITH SIMILARITY CONSIDERATION 72

5.1 CM: MODELING II CONF III-SIM 91

5.2 CM: MODELING I CONF II . 92

5.3 CM: MODELING I CONF III . 93

5.4 CM: MODELING I CONF I . 94

5.5 CM: MODELING II CONF II . 95

5.6 CM: MODELING II CONF III . 96

III

IV

LIST OF TABLES

2.1 WORD SENSES . 31

2.2 FEATURE VECTORS FOR COLORS . 35

2.3 FEATURE VECTORS FOR SIZES . 36

2.4 FEATURE VECTORS FOR SHAPES . 37

2.5 COMPARING MODELINGS . 43

4.1 TERMINOLOGY . 60

4.2 RESULTS - SIMILARITY . 69

4.3 AVERAGE MEASURES . 70

5.1 FEATURE VECTORS FOR COLORS . 88

5.2 FEATURE VECTORS FOR SHAPES . 90

5.3 FEATURE VECTORS FOR SIZES . 90

V

VI

CHAPTERone

INTRODUCTION

This chapter gives a brief overview of the motivation for this thesis as well as a
short introduction to the challenges of using Natural Language (NL) in the context
of object recognition. A statement on how this thesis contributes to current research
and how it can be used for practical applications is issued.

1.1 MOTIVATION

Executing everyday activities requires quite a number of different skills, of which
one of the most substantial ones is the ability to recognize objects. When humans
deal with a (whatever natured) instruction, they have to make sure that besides
being able to interpret the instruction accurately, they are able to identify all objects
necessary to perform the task and, of course, are competent in using them. The
same applies to robotics (i.e. household robotics), because to a certain degree of
autonomy, a robot is expected to perform a task in a human-like manner. It also
needs to be able to interpret an instruction and identify required objects. But what,
if one of these prerequisites is not given?

Usually, a robot can recognize things it has seen before. Anything beyond what it
has learned is not existent in its world and therefore can not be recognized. In the
context of knowledge representation the presumption that only the statements in the
evidence are known to be true is called open world assumption. Inversely, everything
not in the evidence is assumed false. In contrast, an open world assumption handles
everything but the evidence as unknown.

Analogously, as the robot excludes the existence of anything not seen before its
world is called closed.

Imagine the following situation, which is illustrated in Figure 1.1: A household

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

robot is standing in the kitchen of your house and is about to prepare some food (as
instructed by you). But from the recipe instructions it requires objects it has never
seen or heard of. What will it do? In a closed world it can not do anything as it does
not have a model to handle the situation properly.

One possible way out could be to equip the robot with capabilities to consult a
dictionary and look up a description of the unknown object. Since we live in the
21st century, WIKIPEDIA or some other online source is most likely the reference
work of its choice. It could read the article and filter the information in it by what is
needed to identify the object. Equipped with this newly acquired knowledge, it can
now go on a quest for the unknown object. Once found, comparing the items in its
environment to the object description it is provided with, it is finally able to perform
the original task: cooking dinner.

This approach is one step further towards an open world in which previously unseen
objects are recognizable.

Fill a cup with water.
?

handlesmall

container

cup =

h
a
sasi
ze

h
y
p
e
rn
y
m

Figure 1.1: Looking up unknown objects: This is an example pipeline, how a human
may deal with being confronted with unknown objects.

In the context of autonomous robotics, object recognition has come a long way over
the last few years. There exists a variety of different approaches on how to rec-
ognize objects, including what kind of features to use and how to interpret them.
The typical way to recognize objects is to use a previously trained model, repre-
senting feature-object relations in some way. This may be quite complex models
like a joint probability distribution or simple lookup-tables matching representing
object-feature relations. What these approaches have in common is that the model
is typically trained using numerous example instances of the objects that need to

2

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

be recognized. The model then learns patterns for objects based on the features
occurring in the samples and allows recognizing objects holding the same or similar
features. It is therefore necessary to be able to compare features of the perceived
object with the ones of previously seen objects represented in a model.

There are different layers of abstraction on the feature level, of which each has
its advantages and disadvantages. These layers can be thought of as structured in
a hierarchy, as visualized in Figure 1.2, in which each layer builds up upon the
respective lower-leveled features.

• Low-level features are features that are often closely related to individual
instances, that means they are characteristics not necessarily of an object cat-
egory, but rather of one specific image or object. They may be features such
as color cooccurrence- (Chang and Krumm [2]) or gradient histograms, like
Scale-invariant feature transform (SIFT) (see Lowe [19]) or Histogram of Ori-
ented Gradients (HOG) (see Dalal and Triggs [4]) or simply values of any
color model (Hue Value Saturation (HSV) or RGB). As they have little symbolic
meaning and may not be self-explanatory, so humans usually have difficulties
with interpreting them. They often occur in form of numerical values which is
on the other hand machine-understandable. These values can be compared to
the feature values of previously seen objects and therefore allows recognizing
objects.

• Using High-level features can be seen as the current state-of-the-art approach
in object recognition. These features are more abstract than low-level features,
and represent a symbolic meaning of the low-level features of an object class.
An example for high-level features are color names, as they assign an abstract,
human-understandable interpretation to the low-level features (HSV or RGB
values). They are intuitively human-understandable and more general than
low-level features, as one word (i.e. a color name) is used for a usually larger
range of low-level features. Other examples are geometric shapes, which can
be generated through corresponding fitting algorithms or transformations (e.g.
Hough transformation), or components (part-of relations), which can be de-
termined through image segmentation.

• Knowledge-based features add another abstraction layer to the feature level,
which can be used to determine similarity relations between them. Abstract
symbols in natural language, such as color names have a natural grounding
in a taxonomy. This taxonomy links the symbols through relations which can
be used to determine their relatedness. For example, the symbols “blue” and
“yellow” are not naturally related in any way, but by organizing them in a
taxonomy it is possible to determine a connection between them and there-
fore define a similarity. On the internet one can find a number of taxonomies
providing hierarchical structures between objects and ontologies providing in-
formation about relations in a certain universe of discourse. The concept of
including semantic knowledge in web pages of the world wide web is known
as the semantic web. By using taxonomy relations to determine a similarity
between symbols we create a link to this semantic web.

3

1.2. ROBOSHERLOCK CHAPTER 1. INTRODUCTION

low-level features

high-level features

knowledge-based features entity

orange

color

yellow

WWW

similar

 “yellow”

“orange”

 “line”

...

...

Figure 1.2: Overview over the different feature types. Low-level features are fea-
tures without any symbolic information such as (color-, gradient-) histograms, SIFT
and HOG features. Higher-level features are generated by adding information (e.g.
knowledge about geometrics or color values) to low-level features to interpret them
in a more intuitive way. Knowledge-based features augment the higher-level fea-
tures with common knowledge (e.g. similarity information between colors or shapes,
or semantic relations between objects) which creates a link to sources, where such
common knowledge can be accessed (e.g. the world wide web).

Typically, training objects in an object recognition scenario are examined by means
of their local (low- or mid-level) features, but current state-of-the-art research fo-
cuses on incorporating high-level features.

1.2 ROBOSHERLOCK

ROBOSHERLOCK1 is a perception framework for Unstructured Information Manage-
ment (UIM), which allows to retrieve structured information from unstructured
data by applying ensembles of expert systems for annotating information pieces in
a multi-stage processing pipeline. A perception system extending ROBOSHERLOCK

with probabilistic reasoning about object classification using a trained Markov Logic
Network has been proposed by Nyga et al. [24]: To master varieties of properties
difficult to perceive, they combine multiple specialized perception methods and or-
ganize the perception in a two-step-process. In the first step, multiple annotators
add symbolic information regarding their shape, texture, color, size, text pieces,
and logos to the perceived scene. To be able to do so, algorithms for clustering (to

1http://www.pr2-looking-at-things.com (last accessed: January 23, 2019)

4

CHAPTER 1. INTRODUCTION 1.3. ROBOSHERLOCK WITH KB FEATURES

decompose the scene into single objects), shape fitting (using Random sample con-
sensus (RANSAC)) and color detection (using RGB or HSV values) are used. The
goal is to achieve an abstraction from the feature level in a way that the low-level
features are interpreted covering their semantic meaning. After annotating detected
objects, a conditional probability P (Q |E) is used to infer the desired query Q (e.g.
the object’s identity) from the given evidence E (the symbolic information from the
annotators). Employing expert perception methods collaboratively and using the
annotation results as evidence for a conditional probability not only allows an in-
creased generality of possible queries against alternative methods, but also eases
including more expert systems. The joint probability distribution for the model of
scenes, objects and annotations needs to be learned beforehand.

Approaches like this are supposed to approximate a human-like way of representing
and recognizing objects which has been found successful on numerous occasions.
Using ensembles of classifiers and combining different types of features has shown
very successful in different domains and many approaches score remarkable results
even on lower quality datasets, which may be affected by illumination or pose/view-
point variations.

Still the problem of being limited to known classes persists, due to the fact that
the resulting models only represent previously seen objects, as all the features are
computed from example instances of the respective target classes. The effect of this
lack of generality is that classes, of which there are no training instances available,
can not be recognized.

It would be desirable to ease this process by allowing to add objects to the model
without the need of their physical presence.

1.3 ROBOSHERLOCK WITH KNOWLEDGE-BASED FEATURES

This motivation leads to the idea to use natural language in the context of object
recognition tasks and in particular, to train a semantic model from the features that
can be found in NL descriptions, where the term “semantic model” in the context
of this work refers to a model incorporating knowledge about semantic relations
representing perceptual characteristics.

ROBOSHERLOCK currently uses high-level features in the object recognition pipeline.
Our approach expands the system to include knowledge-based features by using
training data generated from natural-language descriptions.

The question arising from this idea is: Is it possible to recognize objects only from a
natural-language description?

This approach adds another abstraction layer on the feature level, as it incorporates
knowledge-based features into object recognition tasks and thereby creates a link to
the world wide web, in which common knowledge is accessible.

5

1.3. ROBOSHERLOCK WITH KB FEATURES CHAPTER 1. INTRODUCTION

The thought behind this concept is that features in NL context naturally have a
grounding in a taxonomy and therefore can be examined by means of their relational
characteristics and syntactic dependencies on each other. The information that can
be retrieved from such a taxonomy is then augmented with more knowledge about
similarities and object relations, signifying one step further towards object recogni-
tion using knowledge-based features.

Incorporating the idea of using natural language in object recognition tasks, the
following scenario could be thought of, analogous to the situation described above:
Given an instruction for a task, an autonomous robot can look up a description in
natural language for an unknown object required to perform the task, and either
train its internal knowledge base with this information or directly compare it to the
objects it has perceived.

The advantages of this approach are, on the one hand, the possibility to generate
arbitrary semantic perception models and, on the other, that the necessity to acquire
training instances from real objects is not given any more, as the model is trained
with natural-language descriptions. To put that in other words, it would be possible
to recognize previously unseen objects, which constitutes a significant improvement
compared to many other approaches.

Any well-formed NL sentence describing an object can be sifted through to retrieve
relevant (i.e. descriptive) information from it. Such an object description could be
looked up on one of numerous websites allowing access to semantic networks or
dictionaries on the internet.

To name a few examples, ConceptNet2 is a semantic network representing knowl-
edge by modeling words and their relationships as nodes with labelled edges be-
tween them. WORDNET3 is a Lexical Database using synsets (groups of cogni-
tive synonyms of nouns) to describe concepts. The probably best known source
is WIKIPEDIA4.

WORDNET, in particular, provides rather short and concise descriptions, compared
to WIKIPEDIA. A typical description would be “a small open container usually used
for drinking; usually has a handle” for a cup or “round yellow to orange fruit of any of
several citrus trees” for an orange.

Unfortunately natural language is highly ambiguous, for example, there may exist
different meanings for one word. As an example, the term “orange” refers to a fruit
on the one hand and to a color on the other. We therefore need a method to deter-
mine the correct sense of a word, which is another reason why we use WORDNET5.
It provides the comfortable feature of separating a word into its different senses,
which allows us to perform a word sense disambiguation and therefore assign a

2http://conceptnet5.media.mit.edu/ (last accessed: January 23, 2019)
3WORDNET can be downloaded on http://wordnet.princeton.edu/ (last accessed: January 23,

2019)
4http://www.wikipedia.org/ (last accessed: January 23, 2019)
5The original WORDNET database has been expanded to include further annotations, which also

assign the correct sense to each word in the respective description.

6

CHAPTER 1. INTRODUCTION 1.3. ROBOSHERLOCK WITH KB FEATURES

specific meaning to each term.

The information retrieved from these descriptions can be used to train a model
(which we use as a knowledge base), with the respective information about objects.
This model needs to be represented in a manner that renders a connection between
the visual attributes of an object and its identity possible. Particularly interesting
attributes are the ones detectable by the robot's respective sensors, such as visual
attributes like colors, sizes and shapes. The object attributes detected and annotated
by the robot's perception system can then be fed into the model to infer the object's
identity.

Like a robot's perception data, NL is generally unstructured, and in order to build up
a model, a transformation from the string representation of the NL object description
to a formal (robot-understandable) representation is required. From a probabilistic
point of view, we are interested in an approach to solving the problem of finding
the most probable formal object description, given an informal natural-language
specification, that is:

argmax
shape,color,size,...

P

color(yellow)

color(orange)

hypernym(fruit)
...

∣∣∣∣∣∣∣∣

“An orange is a yellow or orange fruit.

It is...”
...

Not only the generation of semantic models from natural-language descriptions is
essential about this concept. Even more rewarding is the aspect that by using a
joint probability distribution to infer an object's identity, it would even be possible
to infer the most significant (=discriminative) attributes needed to describe objects,
by querying the distribution of the properties for specific objects or object classes. In
particular, we can find the attributes that are most probably used to describe a given
object:

argmax
shape,color,size,...

P

color(yellow)

color(orange)

hypernym(fruit)
...

∣∣∣∣∣∣∣∣
object(orange)

As an example, a color annotator may be essential for identifying fruit, but not very
helpful recognizing other objects, like cups. This information is particularly relevant
to identify, which annotators are required to be able to distinguish one object from
another.

One advantage of this is the reduction of computation time required for the object
inference. When identifying an annotator not needed to recognize a certain object
we can do without it and save its complexity.

7

1.4. RELATED WORK CHAPTER 1. INTRODUCTION

Another advantage is the reduction of potentially distracting or misleading informa-
tion. As we concentrate on only the relevant annotations we also make sure that the
perception pipeline results in an object description that does not contain too much
irrelevant information. If annotations that are not discriminative for the specific
object are added the object may be misclassified if its description matches another
object.

The transformation from a NL description to a formal representation in the first step
and the generation of the knowledge base model in the second, are the core parts of
this work and are described in detail in Chapter 2 and Chapter 3.

1.4 RELATED WORK

Elaborate research has been devoted to the field of Natural Language Processing
(NLP), including parsing natural language texts (Klein and Manning [13]) and us-
ing natural language formulate instructions for robots (Lauriar et al. [17]). Recent
research addresses the problem of autonomous robots executing everyday activities
instructed in natural language.

Matuszek et al. [21] present how to interpret human language instruction and trans-
form them into formal representation which can then be used for robotic perception
and actuation. Particularly, they use natural language to instruct a robot to fol-
low a route through a previously unknown indoor environment. Matuszek et al.
[20] present an approach to build a joint model of language and perception for
grounded attribute learning. They learn how natural language is represented and
extract the meaning of it to ground it in the physical world. They use an online,
Expectation Maximization (EM)-like algorithm to train the model to learn language
and perception models which is able to identify different types of attributes from
novel words. Guadarrama et al. [9] point out that existing approaches expecting
queries mapping to pre-trained visual categories fail in retrieving objects described
in natural-language phrases and introduce an approach of mapping object images to
a set of descriptive words, which are then compared to the natural-language query.
The best match represents the object that most likely has been described. Their ap-
proach can also handle open-vocabularies to be able to interpret words that have
previously not been contained in the training data.

Several research groups are engaged with classification tasks that make use of se-
mantic attributes (Jayaraman et al. [12], Yu et al. [35]), especially in the context
of recognizing unseen objects (Su et al. [31]) or activities (Cheng et al. [3]). Using
descriptive semantic attributes has shown to be a very useful approach for object
recognition tasks.

Duan et al. [5] exercise fine-grained recognition of categories closely related to each
other. Primarily, they distinguish bird species by local, discriminative attributes, such
as a white belly. They point out that object features should be machine-detectable

8

CHAPTER 1. INTRODUCTION 1.5. THESIS CONTRIBUTIONS

and semantically meaningful to humans at the same time, which allows humans
to understand the models and can easily contribute domain knowledge. A latent
conditional random field model is used to discover discriminative attributes and a
recommender system to select semantically meaningful attributes.

Farhadi et al. [6] use descriptions of objects instead of their name to identify one
specific instance. In particular, they categorize objects based on their semantic at-
tributes, such as color, material or shape. Their system allows them to report the
absence of attributes of familiar objects (such as a missing head of a bird) or, on
the other hand, the presence of atypical attributes (like cloth on a motorbike). They
use both semantic and discriminative attributes, which they determine using a novel
feature selection method, to achieve better classification results. Also they are the
first ones to train models on verbal object descriptions instead of training examples,
which constitutes a significant advantage over training with large datasets.

Lampert et al. ([16] and [15]) present methods to classify unseen objects by using
attribute-based classification, using high-level descriptions of the objects. They in-
troduce two methods to accomplish this: In the first method they train a classifier
to be able to infer semantic attributes directly from the object's features. They can
then infer the object class by means of class-attribute relations. As these relations
are fixed, the inferred class may have been previously unseen. The second approach
does not infer the semantic attributes directly, but indirectly. For each training class,
multi-class parameters are learned. The posterior distribution of these class labels
induces a distribution over the unseen classes through the fixed class-attribute rela-
tionship. Thus, after predicting the known classes from the features of the object, its
semantic attributes and, subsequently, the unknown class, can be inferred. In doing
so, shared information between the object classes are made use of. Similar to this
work is the use of higher-level attributes such as colors and shapes. However, the
matrix representing class-attribute relations is human-specified and updated man-
ually, instead of using natural-language descriptions to generate a model for this
purpose.

1.5 THESIS CONTRIBUTIONS

Many approaches are afflicted with lack of generalization when training models
limiting object inference on objects learned beforehand. In this work, we investigate
how using natural-language descriptions in object recognition can help solving this
issue.

In particular, in our work we address the following:

• We analyze natural-language descriptions regarding their descriptive informa-
tion in order to infer the object’s identity.

• We show that it is useful to learn how to interpret and analyze human language

9

1.5. THESIS CONTRIBUTIONS CHAPTER 1. INTRODUCTION

regarding relevant information and demonstrate how a description knowledge
base can be built up hereupon.

• A probability distribution is generated, representing object-attribute relations,
which can be used to infer not only the object's identity, but also the most
significant and possibly discriminative attributes of it. Such knowledge can be
used to create more efficient perception pipelines, as the composition of the
ensemble system can be optimized.

• In order to be able to measure the relatedness of objects and features, we
present similarity calculations incorporating knowledge about their semantic
relations.

The remainder of this document is structured as follows. The concept of this work,
whose implementation is explicated in detail in Chapter 3 is outlined in Chapter 2.
Section 2.3 briefly introduces Markov Logic Networks and how they can be used
to learn the structure of natural-language sentences as well as object-attribute rela-
tions.

In Chapter 4 the concept is tested and evaluated.

Chapter 5 contains a summary including findings of this work as well as open ques-
tions. Furthermore a perspective for future work is outlined.

10

CHAPTERtwo

OBJECT RECOGNITION USING

NATURAL LANGUAGE

This chapter first describes the problem of using natural language in the context of
object recognition and outlines the basic concept of the approach in Section 2.2.
Additional information for understanding methods used in this work is provided,
and the core parts of this work is outlined in more detail in Sections 2.4.1, 2.4.2 and
2.4.3.

2.1 USING NATURAL LANGUAGE FOR ROBOTS

Using symbolic attributes is a very intuitive way to describe objects and using them
in object recognition tasks enjoys great popularity in recent research. The problem
this work addresses is that traditional approaches require numerous training data to
train a suitable model.

We therefore propose to generate a perception model trained with data from ob-
ject descriptions in natural language. These descriptions are acquired from publicly
accessible sources on the web and partly incorporate common knowledge.

As natural language is complex, highly ambiguous and manifold in the way that
there often exist numerous ways to describe the exact same thing, it is not a robot-
understandable information representation.

We propose a method to render the translation from this informal to a formal ob-
ject description possible. The formal object descriptions can then be used in object
recognition tasks, without the requirement of using example instances of the objects
for training.

11

2.2. CONCEPT - BASIC CHAPTER 2. OBJECT RECOGNITION

The inference process therefore purely relies on knowledge retrieved from the inter-
net, that is human knowledge, instead of only using pre-defined high-level features,
thereby creating a link to the world wide web.

2.2 CONCEPT - BASIC

As mentioned in the problem description, we propose using data from natural-
language object descriptions to train a perception model. We will now shortly intro-
duce the basics of the underlying concept and which subordinate tasks need to be
solved in order to put our concept into practice. Subsequently, the identified core
parts are discussed in more detail.

Figure 2.1 visualizes the overall approach in the context of an exemplified object
recognition scenario. As shown in the upper box, a perceived object is annotated
with a number of symbolic information (features), such as colors, shapes and sizes.
The processing pipeline of the visual perception has already been mentioned in the
context of ROBOSHERLOCK.

In the perception pipeline of ROBOSHERLOCK a scene is perceived and represented
in a 3-dimensional Point cloud which is a set of data points. Using segmentation
algorithms, the scene is separated into single objects, called clusters, which is why
we use this term to refer to a certain object. Note that this is not the object's name
(or identity), but only a variable identifier. The identifier of a certain object is linked
to the actual identity of an object when we determine its name in the inference step.

Different algorithms for clustering, color segmentation, shape fitting or other algo-
rithms, allowing a more abstract interpretation of the low-level features are applied.

The result is a formal representation of the object, based on first-order logic using ab-
stract, symbolic features. The general idea is to find out, which object these features
describe by using a model generated from object descriptions from the internet.

The lower box represents the concept implemented in this work. The idea is to
train the model using knowledge acquired from the internet to make example in-
stances nonessential to the learning process. We look up suitable object descriptions
in online sources like WIKIPEDIA or WORDNET and use the features they contain to
generate a probabilistic relational model. The object descriptions we acquire from
the web (represented by the cloud in the image) are usually available in natural lan-
guage, which necessitates a transformation into a formal representation, matching
the output of our perception pipeline described above, to achieve comparability.

We generate a model representing relations between the syntactic structure of hu-
man language and its information content.

We can use the knowledge that human language has a syntactic structure and fol-
lows certain rules, which means that nouns, verbs and adjectives are used in a spe-
cific manner, with a certain degree of aberration. This allows making assumptions

12

CHAPTER 2. OBJECT RECOGNITION 2.2. CONCEPT - BASIC

Parsing

... Orange, ... nearly
round fruits, ...

round yellow to
orange fruit of any of
several citrus trees... shape(orange, round)

color(orange, orange)
hypernym(orange, fruit)
...

Transformation

...

Knowledge
Base

Learning

arg max P
shape(c, round.a.01)
color(c, orange.s.01)
...

object (c, concept))(Inference

shape

color

size

hypernym

hasa

Feature Annotation

shape(c, round)
color(c, orange)
color(c, yellow)
size(c, small)
hypernym(c, fruit)

Perception

Figure 2.1: Pipeline of the processing steps of the object inference. The upper box
shows the perception pipeline in which the perceived object is annotated with a
number of symbolic features. The lower box shows that object descriptions are
acquired from different sources of the web and then transformed into a formal first-
order logic based representation. The generated data is then used to train a proba-
bilistic relational model which is used as a knowledge base. Given the result from
the perception pipeline in the upper box, it can be queried for the most probable
object identity.

about how words are typically used to describe objects.

We use a parser to transform a sentence in natural language into a syntactic structure
describing its grammatical relations. This syntactic structure is represented using
predicates in first-order logic. Listing 2.1 shows an example of a parsed sentence.

13

2.2. CONCEPT - BASIC CHAPTER 2. OBJECT RECOGNITION

amod(fruit -5, yellow -4)

cop(fruit -5, is -2)

det(fruit -5, a-3)

has_pos(It -1, PRP)

has_pos(a-3, DT)

has_pos(fruit -5, NN)

has_pos(is -2, VBZ)

has_pos(yellow -4, JJ)

nsubj(fruit -5, It -1)

root(ROOT -0, fruit -5)

Listing 2.1: Parsing “It is a yellow fruit.”

The predicates are tuples describing typed dependency relations of the form

rel ⊂ p1 × p2

where rel is the relation type between p1 and p2. In the example above the relation
amod(fruit-5, yellow-4) means that yellow is the adjectival modifier of fruit.

A more detailed explanation of the dependency relations relevant in this work is
described in Section 2.4.

To train such a model, example descriptions of various objects in natural language
are used. In this case, it is not relevant which objects are actually described, as
we are primarily interested in the syntactic structure of typical object descriptions.
This model therefore incorporates a manual on how to extract attribute information
(properties of objects) from NL descriptions rather than a representation of previ-
ously seen objects. This learned model of how object definitions usually look like
allows us to make assumptions about the information content of new (unseen) de-
scriptions, so property attributes characterizing an object can be extracted.

The properties as well as the syntactic information are represented formally by pred-
icates in first-order logic, more precisely: A property is defined as a tuple

property ⊂ cluster × word × prop

where cluster is the domain containing identifiers of the described object, word con-
tains concepts representing the value of the property type pi ∈ prop, with prop =
{COLOR, SIZE, SHAPE, HYPERNYM, HASA}. An example would be property(cluster0,
yellow.s.01, COLOR), which means that object cluster0 has the color yellow.

In this work, there are five different property types to be mentioned, in particular

• property types representing visual attributes:

– The color may be particularly relevant to describe certain objects, but
irrelevant to others (cups, spoons). As an example, fruits are often de-
scribed using colors, whilst the color is typically not a discriminative fea-

14

CHAPTER 2. OBJECT RECOGNITION 2.2. CONCEPT - BASIC

ture for object classes such as vehicles or kitchen utensils, and (if at all)
rather used to refer to a specific instance (“My car is red” versus “A car
is usually red”). Therefore it can still be used to distinguish certain in-
stances of an object from each other.

– The size of an object is usually specified relative to other objects (larg-
er/smaller than, as big as, ...) but may also be absolute (tiny, medium-
sized, ...). Still, there is a specification required, indicating how small
“small” is and what the thresholds to other sizes are. Absolute size dec-
larations (“a small fruit”) can still be used to differ objects from each
other.

– A shape of an object is often mentioned as a very basic way to describe an
object and frequently used in combination with at least one of the other
attributes.

• and relational attributes:

– The hasa attribute indicates part-of relations between objects and can be
used as a discriminative attribute between similar objects. As an example,
cups and bowls are usually described similarly, as they are both small,
roundish containers. The fact that cups usually have handles but bowls
do not, may be the only difference in their respective descriptions.

– An object is often described by its superordinate concept and one or more
other attributes (“A yellow, oval fruit.”, “A small container.”, ...). The
hypernym attribute models the relation between sub- and superordinate
concepts.

From a probabilistic point of view, we determine the conditional probability P (Q |E),
in which we query about the properties Q, and use the syntactic information from
the NL sentence as the evidence E:

argmax
property

P

property(cluster0, w0, SHAPE)

property(cluster0, w5, SIZE)

property(cluster0, w1, COLOR)
...

∣∣∣∣∣∣∣∣∣∣∣

amod(w2, w1)

det(w0, JJ)

root(ROOT-0, w2)
...

This is a simplified formal notation which is specified and explained in more detail
in Section 2.4.

With this model we are able to generate formal descriptions of arbitrary objects
without the need of any example instances.

Now that we are equipped with a model that renders the translation of an informal
object description to a formal one possible, we can use the results of this transfor-
mation step as training data to learn object-property relations in a second model.
This second model can also be used with ROBOSHERLOCK, which was introduced in
Section 1.4, as its formal representation is compatible.

15

2.2. CONCEPT - BASIC CHAPTER 2. OBJECT RECOGNITION

For reasons of reducing complexity, which is explained in Section 2.5 the results
of the transformation process described above is converted to a slightly different
representation, that is, there is one separate predicate for each type of property.
For example, property(cluster, w4, SHAPE) is translated to shape(cluster, w4), prop-
erty(cluster, w1, COLOR) to color(cluster, w1) and so on.

This model can be used to reason about the most probable concept (= identity of
the object), given the property attributes that have, for example, been perceived by
ROBOSHERLOCK.

argmax
concept

P

object(cluster0, concept)

∣∣∣∣∣∣∣∣∣∣∣

shape(cluster0, w4)

size(cluster0, w5)

color(cluster0, w1)
...

We deal with abstract symbols (i.e. the feature values wx) which can differ in their
name but still have the same or similar meaning. For example, a human knows that
“round” and “oval” do not differ much from each other, but their formal representa-
tions shape(cluster0, round) and shape(cluster0, oval) is treated as non-identical by a
machine as it lacks knowledge about their respective semantic meaning.

We therefore introduce similarity definitions between abstract symbols, based on
knowledge we acquire partly from the web (in form of a taxonomy, in which the
symbols are arranged) and partly from predefined relations in form of lookup-tables.

In the inference process for an unknown object we therefore further process the
evidence from ROBOSHERLOCK and add similarity information to it. In particular, for
each feature symbol from the description we add the information about its respective
similarity to each of the symbols already incorporated in our trained model. We are
therefore able to interpret previously unknown symbols by relating them to known
ones.

This is only possible through the link to the semantic web which allows us to deter-
mine these similarity relations.

Being able to determine the similarity of two features also allows us to make as-
sumptions about the overall similarity of two object descriptions:

shape(cluster0, egg-shaped.s.01)

size(cluster0, small.a.01)

color(cluster0, yellow.s.01)
...

sim
⇐==⇒

shape(cluster0, egg-shaped.s.01)

size(cluster0, small.a.01)

color(cluster0, orange.s.01)
...

To sum up the subordinate tasks that have to be solved in order to realize our con-
cept, we identify three core parts of the approach, which is described in detail in the

16

CHAPTER 2. OBJECT RECOGNITION 2.3. MARKOV LOGIC NETWORKS

following:

Part I Transforming information comprised in natural-language descriptions into a
formal representation based on first-order logic (Section 2.4.1)

Part II Creating a knowledge base from the data generated in Part I to be used for
object inference (Section 2.4.2)

Part III Defining a similarity to be able to compare descriptions (Section 2.4.3)

Furthermore we propose using a PRMs for the models that are generated, respec-
tively. A probabilistic relational model (PRM) defines a probability distribution over
a set of relational logic interpretations. It incorporates objects with their properties
and relations (or the syntactic structure of natural language and its symbolic infor-
mation content, respectively) and defines a probability distribution over the object
attributes given a database containing information about the objects and their re-
spective attributes and relations (Getoor et al. [7]). Having a probability distribution
allows us to reason over an arbitrary (but finite) number of predicates. That means
that we are not limited to infer an object's identity given some features, but can
also reason about frequent attribute combinations or specific attributes that are dis-
criminative for a certain object. Possessing this opportunity, a number of practical
applications are imaginable. We can draw conclusions about the algorithms and
sensors required to perceive the most informative attributes of an object or design
even better models from what we have learned about related attributes.

An introduction to the formal definition of Markov Logic Networks and how they
can be used in our work is given in Section 2.3. Implementational details on the
account of the introduced models can be found in Chapter 3.

2.3 MARKOV LOGIC NETWORKS

A Markov Logic Network (MLN) is a PRM, specifying a probability distribution over a
set of relational logic interpretations. MLNs (introduced by Richardson and Domin-
gos [26] and further investigated by Singla and Domingos [29], [28], [30], [27])
are used to represent knowledge by combining first-order logic (FOL) and probabil-
ity theory. Formally, an MLN L consists of a set of FOL formulas F and a real-valued
weight wi attached to each of these formulas Fi.

Given a finite set of constants C = {c1, c2,...,c|C|}, an MLN serves as a template for
constructing a Markov Random Field (MRF) ML,C = 〈X,G〉 (depending on the given
set of constants, the MRF construction will result in different networks). This MRF
has one binary node for each possible predicate grounding in L and one feature for
each possible formula grounding in L. More formally, following the definition from
Jain [10]:

17

2.3. MARKOV LOGIC NETWORKS CHAPTER 2. OBJECT RECOGNITION

• X is an indexed set of Boolean random variables. For each possible grounding
of each predicate appearing in L, we add to X a Boolean variable (ground
atom). We denote by X := B

|X| the set of possible worlds, i.e. the set of
possible assignments of truth values to the variables in X

• G is an indexed set of weighted ground formulas, i.e. a set of pairs 〈F̂j , ŵj〉,
where F̂j is a ground formula and ŵj is a real-valued weight. For each possible
grounding F̂j of each formula Fi in L, we add to G the pair 〈F̂j , ŵj = wi〉. With
each such pair, we associate a feature f̂j : X −→ {0, 1}, whose value for x

∈ X is 1 if F̂j is satisfied in x and 0 otherwise, and whose weight is ŵj .

The probability distribution over the set of possible worlds represented by the MRF
is defined as an exponentiated sum of weights of formulas, that are satisfied in x:

P(X = x) =
1

Z
exp

|G|∑

j=1

ŵj f̂j(x)

 (2.1)

which is equal to the exponentiated weighted sum of true groundings of a formula:

P(X = x) =
1

Z
exp

|L|∑

i=1

wini(x)

 (2.2)

where ni(x) equals the number of true groundings of Fi in x and Z is a normalizing
constant.

2.3.1 LEARNING AND INFERENCE IN MARKOV LOGIC NETWORKS

An MLN is learned from one or more relational databases under a closed world
assumption (i.e. an atom not occurring in the training data is assumed false). The
weights of an MLN can be learned using optimization methods (e.g. quasi-Newton
or gradient-based). Equation 2.3 shows the derivative of the log-likelihood w.r.t. the
weight of the ith formula.

∂

∂wi

logPw(X = x) = ni(x)−
∑

x′

Pw(X = x′) · ni(x
′) (2.3)

Pw(X=x’) is P(X=x’) using the weight vector w and the sum is over all possible
databases x’.

Summing over all possible databases is intractable as well as the computation of the
log-likelihood and its partition function Z (Richardson and Domingos [26] and Kok
[14]) which is required to compute the expectation.

18

CHAPTER 2. OBJECT RECOGNITION 2.3. MARKOV LOGIC NETWORKS

An alternative is therefore an optimization of the pseudo-log-likelihood (Equation 2.4).

P*
w(X = x) =

n∏

l=1

Pw (Xl = xl |MBx(Xl)) (2.4)

MBx(Xl) is the state of the Markov blanket of Xl in the data.

Pseudo-log-likelihood can be optimized using algorithms like BFGS (Liu and Nocedal
[18]).

To penalize large weights which is used for regularization, the likelihood is multi-
plied by a Gaussian prior N(0, σ) on each weight which is calculated as follows:

prior′ = prior −
1

2 · σ2 · w2
i

(2.5)

where σ denotes the standard deviation of the Normal distribution.

As an MLN represents a joint probability distribution we can answer arbitrary queries
about the objects incorporated in the model ([26]):

P (F1 |F2, L, C) = P (F1 |F2,ML,C)

=
P (F1 ∧ F2 |ML,C)

P (F2 |ML,C)

=

∑
x∈XF1

⋂
XF2

P (X = x |ML,C)
∑

x∈XF2
P (X = x |ML,C)

(2.6)

Here, F1 and F2 are formulas in first-order logic, C is a finite set of constants, L is an
MLN and XFi

is the set of worlds where Fi holds.

The computation of Equation 2.6 directly is intractable since inference in MLNs sub-
sumes probabilistic and logical inference, which are #P-complete and NP-complete,
respectively.

To be able to use solving methods already available the Maximum a Posteriori (MAP)
inference problem in an MLN can be converted into a weighted constraint satisfac-
tion problem (WCSP).

Following the definition from Jain et al. [11], a WCSP is defined as follows: A
weighted constraint satisfaction problem (WCSP) is a tuple R = 〈 Y, D, C 〉:

• Y = {Y1, ..., Yn} is a set of n variables.

• D = {D1, ..., Dn} is the collection of the domains of the variables in Y, such that
Di = dom(Yi) is the domain of Yi. For a given variable Yi we may also denote
its domain by DYi

. We write DS to denote the Cartesian product
∏

Yi∈S
Di for

some subset of the variables S ⊆ Y . Y := DY denotes the Cartesian product of
all domains and hence represents the set of possible variable assignments.

19

2.3. MARKOV LOGIC NETWORKS CHAPTER 2. OBJECT RECOGNITION

• C = {c1, ..., cr} is a finite set of r soft constraints. A soft constraint ci is a
function on a sequence of variables V from the set Y (V is called the scope of
the constraint) such that ci maps assignments (of values to the variables in V)
to cost values: ci : DV → {0, ..., ⊤}. If an assignment is mapped to ⊤, it is
considered inconsistent.

• A solution to R is a consistent assignment to all variables. An optimal solution
y ∈ Y minimizes the accumulated cost

∑r
i=1 ci(y) over all constraints (we

assume that y is implicitly projected to the actual scope of ci).

This transformation is possible because each formula in an MLN can be viewed at as
a generalized soft constraint.

More detailed, each formula in the MLN is transformed in a way that they have posi-
tive weights. This is carried out by negating all formulas along with their weights (if
the weight was negative before), without changing the semantics of the MLN (Jain
et al. [11]).

We therefore transform each formula-weight pair (Fk, wk) to (¬Fk, ¬wk). A positive
weight of a formula increases the probability of any possible world satisfying it and
inversely, can be interpreted as a cost value in case the formula is not satisfied.

Therefore the definition of ci looks as follows:

ci(s(x)) =

{
ŵi if f̂i(x) = 0

0 if f̂i(x) = 1

= (1− f̂i(x)) · ŵi

(2.7)

f̂i is the feature function associated with F̂i and s(x) is implicitly projected to the
actual scope of ci.

The costs are then scaled because each cost c in a WCSP needs to be a natural
number, while the weights from the MLN are in R

+
0 .

A solver for weighted contraint satisfaction problems can now be used to estimate
an efficient most probable explanation (MPE), that is the most likely assignment for
any instance of the MLN.

2.3.2 ADVANTAGES OF MARKOV LOGIC NETWORKS

In general, an MLN maintains a joint probability distribution over observations
from whole databases. This makes it possible to answer arbitrary queries about
the trained model which allows reasoning about different features of objects, for
example.

20

CHAPTER 2. OBJECT RECOGNITION 2.3. MARKOV LOGIC NETWORKS

Another advantage of using MLNs is that errors or contradictions in the training
databases do not result in an entirely corrupt model, as they can handle such uncer-
tainty by learning systematic errors in the dataset and treating them in a meaningful
way. The convenient representation in first-order logic facilitates the extension of
the model, as new predicates can simply be added and incorporated into the existing
template formulas.

The downside, however, is that learning as well as inference can be computationally
very expensive, which needs to be taken into account during modeling the MLN.

In this work, one MLN uses syntactic evidence from NL descriptions to reason about
object properties, and a second one uses these properties as evidence to reason about
the object’s identity. A more detailed description of the process pipeline is presented
in the next chapter.

2.3.3 EXAMPLE OF A MARKOV LOGIC NETWORK

A very simple example of an MLN may look like the following: We assume we have
defined three different predicates

object ⊂ obj,

shape ⊂ shp

and
color ⊂ col

or in FOL notation:

object(obj)

shape(shp)

color(col)

Listing 2.2: MLN predicates

Each of the predicates can take one argument, whose values are from different do-
mains than the respective others. In that way we use a typed logic. In the grounding
process an object atom can only take a value from the obj domain as its argument, a
shape atom from the shp domain, and so on.

Furthermore we design one single formula, assuming a relation between objects and
the attributes shape and color.

0 object (+?o) ^ shape (+?s) ^ color (+?c)

Listing 2.3: Example formula

The formula is constructed using PRACGrammar, which is a slightly modified ver-
sion of the standard syntax for MLNs. 0 is assigned as an initial weight. Variables

21

2.3. MARKOV LOGIC NETWORKS CHAPTER 2. OBJECT RECOGNITION

are prefixed with a “?”, while everything else is considered a constant. As some
variables are prefixed with a “+”, the formula is actually a formula template, from
which another formula for each possible grounding of the variables is generated,
that means, for each binding of the variable to a value in the respective domain.

In our small example, we assume the following settings of the domains: There only
exist two different objects (apples and tomatoes), two different colors (red and
green) and only one shape (round) or more formally: obj = {apple, tomato}, col
= {red, green} and shp = {round}.

According to the definition above, the formula template in Listing 2.3 is grounded
to the formulas in Listing 2.4 as each formula containing a “+”-prefixed variable
is grounded to another formula for each variable assignment from the respective
domain.

0 object(apple) ^ shape(round) ^ color(red)

0 object(apple) ^ shape(round) ^ color(green)

0 object(tomato) ^ shape(round) ^ color(red)

0 object(tomato) ^ shape(round) ^ color(green)

Listing 2.4: Example formula

Depending on the training databases, the formula weight is updated according to
the number of training examples, that evaluate the respective formula true. The
weights have to be viewed relative to the other formula weights. Only knowing that
one formula has a specific weight does therefore not help to make an assumption
when querying an object's identity, for example.

The resulting ground MLN maintains a joint probability distribution over objects,
shapes and colors, and we can query an arbitrary variable or variable combination.

If we assume, according to our training data we have calculated (or simply set) the
weights as follows:

2 object(apple) ^ shape(round) ^ color(red)

4 object(apple) ^ shape(round) ^ color(green)

3 object(tomato) ^ shape(round) ^ color(red)

0.5 object(tomato) ^ shape(round) ^ color(green)

Listing 2.5: Example formula

A red and round object may be a tomato as well as an apple, the same applies to
green and round objects. So each of the above combinations is possible, but not
equally probable.

This small example already shows the complexity of MLNs and it Looking at a man-
ageable situation like this small example we can easily observe the relations between
the objects and their attributes. Having these relations in mind, one can also accept
the tendency of the MLN to classify green, round objects to be an apple rather than
a tomato.

From Section 2.3.1 we understand that given larger domains and more complex
formulas, the resulting ground MLN may be incomprehensible due to its complex

22

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

structure.

2.4 CONCEPT - DETAIL

Having introduced the formal definition and application purpose of MLNs, we will
now discuss the core parts of the concept in detail.

2.4.1 TRANSFORMING NATURAL LANGUAGE

Natural language is used whenever humans want to communicate with each other.
We use it in our everyday life to interact with others, to formulate questions, in-
structions or descriptions of things, or in other words, we use it to deliver infor-
mation. When asking someone to pass a specific object, we use language with rich
semantics to describe it as accurate as possible, which includes naming basic-level
or fine-grained categories. In doing so, we assure the person we are addressing un-
derstands which object we desire and is able to distinguish it from other, possibly
similar ones.

We are even able to specify one explicit instance of an object class by adding more
detailed information like brand-names or instance-specific attributes. A robot will
not understand object descriptions in natural language, but rather needs a formal
representation to be able to interpret them. Using NL descriptions to train a model
provides the possibility to use descriptions retrieved from the internet, for exam-
ple WIKIPEDIA or WORDNET. Tenorth et al. [32] investigate natural-language in-
structions and present methods how to transform them into a formal, logic-based
representation.

Similarly, in this work, natural-language descriptions are parsed and processed to
retrieve the contained information from it. We already pointed out the advantages
of using natural language and identified a number of difficulties we are facing.

The Stanford parser1 (Klein and Manning [13]) is a probabilistic context-free gram-
mars (PCFG) parser, which retrieves the syntactic structure of natural language, such
as part-of-speech (POS) tags, adjectival or adverbial modifiers and other grammat-
ical properties. This information makes it possible to find patterns in the syntactic
structure of a phrase and its related information content.

If the grammatical structure of the (query) sentence is incorrect the resulting output
of the Stanford parser will not be as accurate as if it follows grammar rules. This is

1Stanford Parser: http://nlp.stanford.edu/software/lex-parser.shtml (last accessed: Jan-
uary 23, 2019)

23

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

due to the fact that the parser is newswire-trained2 which means that the training
data is taken from newspapers. Newspapers are using complete sentences with
usually correct grammatical structure and the trained model incorporates this way
to use the language. Complete sentences as can be found in WIKIPEDIA descriptions
are therefore not a problem.

In contrast, object descriptions in WORDNET are usually short and often consist
of a number of clauses, which do not necessarily need to be full, grammatically
complete sentences. The difference in the results from the Stanford parser given
the clause “a round, yellow fruit” and the complete sentence “It is a round, yellow
fruit.” can be seen in Listings 2.6 and 2.7. While in the first parsing result, “round”
is considered a noun (has_pos(round-2,NN)), it is correctly determined to be an
adjective (has_pos(round-4,JJ)) in the second. This is important because the word
sense disambiguation following next is based on the POS tags, the Stanford parser
returns.

amod(fruit -5, yellow -4)

appos(round -2, fruit -5)

det(round -2, a-1)

has_pos(a-1, DT)

has_pos(fruit -5, NN)

has_pos(round -2, NN)

has_pos(yellow -4, JJ)

root(ROOT -0, round -2)

Listing 2.6: Parsing “a round, yellow
fruit”

amod(fruit -7, round -4)

amod(fruit -7, yellow -6)

cop(fruit -7, is -2)

det(fruit -7, a-3)

has_pos(It -1, PRP)

has_pos(a-3, DT)

has_pos(fruit -7, NN)

has_pos(is -2, VBZ)

has_pos(round -4, JJ)

has_pos(yellow -6, JJ)

nsubj(fruit -7, It -1)

root(ROOT -0, fruit -7)

Listing 2.7: Parsing “It is a round, yellow
fruit.”

Each syntactic information returned by the Stanford parser represents a dependency
in form of binary relations. Such a relation holds between a so-called governor (or
head) and a dependent. Particularly interesting in our case are adjectival modifiers
(amod), which give important information about an adjectival phrase modifying the
meaning of a noun. The expression “A yellow fruit.” would therefore reveal the
dependency amod(fruit, yellow). Also, nominal subjects (nsubj, the syntactic subject
of a clause), direct objects (dobj) and objects of preposition (pobj, the head of a
noun phrase following the preposition) represent word relations in the descriptions,
from which the described object properties can be inferred.

Some dependencies are - in our case - only useful in correlation with the POS tags
of the respective components as we are primarily interested in adjectives (colors,
sizes, shapes..) and second-rank, nouns (hypernyms, parts). An example for such a
dependency is nsubj which is used to reveal the nominal subject of a clause as the

2More information about the training sets used for the Stanford parser can be found on
http://nlp.stanford.edu/software/parser-faq.shtml#z (last accessed: January 23, 2019)

24

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

amod(fruit -5, yellow -4)

cop(fruit -5, is -2)

det(fruit -5, a-3)

has_pos(It -1, PRP)

has_pos(a-3, DT)

has_pos(fruit -5, NN)

has_pos(is -2, VBZ)

has_pos(yellow -4, JJ)

nsubj(fruit -5, It -1)

root(ROOT -0, fruit -5)

Listing 2.8: Example for full syntactic
evidence: “It is a yellow fruit.”

NP

PRP

It

VBZ

is

JJ

yellow

VP NP

fruit

S

DT

a

NN

Figure 2.2: Example parse tree for “It is
a yellow fruit.”

dependent. A special case we take advantage of is the occurrence of copulas. A
copula is used to link a subject with a predicate (its complement). If such a copular
verb occurs in the sentence the nsubj dependency will not reveal the verb itself as
the head but its complement. This can be either an adjective or a noun.

Parsing “The lemon is yellow” returns (amongst others) nsubj(yellow, lemon). Sim-
ilarly, a dependency (cop) for such a copula, which relates copular verb to its com-
plement, is another example. This is especially interesting for retrieving hypernyms,
as “A lemon is a yellow, oval fruit.” gives us cop(fruit, is) as a result.

In linguistics, a copula (plural: copulas or copulae) is a word used to link the subject
of a sentence with a predicate (a subject complement), such as the word is in the
sentence "The sky is blue." The word copula derives from the Latin noun for a "link"
or "tie" that connects two different things.

The full syntactic evidence from the sentence “It is a yellow fruit.” can be found in
Listing 2.8, Figure 2.2 is a tree representation of the parsing result.

This result is then fed into an MLN to make it possible to identify yellow and oval
as ascribing adjectives of type color and shape, respectively and fruit as a potential
hypernym. Note, that the added numbers denote the position of the respective word
in the text to clarify, which word is referred to, if one term occurs multiple times.

Figure 2.3 illustrates the steps for the transformation process. After parsing a natural-
language description (here: “It is an orange or yellow fruit.”), the resulting syntactic
information is supplemented by further annotations, which will be explained in de-
tail in the following.

Property tags are added manually providing information about the object's attributes
contained in the descriptions. In this case, two attribute tags for color (yellow and
orange), and one for hypernym (fruit) would be added to the training example.

The property types are mostly attributes that can be perceived visually, as we con-
centrate on a perception system for household robots. The hasa relation somehow
belongs to both categories (visual and relational attributes), as it may indicate a
visible or non-visible part of the object. A cup has a handle, which is perceivable,

25

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

if the cup is viewed from the right angle and the perception pipeline provides an
annotator capable of detecting handles. On the other hand, a cherry has a stone,
which is usually not visible as it is inside the fruit.

Other attributes (material, consistency, ...) may be included, depending on the con-
tingency of sensors and perception algorithms available. Here, we concentrate on
the five features mentioned above.

We already introduced the idea of using similarity definitions for the abstract sym-
bols, to be able to compensate variations in natural-language descriptions.

These similarities are incorporated in our MLN by generating new atoms. For each
symbolic feature in the evidence we calculate its respective similarity to the other
symbols already incorporated in the model. Until now the evidence database only
contains atoms for the features retrieved in the perception pipeline. These are con-
cidered certain. Everything that has not been perceived is considered false. So far
we observe a binary condition of the truth of the evidence. It is either not existent
and therefore considered false or it is present in the evidence database and therefore
considered true. For the similarity incorporation we need to adapt to the fact that
we have multi-valued truth values for our evidence features. For example, if we per-
ceive the color blue for an object we add to the evidence database color(blue) with a
certainty of 1 but also color(yellow) if the color yellow is already incorporated in the
MLN. The truth value for the new atom is neither 0 nor 1 but the value representing
the similarity between blue and yellow.

The calculus of the logical rules in the MLN therefore needs to be adapted accord-
ingly which means that we make a step from strictly binary first-order logic to a
multi-valued logical calculus. In order to do so, we use Fuzzy Logic which is a
multi-valued extension of first-order logic and is based on the theory of fuzzy sets
Nyga and Beetz [23].

Allowing real-valued degree of truth for the evidence predicates makes it possible to
perform learning and inference tasks in the presence of vague evidence.

We have mentioned that the second argument of the property predicate (e.g. w0

in property(cluster0, w0, SHAPE)) is of the abstract type word and contains concepts
representing the value of the respective property type (the third argument). To
specify this further, these concepts are represented by WORDNET synsets, which
allows us to assign a certain meaning to the possibly ambiguous abstract symbol.

The training set for the MLN thus contains not only the syntactic evidence provided
by the Stanford Parser and property information, but also the necessary information
about word senses. In particular, next to its POS tag and syntactic relation to other
words, each term is assigned a WORDNET sense, to disambiguate its meaning.

For new natural-language descriptions, we therefore not only reason about the most
probable properties given the syntactic evidence, but we also infer the most probable
word senses (has_sense) of all property values, given additional information about
their similarity to known concepts from the model. This additional information
is added by retrieving all possible WORDNET synsets for each word in the natural
language sentence and calculating its similarity to concepts already incorporated in

26

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

the model.

We acquire this similarity by incorporating a taxonomy in which concepts are struc-
tured using different types of relations provided by WORDNET. By interpreting these
relations, we can define similarities between words, which leads to the straightfor-
ward idea that using this similarity can help to recognize objects by determining a
similarity between the features from two object descriptions.

The definition of the similarity of two concepts are introduced in Subsection 2.4.3.

We query the properties and word senses (has_sense), and use the syntactic infor-
mation from the parsed NL sentence as well as word similarities between known
concepts and possible word senses (is_a) as the evidence, i.e.: The (updated) con-
ditional probability of the property extraction therefore looks like the following:

argmax
property,has_sense

P

property(cluster0, w0, SHAPE)

property(cluster0, w5, SIZE)

property(cluster0, w1, COLOR)

has_sense(w0, s0)
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

amod(w2, w1)

det(w0, JJ)

root(ROOT-0, w2)

is_a(s0, concept_x)
...

Note, that using a PRM allows us to reason about multiple variables, as the model
represents a probability distribution over the syntactic properties and their relations
to the properties and word sense references.

We proposed to use MLNs for the model implementation, which is generated by
designing formula templates, which will be extended to multiple formulas in the
grounding process (see Section 2.3).

An excerpt of the formula templates for the MLN used for inferring the property
attributes is shown in Listing 2.9, the complete formula set can be found in the
appendix (see MLN Templates - Property attributes).

1 0 nsubj(?w1, ?w2) ^ has_pos (?w1, JJ) ^ has_sense (?w1, ?s1)

^ property (?w1, +?prop) ^ ?w1 =/= ?w2

2 ...

3 0 amod(?w1 ,?w2) ^ has_pos (?w2, JJ) ^ has_sense (?w2, ?s2) ^

is_a(?s2, +?c) ^ property (?w2, +?prop) ^ ?w1 =/= ?w2

4 ...

5 0 cop(?w1 ,?w2) ^ has_pos (?w1, NN) ^ has_sense (?w1 ,?s1) ^

is_a(?s1, +?c) ^ property (?w1, HYPERNYM) ^ ?w1 =/= ?w2

6 0 prep_with (?w1 ,?w2) ^ has_sense (?w2 ,?s2) ^ property (?w2,

HASA) ^ ?w1 =/= ?w2

7 ...

Listing 2.9: Excerpt of MLN used for property extraction

The atoms amod, nsubj, has_pos and cop in the above formulas represent syntactic

27

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

information in the natural language sentence, the atoms has_sense and property are
queried.

From the formulas you can see how the syntactic evidence described previously is
interpreted in relation to their semantic meaning. Each of the formula templates is
a conjunction of atoms with an initial weight of 0 and can be understood that way,
that each of the prerequisites (= the atoms) must be true to create an overall true
statement.

The first formula template would be grounded to one new formula for each possible
property type, as the variable prop is prefixed with a “+”.

The weight of the formulas is determined, depending on for how many of the train-
ing examples this formula is a true statement, i.e. how many words are adjectives
(i.e. have JJ as a POS tag), are a first argument of a nsubj relation and have been
assigned the respective property type.

This formula's purpose is to determine adjectives in formulations like “The lemon
is yellow”, in which a copular verb (“is”) occurs. In those cases, the nsubj does not
return the verb itself as the governor of the relation, but its complement (“yellow”).
By restricting the governor (variable w1) to be an adjective (has_pos(?w1, JJ)), we
further constrain the results to only contain the desired information.

The second formula directly addresses adjectival modifiers, which is a bit more
straight-forward.

The formula in line 5 can be interpreted similarly to the first one, it is used to extract
those adjectives, that are the complement of a copular word. The difference is that
we are interested in nouns this time (has_pos(?w1, NN)), because we try to infer the
hypernym (property(?w1, HYPERNYM)) instead of an arbitrary property.

The last formula template in this excerpt makes use of the convenient prep_with
predicate, which is returned whenever the term “with” occurs in a sentence. As the
word “with” is often used to describe part-of relations (“a container with a handle”),
we take this as a strong evidence for variable w2 being a property of type “HASA”.

The remaining formula templates are each specialized on different syntax-property
relations, but their structure is the same as in the examples above.

Now we are able to transform arbitrary natural-language descriptions into a formal
one and can generate a model representing object-attribute relations, which can be
used as a knowledge base to infer an object's identity in the next section.

2.4.2 OBJECT INFERENCE

From Section 2.4.1 we can see, that we are now able to generate formal, first-
order logic based descriptions for arbitrary objects by transforming their respective
natural-language descriptions acquired from the internet.

These formal descriptions can now be used to train another MLN, which can then

28

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

be used as a knowledge base for object inference tasks.

By designing formulas, that are conjunctions of predicates representing object iden-
tities and different types of features, we learn a probability distribution over the
respective object-attribute relations.

In this case, we design the following formulas explained below.

1 0 object (?c, +?objID) ^ size(?c, +?shape) ^ shape(?c, +?

col)

2 0 object (?c, +?objID) ^ color(?c, +?size) ^ shape(?c, +?

col)

3 0 object (?c, +?objID) ^ color(?c, +?size) ^ size(?c, +?

shape)

4 0 object (?c, +?objID) ^ color(?c, +?shape) ^ hypernym (?c,

+?col)

5 0 object (?c, +?objID) ^ shape(?c, +?shape) ^ hypernym (?c,

+?col)

6 0 object (?c, +?objID) ^ size(?c, +?size) ^ hypernym (?c, +?

col)

7 0 object (?c, +?objID) ^ hasa(?c, +?part) ^ hypernym (?c, +?

col)

8 0 object (?c, +?objID) ^ hasa(?c, +?part)

9 0 object (?c, +?objID) ^ hypernym (?c, +?hyp)

Listing 2.10: MLN used for object inference

The above formulas represent common combinations of attribute pairs used to de-
scribe an object. These combinations follow the observation that when describing
an object in natural language, it is common to not use more than two adjectives. In
particular one tends to name a superordinate concept of the given object, together
with one more (usually visual) attributes, to describe it in one sentence.

Each formula can therefore be understood in the way that “the object x is likely
to be described using attribute a and b”. When designing formula templates for
object-attribute relations, it is helpful to have an idea of the combinations that
usually occur. Creating too short formula templates (e.g. all formulas are formed
like object(?c, +?objID) ^rel(?c, +?part), rel ∈ {color, size, shape, hasa, hypernym}),
may result in a model that is too general and not very expressive. On the other hand,
if the formula templates are too long, the model will be too specific and may result
in non-satisfiable formulas.

In the worst case, if a domain of a certain predicate is empty, no formula containing
this predicate can be grounded as no valid variable assignment is possible.

The configuration in Listing 2.10 has proven successful, as it not only contains all
combination pairs of the visual attributes color, shape and size in addition to sepa-
rate formulas for hasa and hypernym, but also additional formula templates for all
combinations of hypernym and a second attribute type. The two templates in line 8
and 9 are the only ones with only two atoms.

Once the MLN is trained using the output generated in Part I, we may use the model

29

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

to recognize objects. A perception system generating an object description using the
predicates we introduced, may be ROBOSHERLOCK.

We augment the data with our previously introduced similarity information, to be
able to compare features, without requiring their abstract symbols to be identical.

In particular, we add an extra atom for each feature occurring in the object de-
scription and each feature incorporated in the model, under consideration of its
respective type. That means that for an evident feature type(cx, a), we add another
feature type(cx, b) for each b ∈ td, td being the domain a is in. As an example, if
our evidence only contains color(c, yellow.s.01) and the domain color contains the
concepts (or, as we know WORDNET synsets) yellow.s.01 and blue.s.01, the evidence
database looks like the following afterwards:

x color(c, blue.s.01)

1 color(c, yellow.s.01)

y color(c, orange.s.01)

Listing 2.11: Example for updated evidence

x and y are the values for the similarity calculated for yellow.s.01 and the elements
from the color domain, respectively.

Therefore, the presence of an attribute is not a binary statement anymore (either a
certain color has been perceived or not), but incorporates a fuzzy semantics. In this
case, we have not perceived the color orange.s.01, but something similar to it. This
makes it possible, to infer objects from a description, that does not entirely match
the relations represented in the model. If a lemon is related to the color yellow.s.01,
it is now possible with the updated evidence, to assume it might describe a lemon
with a certain probability.

If this assumption is useful or not, strongly depends on the similarity measure we
use. If the similarity indicates a high similarity between semantically unrelated
features, the inference will output a result, which is completely unrelated to the
actual description.

In the following, we propose a similarity calculation that has shown useful as it
reflects the intuitive understanding of the relatedness of different features.

2.4.3 SIMILARITY

We mentioned the use of a similarity calculation to support our proposal of using
natural-language instructions for object recognition. We motivate the use of this
similarity calculation, explain how it benefits our approach and define in detail,
how the similarity reflects the relatedness between concepts.

30

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

Similarity Usage

The implementation of the modules comprises a similarity calculation to infer the
most probable WORDNET word senses for the terms used in the object description
and to determine the overall similarity of the described object to an object in the
knowledge base.

The similarity calculation introduced here makes it possible to compare words based
on their symbolic meaning. In our implementation, the similarity calculation has
two main functions:

• Render the word sense disambiguation in Part I possible

• Allow an intuitive (human-like) comparison of single features and subsequently,
whole object descriptions

In the context of the word sense disambiguation, the similarity serves the purpose
to indicate, if related words have been used before (e.g. occur in the training set).
Before the actual inference is started, the database containing the evidence from
the Stanford parser, that is, the syntactic evidence from the input description, is
extended by similarity information for each word.

To do that, every possible word sense for a term is retrieved from WORDNET, of
which each is compared to words already incorporated in the MLN.

As an example, the word “yellow” has 8 different meanings according to WORDNET

(see Table 2.1).

Word Synset Description

ye
ll

ow

jaundiced.s.01 affected by jaundice which causes yellowing of
skin etc

yellow.n.01 yellow color or pigment; the chromatic color
resembling the hue of sunflowers or ripe lemons

yellow.s.01
of the color intermediate between green and
orange in the color spectrum; of something

resembling the color of an egg yolk

yellow.v.01 turn yellow

chicken.s.01 easily frightened

yellow.s.03 changed to a yellowish color by age

scandalmongering.s.01 typical of tabloids

yellow.s.05 cowardly or treacherous

Table 2.1: Word senses: the eight different meanings of the word “yellow” according
to WORDNET with their respective descriptions.

31

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

As a human, we intuitively know from the context, how to interpret the word. In
the sentence “A yellow, oval fruit.”, we know that yellow refers to a color. On the
other hand yellow in the sentence “He is too yellow to stand a confrontation” means
being cowardly. We take certain knowledge into account, for example, the part of
speech of the word and the context it is used in.

A robot (or machine, in general) is not able to do so, unless we teach it. We therefore
narrow down the number of possible word senses in the first place, by only allowing
the ones of the same part of speech as the word is in. We can use the POS tag from
the syntactic evidence on this account.

By adding similarity information for all remaining word senses with each concept in
the MLN (which can be seen as the context in our case), we have a good chance of
picking the “correct” word sense in this particular sentence.

Sticking with our example sentence “A yellow, oval fruit.”, we would ignore the
meanings yellow.n.01 and yellow.v.01, as they are no adjectives. As our MLN was
trained with object descriptions, we are likely to find other adjectives like colors in
it. According to that, we determine a high similarity between our preferred word
sense yellow.s.01 and other colors and a low similarity between any other meaning
and the concepts incorporated in the MLN which benefits the choice of the desired
word sense.

In the context of feature comparison, the similarity plays a slightly different role. We
have already committed to a certain word sense of a feature through the annotation
and do not need to perform any disambiguation.

But we need a method to compare different object descriptions, preferably in allow-
ing a certain degree of variation.

In order to do so, we developed 3 different similarity calculations, which is explained
in the remainder of this subsection.

In the WORDNET lexical database, synsets are used to structure information in a
taxonomy in a tree-like manner, which means, it is structured as a directed acyclic
graph. Synsets are logical groupings, representing a word or collocation, containing
a list of synonymous words and relational pointers to other synsets. They also allow
access to information about the definition of the word as well as example sentences
it may occur in, and about its POS. A part of speech may either be a noun, verb,
adjective or adverb. An example of the synset for “cup” is shown in Figure 2.4

One word or collocation can be found in more than one synset and POS as it
may have different meanings, while one synset may contain several different words
which can be used more or less interchangeably.

To retrieve a specific meaning of a word or collocation, the respective synset can
be addressed by its 3-part name of the form word.pos.nn, where word is a lemma,
which is the word’s morphological stem, pos the part of speech the word is in and
nn the sense number, which is an id in the group of words from the respective part
of speech. As an example, the word “orange” may be an adjective (orange.s.01), or
it could be a noun, which can again either be the fruit (orange.n.01) or the color
(orange.n.02).

32

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

WORDNET also implements different kinds of relations between synsets, represented
by pointers. These relations may be either lexical (between semantically related
word forms) or semantic (between word meanings). Nouns and verbs are organized
in “is-a” hierarchies based on hyper- and hyponym relations with additional pointers
for other relation types. It is therefore possible to retrieve all sub- or superordinate
synsets (hypo-/hypernyms) of a word as well as its part-of relations to other synsets
(mero-/holonyms).

Adjectives are an exception, as they are not part of the is-a hierarchy, but rather
structured in clusters, each consisting of antonymous pairs of words. An antony-
mous pair is a pair of words with contrary meanings, such as “hot” and “cold” or
“good” and “bad”.

An adjective cluster contains so-called head adjectives, representing the meaning of
the antonymous words. Each of those head adjectives is connected to one or more
satellite adjectives, which have a similar meaning. Head and satellite adjectives can
be distinguished by their POS tags, that is, a head adjective has the tag “a”, a satellite
adjective the POS tag “s”.

The synsets of relational adjective (pertainyms) and participle adjectives again have
a different structure, as they do not have antonym relations. This type of adjectives
is not considered in this work. We rather focus on nouns with their respective hyper-
/hyponym and part-of relations and on adjectives.

In a natural-language description, adjectives are used to specify properties of a de-
scribed object. We are primarily interested in ascriptive adjectives, that is to say,
adjectives ascribing a value of an attribute to a noun as introduced by Gross and
Miller [8]. In the expression “The fruit is yellow”, the word yellow would be such an
adjective, as it ascribes the value yellow to the attribute color of the object fruit.

WORDNET provides a number of functions for determining the similarity between
synsets. Most of them are path based and cannot be applied to a pair of adjec-
tives or an adjective and a noun or verb, due to the structural characteristics of
the WORDNET taxonomy described above. There are exceptions, though, which use
workarounds to determine a similarity.

The problem is the semantic meaning of such a similarity calculation. It may make
sense to calculate a similarity based on the position in an is-a hierarchy for objects.
For example, it is intuitionally understandable that a cup is similar to a container, as
they have a direct hypernym-hyponym relation, but not very similar to a fruit.

For adjectives, this relation is not entirely suitable. As an example, the adjective clus-
ter for colors is structured based on the antonymous pair “chromatic” and “achro-
matic”. The chromatic colors occurring in WORDNET are organized as satellite adjec-
tives around the head adjective “chromatic.a.03”, while the head adjective “achro-
matic.a.01” is related to various kinds of black, white and several shades of gray.
This structure provides no hierarchy of the objects, but can rather be thought of as
wheels, connected through an axle (the antonym relation), with the head adjectives
as hubs and the satellite adjectives as spokes. An illustration of this structure can be
found in Figure 2.5.

33

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

WORDNET provides a number of similarity calculations, of which one is the WUP3

similarity. It calculates the similarity of two word senses based on their respective
depths in the taxonomy and that of their Least Common Subsumer (LCS), namely,
their most specific ancestor:

WUP (x, y) =
2 · depth(LCS(x, y))

depth(x) + depth(y)
(2.8)

The WUP similarity is therefore path-based, which means, that it only uses the dis-
tances between two symbols following the relational paths of the taxonomy to de-
termine their relatedness. The semantics of this type of similarity is therefore exclu-
sively subject to the semantic meaning of the relations represented by these paths
and does not incorporate further knowledge.

In the case of the WUP similarity, the semantics is based on their relatedness based
on their common ancestor. Using a path-based calculation like this would result in
an identical value for each color of one wheel, that is,

similarity(x, yellow.s.01) = similarity(x, blue.s.01) = . . .

where x is another WORDNET concept (e.g. a color as well) which is connected to
the head adjective of the colors through some relation. This characteristic is very
counterintuitive, as one would expect to be able to differ the respective colors and
for example, consider “yellow” to be more similar to “orange” than to “blue”.

It shows impractical to let the similarity only depend on their taxonomic relatedness
without further consideration of their semantic meaning. The relations of symbols
in the taxonomy are not necessarily semantically meaningful, and therefore lead
to a misinterpretation of the term “similarity”. In that case, it is necessary to add
further knowledge about visual perception to make an appropriate statement about
their actual semantic relatedness. We introduce different measures to approximate
a more human-like understanding of the similarities of objects and features in the
remainder of this chapter.

Colors

Using the natural characteristics of colors suggests itself, which leads to the idea of
using their respective HSV values to identify their relatedness. The representation of
the HSV color model is very closely related to the human color vision and therefore
suitable for adding semantic information about the similarity of the different colors.

We introduce an assignment of value triplets (color: (Hue, Saturation, Value)) to
color symbols, which is representative for the respective color range and looks simi-

3Similarity introduced 1994 by Martha Palmer & Zhibiao Wu (Palmer and Wu [25]) which is used
in WORDNET

34

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

lar to the representation in Table 2.2.

Color name H S V

pink.s.01 335 87 87

...

blue.s.01 235 87 87

cyan.s.01 150 87 87

...

green.s.01 115 87 87

...

yellow.s.01 50 87 87

orange.s.01 20 87 87

...

red.s.01 0 87 87

Table 2.2: Feature vectors for colors: each color symbol is assigned a vector contain-
ing the respective values for the corresponding color in the HSV color model.

Note that for chromatic colors, the values mostly differ in the hue. Achromatic
colors like white, black and gray on the other hand are easier to differ looking at
their saturation and value. Therefore we propose using chromatic and achromatic
colors separately. The similarity between one chromatic and one achromatic color is
defined as a fixed value, while the similarity between two colors of the same type is
calculated using their assigned values.

The Euclidean distance between each value pairs results in a lookup table containing
an intuitive and human-like interpretation of their similarity, that is, yellow being
more similar to green than to light-blue and even more similar to orange. The hue
(H) of the HSV model ranges from 0 to 360, while the saturation (S) and value
(V) lay in the range [0, 100] (or [0, 1]). As the hue can be viewed as arranged in
a circle (see Figure 2.6), we need to incorporate the fact that the two maximally
dissimilar colors are not the minimum and maximum values of the range, but lay on
opposite sides of the circle. In other words, the maximum difference of two hues is
supposed to be 180. Otherwise, the color pink with a hue close to the maximum of
the range (around 335, see Table 2.2), would be considered highly dissimilar to red
(hue around 5), which does not reflect an intuitive estimation of their similarity.

The calculation is carried out as

simcolor(x, y) := ‖~x− ~y‖ (2.9)

where

35

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

‖~x− ~y‖ =

√
(xH − yH)2 + (xS − yS)2 + (xV − yV)2

if |(xH − yH)|
<= 180,

√
(f(xH)− f(yH))2 + (xS − yS)2 + (xV − yV)2 otherwise.

(2.10)

Here, f(x) is defined as

f(x) := (x+ 180) mod 360.

The Euclidean distance (‖·‖) has been slightly modified here, by introducing f(x). ~x
is the feature vector for the object x, which contains the HSV values in this setting.

Likewise, sizes, shapes and other properties need to be considered in some sort of
hierarchy, with respect to their geometric or other discriminative characteristics.

Sizes

Sizes are a bit easier to compare as they can be organized in an ascending order. We
assign a numerical value n in the form size: (n), accordingly (see Table 2.3).

Size name n

small.a.01 3

... ...

medium-sized.s.01 5

large.a.01 7

... ...

Table 2.3: Feature vectors for sizes: each size symbol is assigned numerical value
according to its position in an ascending order from small to large.

Again, a lookup table using the Euclidean distance of the respective values is created.

simsize(x, y) := ‖xn − yn‖ (2.11)

=
√
(xn − yn)2

Shapes

Shapes are more complicated to compare, as it is disproportionally more challenging
to find an appropriate similarity measure. In this work, shapes are assigned a feature

36

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

vector containing numerical values representing their visual characteristics, such as
the number of edges, angles and faces (separating 2D from 3D shapes) and a value
for subjective similarity.

By assigning a numerical value to each shape we define an order over the differ-
ent shapes which does not exist naturally. Two shapes that are considered similar
therefore have a small difference between their respective subjective similarity value.

We define the subjective similarity in a way that it More formally, the set of features
is defined as F = {|edges|, |angles|, |faces|, subjSim}, where |x| denotes the num-
ber of x. An excerpt of the shape features shows a selection of the assignments of
the form shape: (|edges|, |angles|, |faces|, subjective similarity) (see Table 2.4).

Shape name |edges| |angles| |faces| subjective similarity

...

egg-shaped.s.01 0 0 1 8

pear-shaped.s.01 0 0 1 9

...

round.a.01 0 0 1 7.5

ringlike.s.01 2 0 1 4

...

octangular.a.01 8 8 1 14

...

rectangular.s.01 4 4 1 18

...

boxlike.s.01 12 24 6 19

...

triangular.s.01 3 3 1 25

Table 2.4: Feature vectors for shapes: each shape symbol is assigned a vector con-
taining numeric values representing geometric characteristics.

The name of a shape does not always indicate clearly, if it is two- or three-dimensional,
which makes it somewhat unclear how to decide the number of edges, angles and
faces. Similarly, some shapes are not well-defined at all (How many edges and an-
gles does a star-shaped object have?) which requires some compromises in a way
that the feature values are approximated to one specific instance or an (intuitively)
similar shape. As an example, all shapes of the type “-angular.s.01” are considered
two-dimensional and are ordered according to their respective number of angles.
The features for “ringlike.s.01” are not easy to determine, as the addendum “-like”
labels it as a vague description of the term “ring”. Therefore its feature vector is de-
signed to rank it somewhere near roundish shapes without sharp edges and angles.

The result (calculated again using the Euclidean distance) is a lookup table that

37

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

represents some sort of ranking, in which rectangular is considered more similar
to pentagonal than to hexagonal or septagonal and crescent to be more similar to
round than to cuneate or conic. This configuration has shown useful for this pur-
pose, but can be modified taking more characteristics into account.

simshape(x, y) := ‖~x− ~y‖ (2.12)

=

√∑

f∈F

(xf − yf)2

Another observation is the maximal dissimilarity of the instances of these property
types among each other. Colors are maximally dissimilar to everything, that is not
a color, just as shapes are maximally dissimilar to everything, that is not a shape as
they intuitively have nothing in common.

An illustration of how individual branches of the WORDNET taxonomy are used for
a separate similarity calculation is shown in Figure 2.7.

Hypernyms

Following the descriptions above, the similarity calculation makes use of predefined
similarities for shapes, colors and sizes. But what about the rest?

The WORDNET taxonomy is based on hyper-/hyponym relations between the synsets,
which we can take advantage of. We make the assumption, that if one synset occurs
in the hypernym path of another synset, they may be closely related, as they have
something in common.

Also, the smaller the distance between the two concepts, the higher is the expected
similarity. Following the observation, that the specificity of the concepts increases,
the further down they are located in the sub-tree, we further assume that two con-
cepts that are very far from the root, and therefore highly specific, are more closely
related than two concepts with the same distance closer to the root.

In Figure 2.8 we can see, that two concepts on the same sub branch close to the
root do not necessarily need to be very similar. As an extreme example, the concept
entity.n.01 (which is the root of the WORDNET taxonomy tree) describes the class of
everything, while its direct ancestor physical_entity.n.01 comprises only “touchable”
things. The classes are therefore in a rather superficial hyper-/hyponym relation-
ship.

Further away from the root, with increasing specificity, the concepts become more
similar to each other. The concepts cup.n.01 and coffee_cup.n.01 are almost identical,
and only differ in their respective specified purpose. Their long list of common
ancestors indicates a close relationship between them.

38

CHAPTER 2. OBJECT RECOGNITION 2.4. CONCEPT - DETAIL

The calculation of the hypernym relationship of two concepts therefore relates their
distance to each other to their maximum depth to the root:

simhyp(x, y) := 1−
|depth(x)− depth(y)|

max(depth(x), depth(y))
(2.13)

In this calculation, depth(x) denotes the depth of the synset x in the taxonomy (i.e.
its distance to the root), |·| the absolute value. The function max(x0,x1,...,xn) returns
the maximum value of the arguments x0 to xn.

WUP

If the synsets we want to compare are not hyper- and hyponym, respectively, we use
another way to calculate the similarity. As mentioned previously, adjectives are not
structured in an is-a hierarchy, which is why most similarity functions provided by
WORDNET can not handle them at all, or not sufficiently.

There is, however, a possibility to avoid using the adjective itself for the similarity
calculation. Each synset represents a sense of a word form (lemma), which holds
an attribute called “derivationally related forms”, representing semantically related
terms from different syntactic categories (e.g. nouns). The derivationally related
form of the adjective “yellow.s.01” is “yellow.n.01”, which is the noun of the color
yellow, as we can see from its description “yellow color or pigment; ...”. We can
therefore consider it a suitable substitute for the adjective. As adjectives are struc-
tured in separate clusters, their lemmas’ derivationally related forms are the link to
the actual WORDNET taxonomy, as you can see from the visual representation in
Figure 2.9.

A modified version of the WUP similarity introduced earlier (Equation 2.8) is used
for the nouns related to those adjectives.

The similarity of an adjective to another word would be calculated using its seman-
tically related term, instead of the adjective itself. As a result, there is a difference
in the semantics of the two similarities, because the two terms to be compared are
treated as if they were identical, which they are not. To avoid this counterintu-
itive treatment, a factor (pFactor) to “punish” the transformation to another term is
introduced:

WUPmod(x, y) =
2 · depth(LCS(x, y))

depth(x) + depth(y) + pFactor
(2.14)

This value is increased by a fixed value for each synset that is compared and has to
be “transformed” to another synset.

Another observation of the taxonomies’ characteristic comes into play now: entities
that are located near the root are usually not very similar to each other, as they rep-
resent highly general superordinate classes of the elements deeper in the taxonomy

39

2.4. CONCEPT - DETAIL CHAPTER 2. OBJECT RECOGNITION

tree. Even if two elements near the root have the same path distance to each other
as two elements deeper in the taxonomy, their relatedness is most likely much less
significant.

To mimic this effect, the punishment factor mentioned above is not only increased
for the adjective transformation, but also when the two synsets to be compared are
located in different taxonomy branches.

Figure 2.10 shows an example of what the depth of the split of a branch reveals
about the similarity of two concepts in the created sub-branches. As mentioned
before, the specificity of the concepts increases, the further down in the taxonomy
they are located. A direct consequence is, that a branch that was split closely to the
root results in two separate branches of which the concepts become more and more
specific, independent on the respective other. If, on the other hand, a branch was
split very low in the taxonomy tree, the concepts of the two sub-branches have a
long list of common ancestors and therefore more in common than the ones whose
branches were separated close to the root.

Analogously to the example in Figure 2.8, the two concepts coffee_cup.n.01 and
paper_cup.n.01 are considered very similar to each other, while their superordinate
concept cup.n.01 is rather dissimilar to the concept cargo_container.n.01, although
the distances through their respective ancestors are the same as for coffee_cup.n.01
and paper_cup.n.01.

In this calculation, it is taken into account, where the split of the branches took place,
that is, the punishment factor in Equation 2.15) is increased inversely proportional
to the depth of the split. The new punishment factor pFactor’ is determined by
adding the distance of the two concepts under consideration of the depth of their
common ancestor to the old punishment factor pFactor.

pFactor′ := pFactor +

(
1−

depth(LCS(x, y))

max(depth(x), depth(y))

)
(2.15)

The modification allows to adapt to several characteristics of the inference process
and adds more semantic knowledge to the similarity calculation.

Overall Similarity

All of the similarity calculations introduced above are heuristics to avoid the purely
taxonomic relatedness of the exclusively path-based similarities. Summing them up,
we distinguish 3 different similarity calculations:

• The Euclidean distance of predefined values, used for colors, sizes and shapes

• The special case for hypernym relations

• A modified version of the WUP similarity

40

CHAPTER 2. OBJECT RECOGNITION 2.5. MODELING MLNS

On that account, the overall similarity calculation of the properties is calculated as
follows:

sim(x, y) :=

0 if is_a(x, type)⊕ is_a(y, type),

simtype(x, y) if is_a(x, type) ∧ is_a(y, type),

simhyp(x, y) if x ∈ HPathy ∨ y ∈
HPathx,

WUPmod(x, y) otherwise

(2.16)

The function is_a(x,y) returns true, iff x is of type y with type ∈ {color, size, shape}.
The operator ⊕ represents the logical operator for exclusive disjunction (XOR).
HPathx is the transitive closure of the hypernyms of x.

According to the methods described above, further (predefined) similarities can be
specified, based on the respective characteristics of the feature types. It is an easy
and intuitive way to define similarities on those features, that can be arranged in
some sort of order or taxonomy, but other definitions may work as well.

2.5 MODELING MLNS - AN EXAMPLE

In Section 2.2 we mentioned that in order to reduce complexity, we convert the re-
sults of the transformation process (Part I) to a different representation In particular,
we use a separate predicate for each property type instead of only one.

In the following, we will explain this decision by means of an example.

There are different possibilities how MLNs can be modeled of which some may look
equivalent at first sight. As a reminder, an MLN is represented by first-order logic
formulas and their respective weights. Each formula consists of atoms (predicate
symbols with their arguments) connected by logical operators like ∧ (AND), ∨, (OR),
or ¬ (NOT). The arguments of an atom may be typed, depending on the domains
defined for the predicate.

The variables a and b of the atom example(?a,?b) both need to be of type word (i.e.
both are in the domain word) if the predicate is defined as example ⊂ word × word
(which looks like example(word, word)). If it is defined as example ⊂ word × sense,
only a can be of type word, as b needs to be of type sense. The following example
describes the impact of different typing strategies.

Below, two different modelings of the MLN used for the object inference are de-
scribed and compared through an example. The first one (denoted as modeling I in
the following) uses the predicates

41

2.5. MODELING MLNS CHAPTER 2. OBJECT RECOGNITION

size ⊂ cluster × size,

color ⊂ cluster × color,

shape ⊂ cluster × shape,

hypernym ⊂ cluster × hypernym)

and
hasa ⊂ cluster × hasa

to represent the attributes of an object while the second one (modeling II) uses only
one predicate

property ⊂ cluster × word × {COLOR, SIZE, SHAPE, HYPERNYM, HASA}

additionally to the predicate

object ⊂ cluster × objID

respectively. The result is a separate domain for each property variable (size, color,
shape, hypernym, hasa, respectively) instead of one large shared domain (word)
which combines all property values regardless of their respective type.

The advantage lays in the number of generated ground formulas from the formula
template and accompanying decreased computation time. As an example, assume
the formula

object (?c, +?objID) ^ color(?c, +?w)

^ size(?c, +?w)

^ shape(?c, +?w)

Listing 2.12: Formula Template for modeling I

for modeling I and equivalently,

object (?c, +?objID) ^ property (?c, +?w, COLOR)

^ property (?c, +?w, SIZE)

^ property (?c, +?w, SHAPE)

Listing 2.13: Formula Template for modeling II

for modeling II.

These formulas are again constructed using PRACGrammar, introduced in Section 2.3
(Constants are written in capitals).

The number of generated formulas from the template of modeling I, with each prop-
erty being represented through an own predicate, amounts to

o ·
∏

pa∈Pf

dpa (2.17)

42

CHAPTER 2. OBJECT RECOGNITION 2.5. MODELING MLNS

where o is the number of elements in the objID domain (i.e. o = |objID|), Pf is the
set of all occurring property atoms in the formula template (which is Pf = {color,
size, shape} in this example) and dpa denotes the number of elements in the domain
for the given property variable in the atom (i.e. |size|, |shape|, ... respectively).

In modeling II the number of generated formulas is much higher through the shared
word domain:

o · wnf ·p (2.18)

where w is the number of elements in the word domain (w = |word|), nf is the num-
ber of the property-Atoms occurring in the formula template and p is the number of
elements in the prop domain (p = |prop|).

Note that

⋃

p∈P

p = word (2.19)

where P denotes the set of all possible property domains, i.e. P = {color, size, shape,
hypernym, hasa}.

Some elements from the domain word from modeling II may be in one or more
domains from modeling I (a described object can either be a container (i.e. container
∈ hypernym) or have one (i.e. container ∈ hasa)), which means that they are not
disjoint sets of words.

To see the difference in the two formula modelings, consider the following example
(see Table 2.5): If there is a dataset containing 6 different objects (|objID| = 6) and
9 different property values (i.e. |word| = 9) the formula template in Listing 2.13
would be grounded to

|objID| · (|word|)#atoms·p = 6 · 93·1 = 4374

different formulas, according to Equation 2.18. Note that p equals 1 here, as the for-
mula template already contains constants from the prop domain instead of a variable
with a prefixed “+” to expand every single value of it.

Modeling |objectIDs| |property Values|
property

domain type
|formulas
generated|

I 6 9 separate 144

II 6
9 (distributed on

separate domains)
shared 4374

Table 2.5: Comparing modelings: This table shows a significant difference in the
number of generated formulas depending on the use of one shared or multiple sep-
arate property domains

We assume the same number of objects for the multiple predicate modeling I. The 9

43

2.5. MODELING MLNS CHAPTER 2. OBJECT RECOGNITION

elements from the words domain are split up to the three separate domains (color:
4 elements, size: 3 elements and shape: 2 elements).

The equivalent formula template Listing 2.12 would be grounded to only

|objID| · |color| · |size| · |shape| = 6 · 4 · 3 · 2 = 144

different formulas according to Equation 2.17.

The number of formulas is further reduced drastically here, if one of the property
domains is empty, which makes sense, as no statement can be made about the cor-
relation of the three property attributes and the respective object. In the example
described here, no valid formula would be grounded from the formula template if,
say, the shape domain was empty, as |objID| · |color| · |size| · |shape| = 6 · 4 · 3 ·
0 = 0. For comparison: in modeling II, still |objID| · (|word|-#shapes)#atoms·p = 6
· (9-2)3·1 = 2058 formulas are generated, as the word domain is simply reduced by
the number of elements previously in the shape domain.

Not only the numbers of the generated formulas differ in the two models, but also
their semantic meaning may vary. Most of the 4374 generated formulas from List-
ing 2.13 do not make much sense, as it is not possible to differ between the types of
properties.

0.000000 object (?c, spoon.n.01) ^ prop(?c, round.a.01,

SHAPE) ^ prop(?c, concave.a.01, COLOR)

0.000000 object (?c, spoon.n.01) ^ prop(?c, small.a.01,

SHAPE) ^ prop(?c, curved.a.01, COLOR)

Listing 2.14: Example of generated formulas

Formulas like the ones in Listing 2.14 are created, which end up with a formula
weight of 0 in the learning process (meaning no statement can be made about the
truth of this formula), because the attributes concave and curved are obviously no
colors but shapes, while small is not a shape but a size attribute. Nevertheless, the
formulas have to be created as all these attributes belong to the word domain and
are expanded according to the formula template in the grounding process.

The calculation above only exemplifies the generation of ground formulas from one
formula template. In general, there is more than one formula template required to
create a representative model. This example shows, how allegedly similar modelings
of an MLN can cause different results which may vary to a great extent in the number
of generated formulas and subsequently, computation time.

Chapter 4 deals with the qualitative analysis of both approaches and compare their
results when applied to actual test data.

44

CHAPTER 2. OBJECT RECOGNITION 2.6. SUMMARY

2.6 SUMMARY

In the previous sections we introduced how natural-language descriptions can be
used in object recognition tasks in a way that they replace actual instances of train-
ing examples. The question we want to answer is, if it is possible to recognize objects
only from their respective NL descriptions without using any training examples at
all.

We avail ourselves of additional knowledge about the structure of natural language
and taxonomic relation provided by the Stanford parser and WORDNET to render a
transformation from NL descriptions to a formal representation possible. The NL de-
scriptions can be retrieved from the internet and processed by means of word disam-
biguation and similarities between concepts. Using information about the structure
of natural language and taxonomy thereby adds common knowledge to a certain
extent to the object recognition task. The result is a formalized object description
with the property attributes extracted from the NL phrase.

The requirement of numerous instances of the objects to train a knowledge base is
therefore not present anymore. Another advantage of this approach lies in the gen-
erality of the model. NL object descriptions from online dictionaries usually describe
the general concept of an object, which leads to a more general model than the one
generated using a conventional approach. This is due to the fact that training a
model with example instances results in a model representing the attribute-object
relations from the training data, rather than the general concept of the object classes.

To be able to represent a joint probability distribution over the observations, an MLN
is used to realize the model. Based on our findings in the comparison of different
modelings we conclude that allegedly similar formula templates may result in dif-
ferent MLNs and therefore produce different inference performances. A number of
modelings and configurations are designed and evaluated to find the most suitable
solution.

We explained that using only the taxonomic relations in WORDNET is not adequate
to define a similarity between concepts, as a taxonomy-based similarity does not
necessarily reflect a natural understanding of object relations. As a consequence, we
developed individual similarity calculations for different object types, and method-
ologies how to interpret the semantic relations in the taxonomy in a more intuitive
way.

In the next chapter, we continue with our implementation of the inference pipeline.

45

2.6. SUMMARY CHAPTER 2. OBJECT RECOGNITION

DT

an

JJ

orange

CC

or

JJ

yellow

ADP NN

fruit

NP

...

Knowledge
Base

Inference

Parsing

Perception

It is an orange
or yellow fruit.

color(c, orange.s.01)
color(c, yellow.s.01)

...

orange.n.01

Learning

color(c, orange.s.01)
color(c, yellow.s.01)

hypernym(c, fruit.n.01)

Stanford Parser

Word Sense
Disambiguation

Property Extraction

ROBOSHERLOCK

Figure 2.3: Pipeline revisited: The word sense disambiguation is executed on pars-
ing result using information from WORDNET. The knowledge about the structure of
natural language is used to extract the property attributes from the description. The
resulting formalized object description is used to train a model which can be used
as a knowledge base for inferring an object's identity from the perception.

46

CHAPTER 2. OBJECT RECOGNITION 2.6. SUMMARY

Synset(‘cup.n.01’):

 pos:
 ‘n’

 name:
 ‘cup’

 definition:
 ‘a small open container usually used for drinking;
 usually has a handle’

 hypernyms:
 [Synset(‘container.n.01’), Synset(‘crockery.n.01’)]

 hyponyms:
 [Synset(‘teacup.n.02’), Synset(‘grace_cup.n.01’),
 Synset(‘coffee_cup.n.01’), Synset(‘dixie_cup.n.01’),
 Synset(‘chalice.n.01’), Synset(‘mustache_cup.n.01’),
 Synset(‘beaker.n.02’), Synset(‘kylix.n.01’),
 Synset(‘scyphus.n.01’)]
 ...
 ...

Figure 2.4: Synset Info: Example of the information, a synset contains about the
represented object.

shivery.s.01

refridgerated.s.01

...

bleak.s.03

stone-cold.s.01

...

...

frosty.s.02

chilly.s.01

ice-cold.s.01

...

cold.a.01hot.a.01sizzling.s.01

thermal.s.03

...

blistering.s.02

baking.s.01

red-hot.s.04

hottish.s.01

heated.s.01

tropical.s.04

...

...

adjective cluster

similar to
antonym

Figure 2.5: Adjective cluster: the two head adjectives (hot.a.01 and cold.a.01) are
connected to each other through an antonymy relation, and to their respective satel-
lite adjectives through similar_to relations.

47

2.6. SUMMARY CHAPTER 2. OBJECT RECOGNITION

Figure 2.6: HSV Cylinder: The HSV color model can be represented as a cylinder,
the color values arranged along the axis, the saturation along the radius and the hue
along the angles of the base.

red bluegreen

color

...

similarity
color

square-
shaped

rectangular

shape

...

similarity
shape

small

size

...

similarity
size

large

HypSimilarity,
WUP

modified

entity
..
.

...... ...

Figure 2.7: For the categories shape, size and color there exist individual similarity
calculation, for the rest of the taxonomy we use the similarity calculation based on
their taxonomy relations.

entity.n.01

abstract_entity.n.01 physical_entity.n.01

cup.n.01

paper_cup.n.01 coffee_cup.n.01

... ...

entity.n.01

abstract_entity.n.01 physical_entity.n.01

cup.n.01

paper_cup.n.01 coffee_cup.n.01

... ...

Figure 2.8: Hypernym relation: If one synset is found in another's hypernym paths,
they are assumed closely related. The degree of relatedness is dependent on their
distance to a common ancestor and its distance to the root.

48

CHAPTER 2. OBJECT RECOGNITION 2.6. SUMMARY

yellow.n.01 orange.n.02
yellow.s.01

orange.s.01

...
chromatic.a.03

..
.

..
.

..
.

derivationally related form

chromatic_color.n.01 hotness.n.01

adjective cluster WordNet taxonomy

Figure 2.9: The adjectives in the cluster (blue) on the left are connected to other
objects in the taxonomy (right) only through their derivationally related forms.

entity.n.01

...

container.n.01

paper_cup.n.01 coffee_cup.n.01

...

cup.n.01cargo_container.n.01

entity.n.01

...

container.n.01

paper_cup.n.01 coffee_cup.n.01

...

cup.n.01cargo_container.n.01

Figure 2.10: Taxonomy branch relation: In a taxonomy with semantic relations
between the nodes, concepts are more similar to each other, the further their com-
mon ancestor is away from the root node, i.e. when the split of the two taxonomy
branches of the concepts is very low in the taxonomy tree. Concepts close to the
root are rather general classes and do not necessarily be closely related to concepts
on the same level.

49

CHAPTERthree

IMPLEMENTATION

In this chapter, the implementation of the developed system is outlined. An intro-
duction on how to execute the inference pipeline is given in Section 3.3.

The implementation employs the Probabilistic Robot Action Cores (PRAC) system,
introduced by Nyga and Beetz [22], which is used to model abstract event types
learned from natural-language instructions. This is to equip autonomous robots
with action-specific knowledge to be able to perform complex everyday activities.
The system provides tools for statistical relational learning and reasoning, as well
as evaluation and incorporates MLNs and probabilistic first-order knowledge bases.
By using these knowledge bases it is possible to infer missing information from the
original natural-language instructions by using generic event patterns.

The PRAC system is a framework for iterative reasoning. It is structured in a way
that is uses modules for learning and inference tasks. Each module performs one or
more database transformations. Multiple modules can be executed consecutively to
create a database transformation pipeline in which each module takes the output
database of the previous one as its input.

We realize the first two core parts (Subsection 2.4.1 and Subsection 2.4.2) by im-
plementing such modules. In doing so, we apply PRAC on the extraction of object
characteristics instead of event types.

Each of the modules serves different purposes, respectively; one for the transforma-
tion of natural-language descriptions into a formal, logic-based representation and
one for inferring the most probable object identity from the object attributes.

51

3.1. FEATURE EXTRACTION CHAPTER 3. IMPLEMENTATION

3.1 FEATURE EXTRACTION - LEARNING AND INFERENCE

To train the MLN, a dataset consisting of separate databases representing object
descriptions is used. They are generated from NL object descriptions, but render no
connection between the description and the object itself. They rather represent the
relation between the grammatical structure of natural language and the information
contained in it. To obtain a vast range of possible properties, descriptions of various
objects, which do not necessarily match the ones that should be recognized later,
have been used.

Each database has been annotated with syntactic evidence of the NL description
from the Stanford Parser and WORDNET annotations to match the correct senses
to the words in the description. The object properties contained in the natural-
language description as well as missing word sense information are annotated man-
ually.

The databases are used for a supervised training of a Markov Logic Network, which
is used to model the transformation of a natural-language description to a formal
first-order logic representation. The MLN is learned using pseudo-log-likelihood
optimized using direct descent with a learning rate of 0.9.

For the inference step, some preprocessing of the evidence database is made to add
similarity information about the words used in the input description and the ones
already incorporated in the MLN.

This is to ensure that, even if a word from the description is not known from the
training data, it can still be identified as a potential property through its semantic
similarity to other concepts.

To infer the most probable word senses as well as the properties, the MLN is trans-
formed into a WCSP, to estimate an efficient MPE.

3.2 OBJECT RECOGNITION - LEARNING AND INFERENCE

The learning step for the object inference uses the semantic attributes size, shape,
color, hasa and hypernym to train the model.

The training data consists of formal object descriptions generated from natural-
language descriptions obtained from WORDNET1, WIKIPEDIA, FREEBASE2, WIKTIONARY3

and the ENCYCLOPÆDIA BRITANNICA4.

1http://wordnetweb.princeton.edu/perl/webwn
2https://www.freebase.com/
3http://en.wiktionary.org/
4http://www.britannica.com/

52

CHAPTER 3. IMPLEMENTATION 3.3. USAGE

The training data is created from the content of the NL descriptions found on these
websites, therefore they only contain semantic attributes and no low-level features.

Just as in Section 3.1, pseudo-log-likelihood direct descent optimization with a
learning rate of 0.9 is used.

For the inference step, again, some preprocessing is required. Inference is not only
based on these strict definitions, but allows a certain degree of interpretation. As
humans tend to use different variations of descriptive terms, which are not identical
but rather similar, this information is added in the inference process to allow an
object to be recognized even if it does not fit its description in the knowledge base
completely. In terms of the implementation of this processing step, the semantic
similarities of words are used to identify the degree of difference between two object
descriptions.

Not only word similarities are added as described before, but also a database trans-
formation is executed. As the result from the inference step described in Section 3.1
is the evidence for the inference step described here, and the first MLN is modeled
using only one property predicate, the evidence needs to be converted to fit the
model used for the object inference.

To serve the purpose of reducing complexity (see Section 2.5), we require the ev-
idence to be in the form described in Listing 2.12. The inference itself is again
executed by transforming the problem into a WCSP and estimating its MPE.

The implementation of the modeling described in Listing 2.13 adds a closed world
assumption implicitly by having to append all possible word-property combinations
when adding the word similarities, due to the disadvantageous usage of only one
shared word domain. This circumstance is explained in more detail in the evalua-
tion.

3.3 USAGE

Within the scope of this work, two main modules have been implemented to infer
an object from a given natural-language description. The module prop_extraction is
used to extract information from a given expression, that is, it infers properties such
as size, shape, color and superordinate terms (hypernyms) of the described object.
A trained MLN representing knowledge about the structure of natural language is
used to analyze the NL expression and retrieve the desired object properties from it.

The second module, obj_recognition, uses this information to infer an object that
matches the specification. To do so, it uses a knowledge base, which is basically an
MLN defining objects in terms of rules, that conjunct the properties of the objects,
respectively.

It can be constructed from a database by calling

53

3.3. USAGE CHAPTER 3. IMPLEMENTATION

praclearn --dbs /path/to/trainingdata.db --mln /path/to/

formulatemplates/filename.mln FirstOrderLogic --module

modulename

Several db files may be listed, separated by comma, to train from multiple databases.
The modulename may be either prop_extraction, obj_recognition or -_old. An MLN is
generated containing all groundings for each formula for each object in the database
in /path/to/formulatemplates/, named filename_trained.mln (according to the file-
name of the given formula templates).

To infer an object’s identity from a given natural-language description, run

pracobjrec -i ’object description ’

A GUI tool will be started in which the modules can be loaded.

To run the property extraction on the object description select the module prop_extraction
and the Knowledge Base default (see Figure 3.1). The fields for the options Logic,
MLN, Method, Queries and Parameters are filled automatically with the default set-
tings, the field Evidence contains syntactic information of the sentence (parameter
object description).

The button Start Inference triggers the execution of the selected module. With the
button Continue > the results of the module's database transformation can be stored
in the evidence field. This can be used to run several modules in a pipeline as
another module can now be executed using the updated evidence.

The evidence field can also be edited manually or filled with the content of previ-
ously stored evidence files.

To infer the object identity from a given object description select te module obj_recognition
(or obj_recognition_old, respectively). A previously trained MLN can now be loaded
in the dropdown box MLN and executed as described above (see Figure 3.2).

When closing the program a formatted result is printed in the standard output.

To run the object inference module, an example query similar to the following may
be inserted into the Evidence field:

hypernym(c,cutlery.n.02)

size(c,shallow.a.01)

shape(c,bowl -shaped.s.01)

hasa(c,handle.n.01)

Listing 3.1: Description for “spoon.n.01”

It is also possible to run the modules prop_extraction and obj_recognition (or -_old)
in a pipeline:

pracobjrec -r -m /path/to/filename_trained.mln FuzzyLogic

’object description.’

The filename_trained.mln is the MLN file learned using praclearn (see above). Adding
the optional flag -o calls the module using the modeling described in Listing 2.13.

54

CHAPTER 3. IMPLEMENTATION 3.3. USAGE

Figure 3.1: PRAC Query Tool for the inference pipeline. The field for the evidence
is automatically filled with the syntactic evidence from the parsed object description
in the parameter.

The sentence object description is parsed and transformed into a formal description,
which is automatically used as evidence for the second module.

The result is the inferred object identity.

To execute a k-fold cross-validation on the obj_recognition module, run:

pracxfold --dbs /path/to/trainingdata.db --mln /path/to/

formulatemplates/filename.mln --predicate object --

domain cluster --folder evalResult --module

55

3.3. USAGE CHAPTER 3. IMPLEMENTATION

Figure 3.2: PRAC Query Tool for the inference pipeline. The evidence field con-
tains the formal representation of the object description and is used in the obj_recog
module to infer the object identity.

obj_recognition --multicore --folds 10

Listing 3.2: test

The module to be tested can be specified with the parameter –module, the number
of folds for the cross-validation is declared with –folds.

The flag –object denotes the predicate that is queried, –domain is the domain from
this predicate that is ignored. The predicate object for example is defined as object ⊂
cluster × objID and we are primarily interested in the value of objID, as cluster is only

56

CHAPTER 3. IMPLEMENTATION 3.3. USAGE

an identifier for the cluster, not the object itself. The results of the cross-validation
are stored in the folder specified by the parameter –folder. To run the validation
using multiple cores, use the flag –multicore.

There is another special flag called –altMLN, which can be used to specify an al-
ternative MLN to read in the training databases, if they are in a different format
than expected by the module. This flag is used to be able to evaluate the module
obj_recognition_old, as the training databases first have to be transformed into the
other modeling mentioned before.

In the next chapter, we evaluate the concept using a k-fold cross-validation. The
results are investigated using different performance measures. A visual representa-
tion of the results are provided in terms of confusion matrices contrasting the output
class of the inference steps and their respective actual target classes.

57

CHAPTERfour

EXPERIMENTS AND RESULTS

This chapter covers the tests that have been run on different modelings and config-
urations of the MLN used to infer object identities from their attributes.

4.1 SETUP

For the evaluation, we use a k-fold crossvalidation, which is a method to evaluate
models especially for classification tasks. In a k-fold cross-validation, the training
data is randomly partitioned into k sets of equal size. The evaluation runs k times
and in each step, k-1 of the datasets are used to train the model that is to be eval-
uated and the remaining one is used for testing. This happens in a way that each
of the k subsets is omitted in the learning step and used for testing once. k is not
fixed and can be anything between 2 and n, where n is the number of available
training examples. If k = n, the k-fold crossvalidation is called leave-one-out cross-
validation. A commonly used value for k is 10, which is used in our evaluation as
well.

To evaluate the semantic perception model generated from natural-language de-
scriptions, a 10-fold cross-validation on a dataset containing 56 databases repre-
senting 14 different objects is executed. For each object, there exist four to five
training examples, depending on the quality of the descriptons from the respective
source.

Sometimes, an object description does not contain any perceivable information, but
rather describes an object with its application purpose or relation to other objects. In
this work we focus on perceivable features which is why we concentrate on training
data containing visual attributes which can be represented by our model.

59

4.1. SETUP CHAPTER 4. EXPERIMENTS AND RESULTS

The evaluation of the results is based on the quality measures accuracy, precision,
recall and F1-score, which is explained below.

In the following, we use abbreviations to refer to certain subsets of the classified
examples:

• True Positives (TP) are examples that have been correctly classified as positive

• Analog, True Negatives (TN) are examples that have been correctly classified
as negative.

• False Positives (FP) are examples which have falsely been classified as positive
(also referred to as false alarm).

• False Negatives (FN) should have been classified as positive, but were not
(called miss)

Note, that we assume a two-class classification problem here. A multi-class classi-
fication problem can be interpreted as a two-class classification problem in a way
that the classes are separated into two groups; one for the class we are interested in
representing the Positives and one for any other classes representing the Negatives.

The terminology is also visualized in Table 4.1.

pred\class Positive Negative

Positive TP FP

Negative FN TN

Table 4.1: Terminology of the confusion matrix: Correctly classified examples are
referred to as True Positives (TP) and True Negatives (TN), respectively. False Pos-
itives (FP) have erroneously been classified as positive, while False Negatives (FN)
should have been classified as positive, but were not.

The accuracy is the fraction of correctly classified examples that is

TP + TN

TP + FP + FN + TN
(4.1)

The precision or positive predictive value is a measure denoting the fraction of the
examples classified as class x, which actually are class x:

TP

TP + FP
(4.2)

The recall or hit rate is the rate of true positives, meaning how many examples from
actual class x have been classified as x.

TP

TP + FN
(4.3)

60

CHAPTER 4. EXPERIMENTS AND RESULTS 4.2. EVALUATION

The F1-score is the harmonic mean of precision and recall:

2 · TP

2 · TP + FP + FN
= 2 ·

precision ∗ recall

precision+ recall
(4.4)

The results are visualized by a representative confusion matrix of the respective
crossvalidation. The rows denote the predictions of the model, while the columns
represent the ground truth that is, the target class. Correct classification results
(prediction = ground truth) are in boldface. The intensity of the cell color increases
with its respective value.

4.2 EVALUATION

In the following sections 4.2.1 to 4.2.4, not only the two different modelings but also
the results from MLNs generated from different formula templates are compared.
As a quick reminder, modeling I refers to the predicate modeling using different
predicates (shape, size, color) for different predicate types, while modeling II refers
to the one using only one (property) predicate, as mentioned in Section 2.5.

The different formula templates are referred to as configurations (CONF I, II, III)
and can be described shortly as follows:

• Configuration I consists of five formulas representing object-feature relations.
Three of them contain two features (i.e. represent all possible combinations of
size, shape and color), the remaining two contain only one (hypernym or hasa,
respectively.).

• Configuration II results from observations on how objects are usually described
in natural language. This is in particular the tendency to use one visual at-
tribute in combination with a superordinate concept to describe an object.
It contains the formula templates from configuration I and expands them by
adding the combinations of the hypernym feature with all other attributes.

• Configuration III consists of only three formulas, of which one conjoins the
three attributes color, size and shape and therefore assumes that all three fea-
tures are used to describe an object. The remaining two formulas relate the
object to its hypernym and hasa attributes.

The configurations can be looked up in the appendix (see MLN Templates - Modeling
I and MLN Templates - Modeling II).

61

4.2. EVALUATION CHAPTER 4. EXPERIMENTS AND RESULTS

4.2.1 COMPARING MODELINGS

As already explained by means of an example in Section 2.5, different modelings
of the predicates (and therefore formula templates) will result in different ground
MLNs. The difference is not only evident when comparing computation time for
generating the MLN, but also influences the results of future inference steps.

In the following, the two different modelings are compared using equivalent con-
figurations. In other words, the two configurations of the formula templates look
like they are expressing the same, but we will see that there is a difference in the
informative values of the generated models.

The MLN generated from modeling II contains one formula for each grounding of
the respective formula template. Each variable can take each value from the word
domain introduced before, which means that we have to add all word-property
combinations with the respective similarity to the evidence. As an example, if we
had perceived the color blue for the unknown object our evidence database would
contain property(cluster, blue.s.01, COLOR). To add our similarity information we
would have to add property(cluster, wi, COLOR), for each wi in the same domain as
blue.s.01, i.e. for each wi ∈ word. The truth value of this added atom would be the
respective similarity of wi and blue.s.01.

We therefore execute the following steps:

For each evidence value wi of type pTypek:

• We assert false properties, which means that we add ¬property(cluster, wi,
pTypel) for each pTypel ∈ prop \ {pTypek}. Intuitively this can be interpreted
in a way that if an attribute is of type pTypek, it can not be of type pTypel. In
the example above we would assume that if blue.s.01 is of type COLOR, it can
not be a SIZE or SHAPE. This assumption is not entirely true for all cases, but
it approximates the reality sufficiently.

• For each wj ∈ word, wj 6= wi we then add property(cluster, wj , pTypek).

• Analogous to the assumption before, we add ¬property(cluster, wj , pTypel) for
each wj ∈ word, pTypel ∈ prop \ {pTypek}.

This happens for each evidence property, which means that in general we approxi-
mate a closed world assumption implicitly.

We therefore need to make a closed world assumption for modeling I as well to
establish the same general conditions as for modeling I. This is necessary to ensure
that we really compare the two different modelings here and the results are not
manipulated by side effects of different settings.

Figure 4.1 contrasts the confusion matrix of modeling I with the one of modeling
II. In modeling I (Figure 4.1a), the highest values are arranged along the diagonal,
which means that most of the predictions agree with the actual target class (ground
truth).

62

CHAPTER 4. EXPERIMENTS AND RESULTS 4.2. EVALUATION

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 1 2 0 0 0 0 0
bowl.n.01 0 2 0 0 0 0 0 0 0 0 0 1 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 1 0 0 0 0
fork.n.01 0 0 0 0 0 2 2 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 2 0 0 0 0 0 0 0 2
lemon.n.01 0 0 0 0 0 0 0 2 2 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 1 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 3 0 1 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 4 0 0 0
pot.n.01 0 2 0 0 0 0 0 0 0 0 0 2 0 0
spatula.n.02 0 0 0 0 0 0 2 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 2

(a) Confusion matrix for modeling I and configuration I of the formula template

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 1 2 0 0 0 0 0
bowl.n.01 0 2 0 0 3 2 1 0 0 2 2 2 0 2
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 2 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 2 1 0 0 0 0 0 0 1
knife.n.01 0 0 0 0 0 0 2 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 2 2 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 1 0 0 0 0 0 0
pan.n.01 0 1 0 0 1 0 0 0 0 2 0 1 0 1
plate.n.04 0 0 0 0 0 0 0 0 0 0 2 0 0 0
pot.n.01 0 1 0 0 0 0 0 0 0 0 0 1 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 2 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Confusion matrix for modeling II and configuration I of the formula template

Figure 4.1: Comparing the two different modelings from Section 2.5

The matrix indicates that the worst results in modeling I are achieved for knives
and oranges and in modeling II for oranges, cups and spoons, as none of them was
predicted correctly. The respective predictions, however, voted for similar concepts
with similar descriptions.

The outliers therefore mostly indicate the confusion of semantically similar classes
like pot and bowl, lemon and orange or spoon and knife. These classes have similar
descriptions, hence similar property attributes.

Pots and bowls for example are both subordinate concepts of containers and may
also be similar in shape and size.

63

4.2. EVALUATION CHAPTER 4. EXPERIMENTS AND RESULTS

Spoon and knife, similarly, are both objects categorized as cutlery and have handles
(see Listings 4.1 and 4.2).

hypernym(cutlery.n.02)

hasa(handle.n.01)

hasa(blade.n.09)

Listing 4.1: Example Descriptions for
knife.n.01

hypernym(cutlery.n.02)

size(shallow.a.01)

shape(bowl -shaped.s.01)

hasa(handle.n.01)

Listing 4.2: Example Descriptions for
spoon.n.01

Other objects that are easily confused are the different types of fruit, especially the
ones with similar colors (e.g. an orange, which is described as a round, orange fruit
and a lemon which is a yellow, oval fruit).

The confusion matrix for modeling II (Figure 4.1b) shows more confusions, also
between different object classes. It shows a strong preference for bowls, which can
be seen in the second row. Even fruits (orange) and very dissimilar objects like
forks and knives are falsely classified as bowls. An explanation for this maybe the
overlapping attribute domains.

In modeling II, it is not differentiated between property types when grounding the
MLN, which usually leads to formulas that do not make sense in the real world, as
property types for certain values are used interchangably.

In some cases, however, formulas with a different meaning are generated, instead of
producing a non-expressive formula. This may be the case when confusing part-of
attributes with hypernyms. As an example, the training examples contain a descrip-
tion, according to which a spoon has a bowl, resulting from the NL description “A
spoon is a utensil consisting of a small shallow bowl[...]”, while other objects (like
the bowl itself, a cup or a pot) are usually described as subconcepts of container,
which is closely related to bowl. Mixing up the HASA and HYPERNYM relations may
lead to different formula weights and therefore different decisions in the inference
process.

The observations from the confusion matrices are underpinned by the applied qual-
ity measures. The results for the MLN generated from the configuration I template
yield a better F1 score for modeling I (0.64), than for modeling II (0.46).

The recall values for pots, bowls and spoons are 0.5, for knives even 0.0 and also
low precisions of 0.0 to 0.67 (except for 1.0 for spoon). This explains the low F1
scores, as it is the harmonic mean of these two measures.

The best results (an F1 score of 1.0) are achieved for plates and cherries in modeling
I and coffee in both modelings. The worst results that can be observed - as already
indicated by the confusion matrix - are the ones for knives and oranges in modeling
I and oranges, cups and spoons in modeling II.

64

CHAPTER 4. EXPERIMENTS AND RESULTS 4.2. EVALUATION

4.2.2 COMPARING RESULTS UNDER OPEN AND CLOSED WORLD

ASSUMPTIONS

Previously, the two different modelings were compared using configuration I as an
example. Now the impact of an open world assumption on the overall result is
investigated. We use the same modeling this time and compare the results with and
without the closed world assumption. We can not use modeling II here because, as
already mentioned before, a closed world assumption is made implicitly in any case.
We therefore choose modeling I and again, opt for configuration I. The resulting
confusion matrices can be seen in Figure 4.2.

Here, the discrepancy is even more evident than in the example before, as almost no
class has been correctly classified, looking at Figure 4.2a, which shows the results
under the open world assumption.

To approach an explanation for this perfomance, we need to recall the setting of
the formula templates. In configuration I, each formula consists of at most 3 atoms,
of which one is the query object. In other words, one formula defines an object by
only two attributes in most cases. The total of true formulas given the evidence then
determines the object.

Gradually assuming a certain atom to be true (=attribute to be present) and re-
trieving the number of formulas that would be evaluated to true in that case, leads
to a loss of expressiveness, as almost every configuration of one evident and one
assumed property is possible. The combination of several such formulas identify dif-
ferent objects to be equally probable or predict a wrong object to be most probable.
Unsurprisingly, a strong preference for objects with detailed descriptions (i.e. many
property attributes in the training set) like spoons, pots and bananas is noticable, as
more formulas vote for these objects.

The confusion matrix in Figure 4.2b shows the results for the same configuration
but under a closed world assumption. Here, only the actually perceived evidence
is assumed to be true, everything not present in the evidence database is therefore
considered false. Usually, natural-language descriptions of a certain object do not
differ much from each other, which is why the training data often contains identical
or semantically similar property attributes.

This similarity is used in the inference step when adding similarity information.
The effect of this practice is that an object with the properties orange and oval can
still match a lemon's description “yellow and oval”, as the information about the
similarity between orange and yellow is added to the evidence. Therefore, an orange
and oval object is not entirely unlikely to be a lemon, but only less probable than an
object matching the description perfectly.

The performance measures show the significance in the difference between the two
compared concepts. Without the closed world assumption, the highest F1 score for
the overall average value is only 0.05 and 0.4 at most for single objects, in this case
bowls. All other single objects only reach values lower or equal to 0.13. Low values
can therefore also be observed for precision and recall. Only one object has a high

65

4.2. EVALUATION CHAPTER 4. EXPERIMENTS AND RESULTS

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 0 0 1 0 4 0 2 0 2 1 0 2 1 2
bowl.n.01 0 1 0 0 0 0 0 0 0 0 0 0 0 0
cherry.n.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pot.n.01 1 2 0 2 0 0 0 2 1 0 0 1 2 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
spoon.n.01 3 1 3 2 0 4 2 2 1 3 4 1 1 2

(a) Confusion matrix for modeling I and configuration I of the formula template (open world
assumption).

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 1 2 0 0 0 0 0
bowl.n.01 0 2 0 0 0 0 0 0 0 0 0 1 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 1 0 0 0 0
fork.n.01 0 0 0 0 0 2 2 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 2 0 0 0 0 0 0 0 2
lemon.n.01 0 0 0 0 0 0 0 2 2 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 1 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 3 0 1 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 4 0 0 0
pot.n.01 0 2 0 0 0 0 0 0 0 0 0 2 0 0
spatula.n.02 0 0 0 0 0 0 2 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 2

(b) Confusion matrix for modeling I and configuration I of the formula template (closed
world assumption).

Figure 4.2: Comparing the inference results with and without a closed world as-
sumption

precision of 1.0 (bowl), the next highest is 0.09 for pot. Most of the objects reached
a precision value under 0.1. and a recall value lower or equal to 0.25.

When making a closed world assumption the results are much better, as an F1 score
of 0.63 is reached on average and 1.0 for several single objects (plates, cherries,
coffee).

66

CHAPTER 4. EXPERIMENTS AND RESULTS 4.2. EVALUATION

4.2.3 COMPARING CONFIGURATIONS

From the previous sections it can be seen that modeling I is the one to go for and
that a closed world assumption is to be preferred over an open world assumption.
What has not been examined yet, is the best configuration of formula templates
to generate a model that represents our object-property relations best. Different
configurations have been tested, of which we present three here. Each of the con-
figurations can be found in the appendix (see MLN Templates - Modeling I), but the
difference is outlined shortly.

The first configuration (configuration I) consists of 5 formula templates, each a con-
junction of one atom for object identity (which is the one we query for) and one or
two atoms for the property attributes. Three of the formulas are simply all 2-pair
combinations of the properties size, shape and color, the remaining two only contain
one atom for the part-of and hypernym attribute, respectively.

Configuration II extends configuration I by two formulas combining colors and hy-
pernyms and shapes and hypernyms, respectively. These combinations are based
on observations of how object descriptions usually look like. Describing objects in
natural language, humans tend to name the superordinate concept in combination
with a descriptive attribute, such as color or shape, which is why these formulas
were designed this way.

Configuration III consists of one larger formula, comprising the three visual at-
tributes size, shape and color and two additional formulas only containing atoms
for part-of and hypernym attributes. This configuration is designed to represent
more complex object descriptions and is therefore more restrictive than the other
ones. Figure 4.3 shows the confusion matrices for the respective configurations,
each using modeling I and making a closed world assumption.

At first view, the three configurations (especially I and II) seem to only slightly differ
in their results, but taking a closer look, configuration II turns out to generate a
model that fits the data best. Configuration III fits the data least and gives overall
poor results compared to the other two configurations.

As a reminder, configuration III consists of only three formula templates. One for-
mula is a conjunction of the predicates object, color, size and shape, the other two
are conjunctions of an object atom and a hypernym or hasa atom, respectively. Most
of the formulas generated from the templates have a weight of 0, as none of the
training examples contains attributes for color, size AND shapes at the same time.
It is simply not very common to describe an object using more than two types of
attributes. Interestingly, the results are still not as bad as would be expected. The
reason is that the inference based on this model only relies on the hypernym and
part-of attributes of the objects, which seem to be rather discriminative in the un-
derlying dataset.

As an example, the cherry is not confused with any other object, as it hasa stone,
which is not true for any other object. The coffee is a subordinate concept (hyper-
nym) of liquid or beverage, which is also a unique characteristic in the dataset.

67

4.2. EVALUATION CHAPTER 4. EXPERIMENTS AND RESULTS

Data generated from ROBOSHERLOCK would suit this configuration better as they
are generated from the annotations of the perception of example objects. Such
annotations always contain information about size, shape and color of an object,
next to others like texture or logos. On the other hand, they do not (yet) provide
information about hypernym or hasa relations, which might worsen the result.

This approach rather concentrates on recognizing certain instances of an object,
learning from training examples and using a model to identify similar objects. It only
generalizes to a certain extent, limited by what it has learned from the examples.

The configurations I and II are better suited for data generated from natural-language
descriptions as they incorporate the form in which objects are described naturally.
Therefore they are designed to create a model representing a general concept of an
object, rather than representing a description of specific instances.

As mentioned above, the overall performance of configuration I and II only slightly
differ from each other comparing their average values (see Table 4.2). Still, config-
uration II seems to be the better option, as it shows that incorporating background
knowledge about frequent property attribute combinations in common natural-language
descriptions pays off as it tends to achieve better results.

4.2.4 INCORPORATING SIMILARITY

Taking a look at Figure 4.1, 4.2 and 4.3 and their respective quality measures gives
us an impression about the overall performance of the MLNs used. The results
presented above are calculated using the classic quality measures accuracy, precision,
recall and F1 score as mentioned before. The problem is that these measures do not
take the semantic similarity of the target classes into account. In other words, two
objects with similar descriptions might be classified interchangably and therefore
rated as erroneous, which is not a problem of the modeling, but the underlying
training data. In particular, a decision of the model may be “correct” according to
the dataset, even though it did not predict the expected class. This is due to the fact
that not all of the objects are described discriminatively.

As an example, the two objects orange and lemon have more property attributes in
common than distinguishing them according to the dataset. Both are subordinate
classes of fruit and both have colors (yellow and orange) and shapes (oval and
round) which in turn are very similar. These slight differences in their descriptions
are not discriminative for the two fruits and therefore they are easily confused.

If the data do not sufficiently represent the differences of the object, the results of
the quality measures do not necessarily represent the overall quality of the trained
model, but rather the quality of the object descriptions, i.e. the underlying training
data. From the confusion matrices issued above can be learned that similar objects
such as orange and lemon or fork and knife, are more likely to be confused than
very differently described ones, such as pan and banana. This is not a problem of

68

CHAPTER 4. EXPERIMENTS AND RESULTS 4.2. EVALUATION

the model but of the underlying data. An indefinite description like “A round yellow
fruit” is most likely to cause a human to confuse oranges and lemons as well.

One could also say that the error of confusing similar objects such as a lemon and
an ORANGE is less profound than the error of confusing totally different objects like
orange and CUP. In a kitchen environment, it would be acceptable if the robot chose
to take a knife to stir the batter instead of a spoon, but using an orange would
definitely be considered inappropriate.

To show, how the similarity of objects influences the error rate, the quality measures
have been altered in a way that the calculation takes into account, how much the
prediction differs from the actual class. That means that each false positive example
(and false negative, respectively) is weighted with 1-similarity(p, t), p being the
predicted class and t the actual class (ground truth) of the arguable object. The
calculations for the respective measures itself are left untouched.

Taking the performance of the MLN generated from modeling I and configuration
II (using a closed world assumption) as an example, one can already see from Fig-
ure 4.4 how taking the object similarities into account influences the overall result.
Especially the values in the center of the matrix, indicating the confusion of forks
and knives, show a significant difference between the conventional error calculation
and the calculation including the similarity (4 vs. 1.74 and 2 vs. 0.87, respectively).

The overall quality measures have changed considerably as well. While the F1-score
returns a value of 0.67 using the classic calculation, adding the similarity weighting
increases it by 0.14 to 0.81. In all modelings and configurations, all four modified
quality measures return better results, which is obvious, given the fact that each
incorrect classification is contributing less to the overall error than before, while the
correct classifications are contributing most (as they are weighed with 1.0, due to
the identity relation between predicted class and ground truth).

The difference in the results from classic and modified calculation can be seen in
Table 4.2.

Acc Prec Rec F1

0.95 0.72 0.68 0.67

0.98 0.83 0.80 0.81

3.16% 15.28% 17.64% 20.89%

Table 4.2: Results - Similarity: comparing the results of the configuration using
classic measures and measures incorporating the similarity between concepts. The
last row (printed in boldface) is the procentual increase achieved by incorporating
the similarity.

Incorporating the similarity results in a 14.24% increase on average over the four
individual average performance measures in this setting, which is not to be confused
with a 14.24% better result on the data.

69

4.3. SUMMARY CHAPTER 4. EXPERIMENTS AND RESULTS

4.3 WHICH ONE IS THE BEST? - SUMMARY

According to our findings in the previous sections, we conclude that the MLN gen-
erated using modeling I and configuration II (under a closed world assumption)
works best to represent the underlying data. Table 4.3 shows the overall results of
all tested settings, of which the best ones are highlighted in green. Except for two
equivalent accuracy values in configuration I, our chosen setting outperforms the
others in each performance category.

A Asim P Psim R Rsim F1 F1sim

M
od

el
in

g
I

CONF I 0.87 0.93 0.08 0.09 0.07 0.12 0.05 0.09

CONF I-cw 0.95 0.98 0.64 0.77 0.66 0.77 0.64 0.77

CONF II 0.87 0.92 0.05 0.07 0.07 0.15 0.04 0.08

CONF II-cw 0.95 0.98 0.72 0.83 0.67 0.81 0.67 0.81

CONF III 0.86 0.91 0.09 0.10 0.09 0.14 0.05 0.09

CONF III-cw 0.94 0.98 0.53 0.60 0.57 0.62 0.54 0.61

M
od

el
in

g
II CONF I 0.92 0.97 0.51 0.64 0.48 0.61 0.46 0.60

CONF I 0.92 0.97 0.52 0.61 0.48 0.59 0.47 0.56

CONF III 0.91 0.96 0.49 0.59 0.39 0.52 0.40 0.53

Table 4.3: Average quality measures for all modelings and configurations with and
without closed world assumption: Accuracy (A), Precision (P), Recall (R) and F1-
Score (F1) with and without similarity consideration (sim), respectively. The best
results are highlighted in green.

The conclusions we draw from the evaluation can be summed up as follows:

• The modeling using separate domains for different feature types instead of a
shared one are to be favored, as it is less complex in the generation process
and provides better results at the same time.

• A closed world assumption is to be preferred over an open world assumption.

• Taking knowledge about the typical structure of natural-language descriptions
during the design process of the MLN formula templates benefits the perfor-
mance of the generated model.

• Considering the respective similarities of the target classes when measuring
the performance helps to get a better overview over the quality of the model
instead of the quality of the underlying data.

70

CHAPTER 4. EXPERIMENTS AND RESULTS 4.3. SUMMARY

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 1 2 0 0 0 0 0
bowl.n.01 0 2 0 0 0 0 0 0 0 0 0 1 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 1 0 0 0 0
fork.n.01 0 0 0 0 0 2 2 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 2 0 0 0 0 0 0 0 2
lemon.n.01 0 0 0 0 0 0 0 2 2 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 1 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 3 0 1 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 4 0 0 0
pot.n.01 0 2 0 0 0 0 0 0 0 0 0 2 0 0
spatula.n.02 0 0 0 0 0 0 2 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 2

(a) Confusion matrix for modeling I and configuration I of the formula template

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 1 2 0 0 0 0 0
bowl.n.01 0 2 0 0 0 0 0 0 0 0 0 2 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 2 0 0 0 0
fork.n.01 0 0 0 0 0 0 2 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 4 2 0 0 0 0 0 0 2
lemon.n.01 0 0 0 0 0 0 0 2 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 1 2 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 2 0 0 0 0
plate.n.04 0 1 0 0 0 0 0 0 0 0 4 0 0 0
pot.n.01 0 1 0 0 0 0 0 0 0 0 0 2 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 2

(b) Confusion matrix for modeling I and configuration II of the formula template

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 0 0 0 0 0 0 0 2 0 0 0 0 0 0
bowl.n.01 0 0 0 0 0 0 0 0 0 0 0 2 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 1 0 0 0 0
fork.n.01 0 0 0 0 0 2 2 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 2 2 0 0 0 0 0 0 1
lemon.n.01 3 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 1 0 0 0 0 0 0 2 4 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 3 0 1 0 0
plate.n.04 0 2 0 0 0 0 0 0 0 0 2 1 0 0
pot.n.01 0 2 0 0 0 0 0 0 0 0 2 0 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 3

(c) Confusion matrix for modeling I and configuration III of the formula template

Figure 4.3: Comparing the inference results for the three different formula template
configurations. 71

4.3. SUMMARY CHAPTER 4. EXPERIMENTS AND RESULTS

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 1 2 0 0 0 0 0
bowl.n.01 0 2 0 0 0 0 0 0 0 0 0 2 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 2 0 0 0 0
fork.n.01 0 0 0 0 0 0 2 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 4 2 0 0 0 0 0 0 2
lemon.n.01 0 0 0 0 0 0 0 2 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 1 2 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 2 0 0 0 0
plate.n.04 0 1 0 0 0 0 0 0 0 0 4 0 0 0
pot.n.01 0 1 0 0 0 0 0 0 0 0 0 2 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 2

(a) Confusion matrix for modeling I and configuration I of the formula template (classic
quality measures).

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 0.78 1.57 0 0 0 0 0
bowl.n.01 0 2 0 0 0 0 0 0 0 0 0 1.68 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 1.2 0 0 0 0
fork.n.01 0 0 0 0 0 0 0.87 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 1.74 2 0 0 0 0 0 0 1.14
lemon.n.01 0 0 0 0 0 0 0 2 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0.75 2 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 2 0 0 0 0
plate.n.04 0 0.5 0 0 0 0 0 0 0 0 4 0 0 0
pot.n.01 0 0.84 0 0 0 0 0 0 0 0 0 2 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 2

(b) Confusion matrix for modeling I and configuration I of the formula template (quality
measures considering similarity).

Figure 4.4: Comparing the inference results under consideration of similarity.

72

CHAPTERfive

SUMMARY

This chapter summarizes the results of the preceding evaluation and draws a con-
clusion from the results. Furthermore, future prospects are proposed.

5.1 CONCLUSIONS

We investigated the question, if it is possible to recognize objects only from natural-
language descriptions. We have investigated the problem following from this ques-
tion and identified the subordinate problems that were to solve, to be able to answer
that question.

In this thesis, we proposed a method to transfer natural-language descriptions into
a formal, first-order logic based representation, to be able to use them as training
examples for a probabilistic relational model. This model has then been evaluated
using a 10-fold cross-validation, which has shown that it is possible to recognize
objects only based on their symbolic features. In order to define similarity relations
between symbolic features and therefore render a comparison of object descriptions
possible, we proposed three similarity calculations for the feature types, either based
on the respective characteristics of the features or their taxonomic relatedness.

According to the evaluation results, the most suitable model design is based on
observations of how object descriptions usually look like and is to be preferred over
long formulas, taking numerous feature types into account.

During the training period, it became clear that the quality of the model highly
correlates with the quality of the similarity specification. Using the provided (mostly
path-based) similarity functions from WORDNET may result in a very unintuitive

73

5.1. CONCLUSIONS CHAPTER 5. SUMMARY

similarity measure (according to the original WUP-similarity, the according synsets
for the semantically rather dissimilar words fruit and container have a comparably
high similarity of 0.5, which complicates the distinction between fruits and other
objects).

Another problem is the use of relative features in object descriptions. Object descrip-
tions from the internet do not follow any rules, which means that many descriptions
may be entirely useless for object recognition tasks. Terms like “larger than” or
“smaller than” are challenging, as they do not refer to a specific, measurable value,
but rather compare attributes of two objects directly. These terms can not be used
synonymously with “large” or “small”, as for example, a melon may be large com-
pared to a cherry, but small compared to a car. Similarly, objects are often described
by comparing it to another similar object. Therefore the descriptions rather contain
the differences between the two objects than a purely object-related specification
and do not mention (possibly too obvious) attributes, which might have been useful
and easy to recognize.

Problematic is also the use of features that are not recognizable by the robot like
certain hasa relations (seeds, stone) or features that are not discriminative (similar
objects are described similarly, for example cutlery).

In general, object descriptions from the internet require preprocessing steps to filter
irrelevant information and ideally, to put them into a syntactically correct form.

The generated model can be used with actual data from ROBOSHERLOCK, but as
the annotations currently differ from the feature types in the model, the results are
poor at present. In particular, ROBOSHERLOCK provides information about text or
logos that have been found on the objects, which is usually not found in natural
language object descriptions. On the other hand, our model comprises features
denoting hypernym and part-of relations, which is not or only partly implemented
in ROBOSHERLOCK.

Furthermore, the perception pipeline always outputs the perceived features of the
selected annotators, but does not differentiate in the significance of the features.
That means that if a color annotator is chosen, it will output the colors of the per-
ceived object, even if it is not significant for the object. This way of describing objects
does not necessarily match the way, a human would describe it, which is what our
model is based on.

To conclude the findings described above and to answer the initial question, it is
possible to recognize objects based on natural-language descriptions, if an appro-
priate similarity is defined between object descriptions and the perception pipeline
is able to output annotations that match the features represented by the respective
model.

74

CHAPTER 5. SUMMARY 5.2. PERSPECTIVE

5.2 PERSPECTIVE

We propose that incorporating additional features into the model as a subject for
future investigations. Object descriptions in natural language comprises numerous
ways to characterize objects, which is in general not limited to the 5 feature types
used in this work. In particular, potentially perceivable attributes such as materials
or surfaces might increase the performance of a trained model, especially if they
represent potentially discriminative characteristics of the objects.

Aldoma et al. [1] and Varadarajan and Vincze ([33] and [34]) identify semantic
affordance features for grasping previously unseen objects and use part detection
based on semantic cues. These affordances can as well be interpreted as attributes,
for example the affordance “contain-ability” matches the purpose “holding liquids”.
NL object descriptions often contain information about an application purpose of an
object, i.e. what it can be used for and how. This information can be interpreted as a
used-for attribute as well and matched to the affordances that have been determined
for a perceived object. More relations between the affordances of an object and its
application purposes according to its NL description are imaginable and are worth
further investigations.

As the MLN represents a joint distribution over observations, it is possible to reason
about the most significant attributes for certain objects. This knowledge can be used
in the design process of future models for object-attribute relations.

We proposed to use for object recognition and introduced an approach how this can
be put into execution using Markov Logic Networks. Our findings show that this
approach signifies one step further towards object recognition tasks incorporating
knowledge-based features.

75

76

ACRONYMS

EM Expectation Maximization. 8

FOL first-order logic. 17, 21

HOG Histogram of Oriented Gradients. 3

HSV Hue Value Saturation. 3, 5, 34, 35, 88

LCS Least Common Subsumer. 33, 34, 39, 40

MAP Maximum a Posteriori. 19

MLN Markov Logic Network. 17–23, 25–29, 31, 32, 41, 44, 45, 51–54, 57, 59, 61,
62, 64, 68–70, 75

MPE most probable explanation. 20, 52, 53

MRF Markov Random Field. 17, 18

NL Natural Language. 1, 5–8, 14, 15, 21, 23, 27, 45, 52, 53, 64, 75

NLP Natural Language Processing. 8

PCFG probabilistic context-free grammars. 23

POS part-of-speech. 23, 24, 26, 28, 32, 33

PRAC Probabilistic Robot Action Cores. 51

PRM probabilistic relational model. 17, 27

RANSAC Random sample consensus. 5

SIFT Scale-invariant feature transform. 3

UIM Unstructured Information Management. 4

WCSP weighted constraint satisfaction problem. 19, 20, 52, 53

77

REFERENCES

[1] A. Aldoma, F. Tombari, and M. Vincze. Supervised learning of hidden and
non-hidden 0-order affordances and detection in real scenes. In 2012 IEEE
International Conference on Robotics and Automation, pages 1732–1739. IEEE,
May 2012. ISBN 978-1-4673-1405-3.

[2] P. Chang and J. Krumm. Object recognition with color cooccurrence his-
tograms. In Computer Vision and Pattern Recognition, 1999. IEEE Computer
Society Conference on., volume 2. IEEE, 1999.

[3] H.-T. Cheng, F.-T. Sun, M. Griss, P. Davis, J. Li, and D. You. Nuactiv: Recogniz-
ing unseen new activities using semantic attribute-based learning. In Proceed-
ing of the 11th annual international conference on Mobile systems, applications,
and services, pages 361–374. ACM, 2013.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886–893 vol. 1, June 2005.

[5] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Discovering Localized At-
tributes for Fine-grained Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2012.

[6] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing Objects by their
Attributes. In CVPR, 2009.

[7] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar. Probabilistic Re-
lational Models. In Introduction to Statistical Relational Learning, chapter 5,
pages 129–174. MIT Press, 2007.

[8] D. Gross and K. J. Miller. Adjectives in wordnet. International Journal of
Lexicography, 3(4):265–277, 1990. URL http://ijl.oxfordjournals.org/

content/3/4/265.abstract.

[9] S. Guadarrama, E. Rodner, K. Saenko, N. Zhang, R. Farrell, J. Donahue, and
T. Darrell. Open-vocabulary object retrieval. RSS, 2014.

[10] D. Jain. Probabilistic Cognition for Technical Systems: Statistical Relational Mod-
els for High-Level Knowledge Representation, Learning and Reasoning. PhD the-
sis, München, Technische Universität München, Diss., 2012.

79

[11] D. Jain, P. Maier, and G. Wylezich. Markov logic as a modelling language for
weighted constraint satisfaction problems. Constraint Modelling and Reformu-
lation (ModRef ’09), page 60, 2009.

[12] D. Jayaraman, F. Sha, and K. Grauman. Decorrelating semantic visual at-
tributes by resisting the urge to share. In CVPR, 2014.

[13] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics-Volume 1,
pages 423–430. Association for Computational Linguistics, 2003.

[14] S. Kok. Structure Learning in Markov Logic Networks. PhD thesis, University of
Washington, 2010.

[15] C. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for
zero-shot visual object categorization. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 36(3):453–465, March 2014. ISSN 0162-8828.

[16] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. In CVPR, 2009.

[17] S. Lauriar, G. Bugmann, T. Kyriacou, J. Bos, and E. Klein. Training Personal
Robots Using Natural Language Instruction. IEEE Intelligent Systems, 16(5):
38–45, 2001. ISSN 1541-1672.

[18] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1-3):503–528, 1989.

[19] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004. ISSN 0920-5691. URL
http://dx.olddoi.org/10.1023/B%3AVISI.0000029664.99615.94.

[20] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A Joint Model of
Language and Perception for Grounded Attribute Learning. Proceedings of the
29th International Conference on Machine Learning (ICML 2012), June 2012.

[21] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to Parse Natu-
ral Language Commands to a Robot Control System. In V. Desai, Jaydev P.
and Dudek, Gregory and Khatib, Oussama and Kumar, editor, Experimental
Robotics, pages 403–415. Springer International Publishing, 88 edition, 2013.
ISBN 978-3-319-00064-0.

[22] D. Nyga and M. Beetz. Everything robots always wanted to know about house-
work (but were afraid to ask). 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 243–250, Oct 2012.

[23] D. Nyga and M. Beetz. Incorporating class taxonomies in probabilistic rela-
tional models. (under review), 2014.

[24] D. Nyga, F. Balint-benczedi, and M. Beetz. PR2 Looking at Things – Ensem-
ble Learning for Unstructured Information Processing with Markov Logic Net-
works.

80

[25] M. Palmer and Z. Wu. VERB SEMANTICS AND LEXICAL SELECTION. ACL
’94 Proceedings of the 32nd annual meeting on Association for Computational
Linguistics, pages 133–138, 1994.

[26] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, Jan. 2006. ISSN 0885-6125.

[27] P. Singla and P. Domingos. Discriminative Training of Markov Logic Networks.
AAAI’05 Proceedings of the 20th national conference on Artificial intelligence, 2:
868–873, 2005.

[28] P. Singla and P. Domingos. Entity Resolution with Markov Logic. Sixth Interna-
tional Conference on Data Mining (ICDM’06), pages 572–582, Dec. 2006. ISSN
1550-4786.

[29] P. Singla and P. Domingos. Markov logic in infinite domains. Proceedings of
the Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI2007),
pages 368–375, 2007.

[30] P. Singla and P. Domingos. Lifted first-order belief propagation. In AAAI,
volume 8, pages 1094–1099, 2008.

[31] Y. Su, M. Allan, and F. Jurie. Improving object classification using semantic
attributes. In BMVC, pages 1–10, 2010.

[32] M. Tenorth, D. Nyga, and M. Beetz. Understanding and Executing Instruc-
tions for Everyday Manipulation Tasks from the World Wide Web. In IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 1486–1491,
Anchorage, AK, USA, May 3–8 2010.

[33] K. M. Varadarajan and M. Vincze. Object part segmentation and classification
in range images for grasping. 2011 15th International Conference on Advanced
Robotics (ICAR), pages 21–27, June 2011.

[34] K. M. Varadarajan and M. Vincze. AfRob: The affordance network ontology
for robots. 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1343–1350, Oct. 2012.

[35] F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Designing category-
level attributes for discriminative visual recognition. In Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 771–778. IEEE,
2013.

81

APPENDIX

MLN TEMPLATES - MODELING I

// predicates

shape(cluster, shape)

color(cluster, color)

size(cluster, size)

hypernym(cluster, hypernym)

hasa(cluster, hasa)

object(cluster, object!)

// formula templates

// CONFIGURATION I

0 object(?c, +?objID) ^ size(?c, +?size) ^ shape(?c, +?shape)

0 object(?c, +?objID) ^ color(?c, +?color) ^ shape(?c, +?shape)

0 object(?c, +?objID) ^ color(?c, +?color) ^ size(?c, +?size)

0 object(?c, +?objID) ^ hasa(?c, +?hasa)

0 object(?c, +?objID) ^ hypernym(?c, +?hyp)

// CONFIGURATION II

0 object(?c, +?objID) ^ size(?c, +?size) ^ shape(?c, +?shape)

0 object(?c, +?objID) ^ color(?c, +?color) ^ shape(?c, +?shape)

0 object(?c, +?objID) ^ color(?c, +?color) ^ size(?c, +?size)

0 object(?c, +?objID) ^ color(?c, +?color) ^ hypernym(?c, +?hyp)

0 object(?c, +?objID) ^ shape(?c, +?shape) ^ hypernym(?c, +?hyp)

0 object(?c, +?objID) ^ size(?c, +?size) ^ hypernym(?c, +?hyp)

0 object(?c, +?objID) ^ hasa(?c, +?hasa) ^ hypernym(?c, +?hyp)

0 object(?c, +?objID) ^ hasa(?c, +?hasa)

0 object(?c, +?objID) ^ hypernym(?c, +?hyp)

// CONFIGURATION III

0 object(?c, +?objID) ^ color(?c, +?col) ^ size(?c, +?size)

^ shape(?c, +?shp)

0 object(?c, +?objID) ^ hasa(?c, +?hasa)

0 object(?c, +?objID) ^ hypernym(?c, +?hyp)

Listing 5.1: MLN Templates - Modeling I

83

MLN TEMPLATES - MODELING II

// predicates

prop(cluster, word, prop)

object(cluster, object!)

// formula templates

// CONFIGURATION I

0 object(?c, +?objID) ^ prop(?c, +?size, SIZE) ^ prop(?c, +?shape, SHAPE)

0 object(?c, +?objID) ^ prop(?c, +?color, COLOR) ^ prop(?c, +?shape, SHAPE)

0 object(?c, +?objID) ^ prop(?c, +?color, COLOR) ^ prop(?c, +?size, SIZE)

0 object(?c, +?objID) ^ prop(?c, +?hasa, HASA)

0 object(?c, +?objID) ^ prop(?c, +?hyp, HYPERNYM)

// CONFIGURATION II

0 object(?c, +?objID) ^ prop(?c, +?size, SIZE) ^ prop(?c, +?shape, SHAPE)

0 object(?c, +?objID) ^ prop(?c, +?color, COLOR) ^ prop(?c, +?shape, SHAPE)

0 object(?c, +?objID) ^ prop(?c, +?color, COLOR) ^ prop(?c, +?size, SIZE)

0 object(?c, +?objID) ^ prop(?c, +?color, COLOR) ^ prop(?c, +?hyp, HYPERNYM

)

0 object(?c, +?objID) ^ prop(?c, +?shape, SHAPE) ^ prop(?c, +?hyp, HYPERNYM

)

0 object(?c, +?objID) ^ prop(?c, +?size, SIZE) ^ prop(?c, +?hyp, HYPERNYM)

0 object(?c, +?objID) ^ prop(?c, +?hasa, HASA) ^ prop(?c, +?hyp, HYPERNYM)

0 object(?c, +?objID) ^ prop(?c, +?hasa, HASA)

0 object(?c, +?objID) ^ prop(?c, +?hyp, HYPERNYM)

// CONFIGURATION III

0 object(?c, +?objID) ^ prop(?c, +?col, COLOR) ^ prop(?c, +?size, SIZE)

^ prop(?c, +?shp, SHAPE)

0 object(?c, +?objID) ^ prop(?c, +?hasa, HASA)

0 object(?c, +?objID) ^ prop(?c, +?hyp, HYPERNYM)

Listing 5.2: MLN Templates - Modeling II

84

MLN TEMPLATES - PROPERTY ATTRIBUTES

// include predicates used by the stanford parser (syntactic evidence)

#include ../../nl_parsing/mln/predicates.mln

has_sense(word, sense!)

is_a(sense, concept)

property(word, prop)

0 nsubj(?w1, ?w2) ^ has_pos(?w1, JJ) ^ has_sense(?w1, ?s1) ^ property(?w1,

+?prop) ^ ?w1 =/= ?w2

0 amod(?w1,?w2) ^ has_pos(?w2, JJ) ^ has_sense(?w2, ?s2) ^ is_a(?s2, +?c) ^

property(?w2, +?prop) ^ ?w1 =/= ?w2

0 dobj(?w1, ?w2) ^ has_sense(?w1, ?s1) ^ is_a(?s1, own.v.01) ^ has_sense(?

w2, ?s2) ^ property(?w2, HASA) ^ ?w1 =/= ?w2

0 dobj(?w1, ?w2) ^ has_sense(?w1, ?s1) ^ is_a(?s1, own.v.01) ^ has_sense(?

w2, ?s2) ^ !property(?w2, HASA) ^ ?w1 =/= ?w2

0 dobj(?w1, ?w2) ^ has_sense(?w1, ?s1) ^ is_a(?s1, envelop.v.01) ^

has_sense(?w2, ?s2) ^ property(?w2, HASA) ^ ?w1 =/= ?w2

0 dobj(?w1, ?w2) ^ has_sense(?w1, ?s1) ^ is_a(?s1, envelop.v.01) ^

has_sense(?w2, ?s2) ^ !property(?w2, HASA) ^ ?w1 =/= ?w2

0 cop(?w1,?w2) ^ has_pos(?w1, NN) ^ has_sense(?w1,?s1) ^ is_a(?s1, +?c) ^

property(?w1, HYPERNYM) ^ ?w1 =/= ?w2

0 cop(?w1,?w2) ^ has_pos(?w1, NN) ^ has_sense(?w1,?s1) ^ is_a(?s1, +?c) ^ !

property(?w1, HYPERNYM) ^ ?w1 =/= ?w2

0 cop(?w1,?w2) ^ has_pos(?w1, JJ) ^ has_sense(?w1,?s1) ^ is_a(?s1, +?c) ^

property(?w1, +?prop) ^ ?w1 =/= ?w2

0 conj_or(?w1, ?w2) ^ has_pos(?w1,JJ) ^ property(?w1, +?prop) ^ ?w1 =/= ?w2

0 conj_or(?w1, ?w2) ^ has_pos(?w2,JJ) ^ property(?w2, +?prop) ^ ?w1 =/= ?w2

0 conj_and(?w1, ?w2) ^ has_pos(?w1,JJ) ^ property(?w1, +?prop) ^ ?w1 =/= ?

w2

0 conj_and(?w1, ?w2) ^ has_pos(?w2,JJ) ^ property(?w2, +?prop) ^ ?w1 =/= ?

w2

0 prep_with(?w1,?w2) ^ has_sense(?w2,?s2) ^ property(?w2, HASA) ^ ?w1 =/= ?

w2

0 prep_with(?w1,?w2) ^ has_sense(?w2,?s2) ^ !property(?w2, HASA) ^ ?w1 =/=

?w2

0 prep_without(?w1,?w2) ^ property(?w2, HASA) ^ ?w1 =/= ?w2

0 prep_without(?w1,?w2) ^ !property(?w2, HASA) ^ ?w1 =/= ?w2

// prevent verbs from being detected as hypernyms

0 has_pos(?w1, +?pos) ^ property(?w1, +?prop)

Listing 5.3: MLN Templates - Property attributes

85

SYNTACTIC EVIDENCE EXAMPLE

// spoon.n.01 / spoon%1:06:00::

// It is a piece of cutlery with a shallow bowl-shaped container and a

handle.

// It is used to stir or serve or take up food

// STANFORD:

amod(container-11,bowl-shaped-10)

amod(container-11,shallow-9)

aux(stir-20,to-19)

auxpass(used-18,is-17)

conj_and(container-11,handle-14)

conj_or(stir-20,serve-22)

conj_or(stir-20,take-24)

cop(piece-4,is-2)

det(container-11,a-8)

det(handle-14,a-13)

det(piece-4,a-3)

dobj(take-24,food-26)

has_pos(It-1,PRP)

has_pos(It-16,PRP)

has_pos(a-13,DT)

has_pos(a-3,DT)

has_pos(a-8,DT)

has_pos(bowl-shaped-10,JJ)

has_pos(container-11,NN)

has_pos(cutlery-6,NN)

has_pos(food-26,NN)

has_pos(handle-14,NN)

has_pos(is-17,VBZ)

has_pos(is-2,VBZ)

has_pos(piece-4,NN)

has_pos(serve-22,VB)

has_pos(shallow-9,JJ)

has_pos(stir-20,VB)

has_pos(take-24,VB)

has_pos(to-19,TO)

has_pos(up-25,RP)

has_pos(used-18,VBN)

nsubj(piece-4,It-1)

nsubjpass(used-18,It-16)

prep_of(piece-4,cutlery-6)

prep_with(cutlery-6,container-11)

prt(take-24,up-25)

rcmod(container-11,used-18)

root(ROOT-0,piece-4)

xcomp(used-18,stir-20)

Listing 5.4: Syntactic Evidence Example

86

// WORDNET ANNOTATED:

has_sense(It-1,null)

has_sense(is-2,null)

has_sense(a-3,null)

has_sense(piece-4,null)

has_sense(cutlery-6,cutlery.n.02)

has_sense(a-8,null)

has_sense(shallow-9,shallow.a.01)

has_sense(bowl-shaped-10,bowl-shaped.s.01)

has_sense(container-11,container.n.01)

has_sense(a-13,null)

has_sense(It-16,null)

has_sense(is-17,null)

has_sense(used-18,used.a.01)

has_sense(to-19,null)

has_sense(stir-20,null)

has_sense(serve-22,null)

has_sense(take-24,scoop.v.01)

has_sense(up-25,null)

has_sense(food-26,null)

// MANUALLY ANNOTATED:

has_sense(handle-14,handle.n.01)

is_a(container.n.01,container.n.01)

is_a(cutlery.n.02,cutlery.n.02)

is_a(handle.n.01,handle.n.01)

is_a(shallow.a.01,shallow.a.01)

is_a(bowl-shaped.s.01,bowl-shaped.s.01)

is_a(scoop.v.01,scoop.v.01)

is_a(null,null)

property(It-1,null)

property(is-2,null)

property(a-3,null)

property(piece-4,null)

property(cutlery-6,HYPERNYM)

property(a-8,null)

property(shallow-9,SIZE)

property(bowl-shaped-10,SHAPE)

property(container-11,null)

property(a-13,null)

property(handle-14,HASA)

property(It-16,null)

property(is-17,null)

property(used-18,null)

property(to-19,null)

property(stir-20,null)

property(serve-22,null)

property(take-24,null)

property(up-25,null)

property(food-26,null)

Listing 5.5: Syntactic Evidence Example - continued

87

ATTRIBUTE FEATURES

Color name H S V

pink.s.01 335 87 87

purple.s.01 290 87 87

blue.s.01 235 87 87

cyan.s.01 150 87 87

light-blue.s.01 175 87 87

green.s.01 115 87 87

green.n.01 115 87 87

yellow.s.01 50 87 87

yellowish.s.01 50 87 87

yellow.n.01 50 87 87

orange.s.01 20 87 87

orange.n.02 20 87 87

brown.s.01 20 87 97

red.s.01 0 87 87

blood-red.s.01 0 89 55

black.a.01 500 55 5

blackish.s.01 500 55 5

white.a.01 500 5 95

whitish.s.02 500 5 95

grey.s.01 500 5 50

greyish.s.01 500 5 50

gray.s.01 500 5 50

grayish.s.01 500 5 50

Table 5.1: Feature vectors for colors: each color symbol is assigned a vector contain-
ing the respective values for the corresponding color in the HSV color model.

88

Shape name |edges| |angles| |faces| subjective similarity

crescent.s.01 2 2 1 0

semicircular.s.01 2 2 1 1

curved.a.01 2 0 1 2

annular.s.01 2 0 1 4

ringlike.s.01 2 0 1 4

coil.n.02 2 0 1 5

coiling.s.01 2 0 1 5

rounded.a.01 0 0 1 6

roundish.s.01 0 0 1 7

egg-shaped.s.01 0 0 1 8

ellipse.n.01 0 0 1 8

flat.s.02 0 0 1 6

elliptic.s.01 0 0 1 8

pear-shaped.s.01 0 0 1 9

cylindrical.s.01 2 0 3 10

round.a.01 0 0 1 11

spherical.a.01 0 0 1 11.1

ball-shaped.s.01 0 0 1 11.2

circular.s.02 0 0 1 11

circular.n.01 0 0 1 11

octangular.a.01 8 8 1 14

hexangular.a.01 6 6 1 15

pentangular.a.01 5 5 1 16

quadrangular.a.01 4 4 1 17

square.n.01 4 4 1 17

square-shaped.s.01 4 4 1 17

rectangle.n.01 4 4 1 18

rectangular.s.01 4 4 1 18

orthogonal.s.03 4 4 1 20

boxlike.s.01 12 8 6 19

trapezoidal.a.01 4 4 1 21

89

Shape name |edges| |angles| |faces| subjective similarity

rhombic.a.01 4 4 1 22

triangle.n.01 3 3 1 24

triangular.s.01 3 3 1 25

pyramidal 5 5 5 26

wedge-shaped.a.02 9 6 5 27

cuneate.s.01 3 3 1 28)

conic.a.01 2 1 2 29

tapered.s.01 2 1 2 30)

asteroid.s.01 12 6 1 35

cordate.s.01 2 2 1 40)

convex.a.01 1 1 2 40

concave.a.01 3 3 2 40

Table 5.2: Feature vectors for shapes: each shape symbol is assigned a vector con-
taining numeric values representing geometric characteristics.

Size name n

dwarfish.s.01 0

bantam.s.01 1

little.s.03 2

shallow.a.01 2.5

small.a.01 3

modest.s.02 4

average.s.04 5

medium-sized.s.01 5

large.a.01 7

huge.s.01 8

grand.s.06 9

Table 5.3: Feature vectors for sizes: each size symbol is assigned numerical value
according to its position in an ascending order from small to large.

90

CONFUSION MATRICES

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 0.78 1.57 0 0 0 0 0
bowl.n.01 0 2 0 0 2.33 1 0.55 0 0 1.14 1 1.68 0 1.56
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0.73 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 2 0.43 0 0 0 0 0 0 0.86
knife.n.01 0 0 0 0 0 0 2 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 2 1.5 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0.75 0 0 0 0 0 0
pan.n.01 0 0.57 0 0 0.6 0 0 0 0 2 0 0.87 0 0.6
plate.n.04 0 0 0 0 0 0 0 0 0 0 2 0 0 0
pot.n.01 0 0.84 0 0 0 0 0 0 0 0 0 1 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 2 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.1: Confusion matrix for modeling II and configuration I of the formula
template (with similarity).

91

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bowl.n.01 1 2 0 0 2 0 0 0 0 1 3 2 1 3
cherry.n.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pot.n.01 0 0 0 0 0 0 0 0 1 0 0 1 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
spoon.n.01 3 2 4 4 2 4 4 4 3 3 1 1 3 1

(a) Confusion matrix for modeling I and configuration II of the formula template (no simi-
larity, no closed world assumption).

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bowl.n.01 0.38 2 0 0 1.56 0 0 0 0 0.57 1.5 1.68 0.6 2.33
cherry.n.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pot.n.01 0 0 0 0 0 0 0 0 0.36 0 0 1 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
spoon.n.01 1.2 1.56 1.6 1 1.6 3.43 2.29 1.52 1.14 1.8 0.76 0.78 1.89 1

(b) Confusion matrix for modeling I and configuration II of the formula template (with
similarity, but no closed world assumption).

Figure 5.2: Confusion matrices for modeling I and configuration II.

92

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bowl.n.01 0 0 0 0 0 0 0 0 0 0 0 0 1 0
cherry.n.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 1 0 0 0 1 1 0 1 1 0 0 0 0
knife.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 0 0 1 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pot.n.01 4 3 4 4 4 3 3 4 3 3 4 3 3 3
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(a) Confusion matrix for modeling I and configuration III of the formula template (no simi-
larity and no closed world assumption).

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bowl.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0
cherry.n.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0.5 0 0 0 1 0.43 0 0.35 0.45 0 0 0 0
knife.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 0 0 0.87 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pot.n.01 1.52 2.53 1.52 0.94 3.11 1.5 1.75 1.45 1.09 2.61 2 3 1.91 2.33
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(b) Confusion matrix for modeling I and configuration III of the formula template (with
similarity, but no closed world assumption).

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 0 0 0 0 0 0 0 1.57 0 0 0 0 0 0
bowl.n.01 0 0 0 0 0 0 0 0 0 0 0 1.68 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 0.6 0 0 0 0
fork.n.01 0 0 0 0 0 2 0.87 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 0.87 2 0 0 0 0 0 0 0.57
lemon.n.01 2.35 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0.78 0 0 0 0 0 0 1.5 4 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 3 0 0.87 0 0
plate.n.04 0 1 0 0 0 0 0 0 0 0 2 0.5 0 0
pot.n.01 0 1.68 0 0 0 0 0 0 0 0 1 0 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 3

(c) Confusion matrix for modeling I and configuration III of the formula template (with
similarity and closed world assumption).

Figure 5.3: Confusion matrices for modeling I and configuration III.

93

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 0 0 0.82 0 1.6 0 0.67 0 1.57 0.35 0 0.76 0.36 0.8
bowl.n.01 0 1 0 0 0 0 0 0 0 0 0 0 0 0
cherry.n.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pot.n.01 0.38 1.68 0 0.47 0 0 0 0.73 0.36 0 0 1 1.27 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0
spoon.n.01 1.2 0.78 1.2 0.5 0 3.43 1.14 0.76 0.38 1.8 3.05 0.78 0.63 2

(a) Confusion matrix for modeling I and configuration I of the formula template (with simi-
larity but no closed world assumption).

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 0.78 1.57 0 0 0 0 0
bowl.n.01 0 2 0 0 0 0 0 0 0 0 0 0.84 0 0
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 4 0 0 0 0 0.6 0 0 0 0
fork.n.01 0 0 0 0 0 2 0.87 0 0 0 0 0 0 0
knife.n.01 0 0 0 0 0 0.87 0 0 0 0 0 0 0 1.14
lemon.n.01 0 0 0 0 0 0 0 2 1.5 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0.75 0 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 3 0 0.87 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 4 0 0 0
pot.n.01 0 1.68 0 0 0 0 0 0 0 0 0 2 0 0
spatula.n.02 0 0 0 0 0 0 1.39 0 0 0 0 0 4 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 2

(b) Confusion matrix for modeling I and configuration I of the formula template (with simi-
larity and closed world assumption).

Figure 5.4: Confusion matrices for modeling I and configuration I.

94

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 1 2 0 0 0 0 0
bowl.n.01 0 2 0 0 3 2 2 0 0 2 2 4 1 2
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 2 0 0 0 0 0 0 0 2
knife.n.01 0 0 0 0 0 0 2 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 2 2 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 1 0 0 0 0 0 0
pan.n.01 0 0 0 0 1 0 0 0 0 2 0 0 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 2 0 0 0
pot.n.01 0 2 0 0 0 0 0 0 0 0 0 0 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 3 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Confusion matrix for modeling II and configuration II of the formula template (no simi-
larity).

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 4 0 0 0 0 0 0 0.78 1.57 0 0 0 0 0
bowl.n.01 0 2 0 0 2.33 1 1.09 0 0 1.14 1 3.37 0.6 1.56
cherry.n.03 0 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 2 0 0 0 0 0 0 0 1.71
knife.n.01 0 0 0 0 0 0 2 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 2 1.5 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 0.75 0 0 0 0 0 0
pan.n.01 0 0 0 0 0.6 0 0 0 0 2 0 0 0 0
plate.n.04 0 0 0 0 0 0 0 0 0 0 2 0 0 0
pot.n.01 0 1.68 0 0 0 0 0 0 0 0 0 0 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 3 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Confusion matrix for modeling II and configuration II of the formula template (with
similarity).

Figure 5.5: Confusion matrices for modeling II and configuration II.

95

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 3 0 0 0 0 0 0 2 0 0 0 0 0 0
bowl.n.01 0 2 0 0 3 1 2 0 3 4 3 4 2 2
cherry.n.03 1 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 2 0 0 0 0 0 0 0 1
knife.n.01 0 0 0 0 0 0 2 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 2 1 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
plate.n.04 0 1 0 0 0 1 0 0 0 0 1 0 0 0
pot.n.01 0 1 0 0 1 0 0 0 0 0 0 0 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 2 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(a) Confusion matrix for modeling II and configuration III of the formula template (no
similarity).

Prediction/Ground Truth b
a
n
a
n
a
.n
.0
2

b
o
w
l.
n
.0
1

ch
er
ry
.n
.0
3

co
ff
ee
.n
.0
1

cu
p
.n
.0
1

fo
rk
.n
.0
1

k
n
if
e.
n
.0
1

le
m
o
n
.n
.0
1

o
ra
n
g
e.
n
.0
1

p
a
n
.n
.0
1

p
la
te
.n
.0
4

p
o
t.
n
.0
1

sp
a
tu

la
.n
.0
2

sp
o
o
n
.n
.0
1

banana.n.02 3 0 0 0 0 0 0 1.57 0 0 0 0 0 0
bowl.n.01 0 2 0 0 2.21 0.51 1.12 0 1.12 2.34 1.54 3.2 1.23 1.47
cherry.n.03 0.82 0 4 0 0 0 0 0 0 0 0 0 0 0
coffee.n.01 0 0 0 4 0 0 0 0 0 0 0 0 0 0
cup.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fork.n.01 0 0 0 0 0 2 0 0 0 0 0 0 0 0.9
knife.n.01 0 0 0 0 0 0 2 0 0 0 0 0 0 0
lemon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
orange.n.01 0 0 0 0 0 0 0 1.5 1 0 0 0 0 0
pan.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0
plate.n.04 0 0.51 0 0 0 0.8 0 0 0 0 1 0 0 0
pot.n.01 0 0.8 0 0 0.67 0 0 0 0 0 0 0 0 0
spatula.n.02 0 0 0 0 0 0 0 0 0 0 0 0 2 0
spoon.n.01 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(b) Confusion matrix for modeling II and configuration III of the formula template (with
similarity).

Figure 5.6: Confusion matrices for modeling II and configuration III.

96

	Introduction
	Motivation
	RoboSherlock
	RoboSherlock with KB features
	Related Work
	Thesis Contributions

	Object Recognition
	Using Natural Language for Robots
	Concept - Basic
	Markov Logic Networks
	Learning and Inference in Markov Logic Networks
	Advantages of Markov Logic Networks
	Example of a Markov Logic Network

	Concept - Detail
	Transforming natural language
	Object Inference
	Similarity

	Modeling MLNs
	Summary

	Implementation
	Feature Extraction
	Object Recognition
	Usage

	Experiments and Results
	Setup
	Evaluation
	Comparing Modelings
	Comparing Results under OW and CW Assumptions
	Comparing Configurations
	Incorporating Similarity

	Summary

	Summary
	Conclusions
	Perspective

	Acronyms
	Bibliography
	Appendix
	MLN Templates - Modeling I
	MLN Templates - Modeling II
	MLN Templates - Property attributes
	Syntactic Evidence Example
	Attribute Features
	Confusion Matrices

