
Towards Robots Conducting Chemical Experiments

Gheorghe Lisca, Daniel Nyga, Ferenc Bálint-Benczédi, Hagen Langer and Michael Beetz

Abstract— Autonomous mobile robots are employed to per-
form increasingly complex tasks which require appropriate
task descriptions, accurate object recognition, and dexterous
object manipulation. In this paper we will address three key
questions: How to obtain appropriate task descriptions from
natural language (NL) instructions, how to choose the control
program to perform a task description, and how to recognize and
manipulate the objects referred by a task description? We describe
an evaluated robotic agent which takes a natural language
instruction stating a step of DNA extraction procedure as a
starting point. The system is able to transform the textual
instruction into an abstract symbolic plan representation. It can
reason about the representation and answer queries about what,
how, and why it is done. The robot selects the most appropriate
control programs and robustly coordinates all manipulations
required by the task description. The execution is based on a
perception sub-system which is able to locate and recognize
the objects and instruments needed in the DNA extraction
procedure.

I. INTRODUCTION

As the area of autonomous robot manipulation gets more
mature it is also getting more important that we better
understand the nature of the underlying information process-
ing mechanism by building complete systems that perform
human-scale manipulation tasks. The importance of research
concerning the building of complete robotic agents cannot
be overestimated. We have made impressive progress in
component technologies such as navigation, grasping, and
perception but so far it is not clear how the individual
components have to be pieced together to produce competent
autonomous activity.

Consider, for example, the control of robot motions. We
see many systems that produce and often even learn to
produce very sophisticated motion patterns such as flipping a
pancake or catching a ball in a cup. However, these systems
have no idea of what they are doing. You cannot ask them
about the desired and undesired effects of actions, how the
course of action could be changed in order to avoid some
unwanted side effect, and so on. For example, the result of
pouring a chemical substance into a container might cause
an explosion.

The reason for this situation is that in order to learn
or generate sophisticated motions you have to completely
formulate the problem in a mathematical model that is then
solved in order to generate a control law that constitutes
a desirable mathematical solution. The problems of how
the mathematical models and computational problems can
be generated by a robot tasked with a NL instruction and
looking at a particular scene has not received sufficient

Institute for Artificial Intelligence, Department for Computer Science,
University of Bremen, Germany. {lisca, nyga, balintbe,
hlanger, beetz}@cs.uni-bremen.de

Fig. 1: Uni-Bremen’s PR2 pipetting.

attention. The same holds for the problem of enabling robots
to answer questions about what they are doing, how, why,
what could possibly happen, and so on.

In this paper we describe a robotic agent that is capable
of autonomously conducting chemical experiments with ordi-
nary laboratory equipment based on NL instructions for these
experiments. The actions that the robotic agent is to perform
include taking tubes, opening and closing them, putting them
into a rack, mixing chemical substances through pipetting,
and operating a centrifuge by opening and closing it, loading
and unloading it, and pushing the start button.

The application is interesting because it requires the robot
to perform only a small set of manipulation actions but by
combining these actions in different ways and performing
them with different substances and quantities the robot can
potentially perform thousands of different chemical experi-
ments by reading and executing instructions for experiments.
In addition, large knowledge bases about chemistry that are
available in standardized and machine readable form in the
semantic web enable us to realize knowledgeable robots with
comparatively little effort.

The main contribution of this paper is the realization
of a complete robot agent that can autonomously conduct
(carefully selected) chemical experiments. In this context the
main technical contributions are:

1) The generation of abstractly parameterized plans from
NL instructions, which means that a language instruc-
tion such as “neutralize 250ml hydrochloric acid” is
translated into an abstractly parameterized action de-
scription like the one in Algorithm 1. This description
names the plan to be called, namely pipetting, and

Fig. 2: Agent’s Conceptual Architecture

Algorithm 1 Abstractly Parametrized Action Description
1: (perform
2: (an action
3: (type pipetting)
4: (object-acted-on ...)
5: (source ...)
6: (destination ...)))

assigns each of the formal parameters of the pipetting
plan an abstract symbolic parameter description. To deal
with the incompleteness and ambiguities of NL instruc-
tions the robotic agent employs first-order probabilistic
reasoning to carry out this interpretation step.

2) A knowledge-enabled perception component that is able
to recognize symbolically described objects such as “the
pipette containing the acid substance” or “the lid of the
tube in the rack” and localize them accurately enough
to allow for high precision manipulation tasks such as
putting a tip on the pipette.

3) The perceptually grounded execution of abstractly pa-
rameterized plans that takes abstract descriptions of
objects, locations, and actions and translates them into
specific numeric parameters such as the 6D pose of the
pipette for releasing the content of the pipette.

4) The acquisition and the reasoning about episodic mem-
ories of chemical experiment activities that enable the
robotic agent to answer queries about what it did in the
episode, how, why, what happened, etc.

The robotic agent was shown in a public demonstration
(see youtube video1), in which it participated in the Ocean
Sampling Day.

The remainder of this paper is structured in the following
way: Section II will present an overview of our system. In
Section III we will describe the NL understanding compo-
nent. Section V will explain the first symbolic representation
of an instruction. In Section V-A the reasoning mechanism
which separates the symbolic task descriptions in more
specific symbolic descriptions for action, object and location,
will be presented. In Section V-B we will explain how the
specific descriptions are used at runtime. The experiments
and drawn conclusions will be summarized in the sections
VI and VIII, respectively.

1https://www.youtube.com/watch?v=sB7_xEARquM

II. CONCEPTUAL ARCHITECTURE OF THE ROBOTIC
AGENT

From describing the DNA Extraction Procedure and
Pipette Usage through NL instructions to having the robot
reactively pipetting: which are the key steps an intelligent
robot has to go trough in order to parametrize its control
programs from NL? The first step is to understand the NL
instructions which task him (cf. Figure 2).

The two sets of NL instructions for neutralization and
pipette usage are parsed using the Stanford parser [1], and
the identified syntactic roles are stored in a probabilistic first
order relational database. WordNet [2] is used for identifying
word meanings. Based on the meanings and syntactic roles of
instruction’s words, the action cores for pipetting, aspirating
and dispensing which match the best given instructions are
identified. The matching process assigns action roles to the
words in the instruction. The roles of action cores which
don’t have an instruction word associated with them, will be
used to infer instruction’s implicit words which are missing
from instruction’s text. aspirating and dispensing involve
the instrument pipette which doesn’t explicitly appear in the
Pipette Usage instructions’ text.

Each action core has a Plan Schema, detailed in Section
V, associated with it. A plan schema groups into a tuple the
action verb and the action roles from the same action core.
The tuple can be regarded as an abstract description of an
action. Defined in this way, a plan schema is fully parame-
terizable by its associated action core. A fully parametrized
plan schema is a plan schema for which all its action roles
were replaced by instruction-specific entities.

In the first phase of the third step, from previously
obtained fully parametrized plan schema, the Reasoning
Mechanism, detailed in Section V-A, extracts the symbolic
descriptions of objects, locations and actions. We call these
symbolic descriptions: designators. In the second phase of
this step, from the freshly extracted action designator, the
reasoning mechanism infers which control program is the
most competent one for performing the manipulations re-
quired by the action description. We call the control program
simply plan and the entire collection of control programs
Plan Library.

In the fourth step, from the plan library, the Reactive
Execution Engine, detailed in Section V-B, retrieves the

https://www.youtube.com/watch?v=sB7_xEARquM

plan inferred by the reasoning mechanism. The plan gets
the previously extracted object and location designators as
parameters and runs as a normal program. At plan’s runtime
the reactive execution engine triggers the Semantic Logging
[3] module to log plan’s context, goals events and the sensor
data which influenced robot’s decisions. OpenEASE [4] is the
web-based knowledge service which collects the data about
robot’s runtime experiences and makes it available to other
robots.

III. GENERATING ABSTRACTLY PARAMETERIZED PLANS
FROM NL INSTRUCTIONS

Robotic agents acting in human environments must be
capable of proficiently performing complete jobs in open
environments that they have not been preprogrammed for.
A promising direction towards this skill, which has gained
a lot of attraction in the recent couple of years, is to equip
robots with the capability to acquire new high-level skills
from interpreting NL instructions, which can be found in
abundance on the web. Instruction sheets provide a rough
and sketchy sequence of actions that needs to be executed
in order to accomplish a task.

However, these instructions typically are written by hu-
mans and are intended for human use, so they lack massive
amounts of information about how particular action steps are
to be executed, on which objects they are to be performed,
which utensils to be used and so on. In addition, a specific
action can be achieved in different ways or even must be
achieved in a very particular way, depending on the current
context the action takes place in. As an example, consider
an action like ‘add hydrochloric acid’, which might be taken
from an instruction sheet describing a chemical experiment.
It is neither specified explicitly where to add the acid to,
how much of it, or how to add it. If the amount that is to
be transferred is very small and accurately specified, such
as ‘5 drops’, one may want to choose a pipette for doing
the addition. Conversely, if 100 ml should be transferred,
one should use a measuring cup and pour directly from the
container where the acid is located.

Thus, instructions stated in NL are severely vaguely
formulated, they are ambiguous and underspecified, and
proficiently performing instructions requires a robotic agent
to interpret what is meant by an instruction by understanding
what is given and inferring what is necessary.

Probabilistic Action Cores (PRAC) [5] are action-specific
first-order probabilistic knowledge bases that are able to
interpret instructions formulated in NL and infer the most
probable completion of an action with respect to its abstract,
symbolic parameterizations. More specifically, action cores
can be regarded as abstract patterns of actions and events,
which have a set of formal parameters attached that must all
be known in order to parameterize a robot plan appropriately.
As an example, consider the NL instruction “neutralize 10
ml of hydrochloric acid.” In this example, a ‘Neutralization’
(in a chemical sense) represents an action core, which has
attached to it two action roles, namely an AcidSubstance
and an AlkalineSubstance, which both must be known in
order to perform the neutralization. However, in the original

AcidSubstance
Neutralize 75 ml of hydrochloric acid.

ActionCore Quantity

acid.n.01

hcl.n.01 milliliter.n.01 (75)

Adding

chemical.n.01 base.n.11

NeutralizationNeutralize

NewMemberAcidSubstance

is-a

AlkalineSubstance

AchievedBy

is-ais-a naoh.n.01

Group

Quantity

is-a

metric_unit.n.01chemical.n.01 is-a

ActionCore Pipetting

Quantity

AchievedBy

Destination

Source

Fig. 4: Exemplary instance of action cores and their action roles
for the ‘neutralization’ example. The colored nodes are given as
evidence, whereas the gray nodes and the role assignments need to
be inferred.

instruction, the alkali counterpart is not specified. From a
probabilistic point of view, one can query for the most
likely role assignment given what is explicitly stated in the
instruction:

arg max
c

P

action-core(a,Neutralization)

is-a(s, c) AcidSubstance(a, hcl)
is-a(hcl, hcl.n.01)

AlkalineSubstance(a, s)

 ,

i.e. we are querying for the most probable type c of an entity
s that fills the AlkalineSubstance role, given the action core
Neutralization and the type hcl.n.01 of the AcidSubstance
role. A graphical representation of this action core is given
in Figure 4.

In many cases, it is not sufficient to consider the action
verb as it is stated in an instruction. In our example, the
neutralization is not a directly executable action. It rather
denotes a chemical process that needs to be triggered. A
robot thus needs to be equipped with reasoning capabilities
that allow to infer how a particular action can be achieved.
The neutralization, for instance, can be achieved by adding
the alkaline substance to the acid that is to be neutralized,
and, since the amount of 10 ml is small an accurately
specified, the adding action can be achieved by pipetting
one substance to the other. PRAC uses a dedicated action
role AchievedBy, which enables to reason about which action
can be achieved by some other action, given its abstract
parameterization.

PRACs are implemented as Markov logic networks [6],
a powerful knowledge representation formalism combining
first-order logic and probability theory. A key concept in
PRAC is heavy exploitation of taxonomic knowledge, which
enables to learn PRACs from very sparse data. By exploiting
the relational structure of concepts in a real-world taxonomy
like the WordNet lexical database, PRAC can perform rea-
soning about concepts that it has not been trained with.

Action cores can be regarded as conceptualizations of
actions that can have an abstract plan schemata attached
to them. In these cases, action roles interface the formal
parameters of the plan. For a more detailed discussion of
the PRAC system, we refer to [7].

Fig. 3: Action Cores: Neutralizing, Pipetting, Aspirating and Dispensing

Description of
objects through
their properties

name(rack)
shape(box)
color(green)

contains(emtpy tube)

name(pipette)
shape(cylindrical & flat)

color(white)
attribute(has button)

name(bottle)
shape(cylindrical)
color(transparent)

contains(liquid)

name(tips box)
shape(box)

color(blue&white)
location(on the table)
contains(small tubes)

name(trash)
shape(box)
color(red)

contains(objects)
has(cavity)

Fig. 5: Description of the perceived objects

IV. KNOWLEDGE-ENABLED PERCEPTION OF
EXPERIMENT SETUPS

Detecting the necessary objects for executing the exper-
iment becomes challenging, given the nature of the tasks
which are needed to executed and the noisy input data.
Furthermore it is not enough to detect the labels of each
object, but identifying parts of them is also necessary (e.g.
opening of a bottle or a tube). To address these challenges
we use a knowledge-driven approach, where the perception
system can reason about the objects it perceives and infer the
correct processing step for detecting the parts of the objects
to be manipulated[8].

This is done through a two step process. First the objects,
their corresponding class lables, visual properties and their
initial pose are detected. Since the objects are represented
in our knowledge-base, based on their class labels we have
access to information that can help further examining them.
In Figure 5 for example the objects rack and bottle have
the property contains, from which we can infer the next
processing step necessary to find the openings of the bottle
or detect if the tubes are closed or open.

We define Prolog rules which are able to deduce parame-
terizations for more general perception algorithms, in order
to detect the necessary parts of the objects. For example the
predicate from Algorithm 2 deduces the radius of a circle that

Algorithm 2 Prolog rule for deducing the radius of a
cylindircal container to be detected.

1: fitCircle(Object, Radius) :-
2: category(Object, ’container’),
3: object-part(Object, Opening),
4: geo_primitive(Object, ’cylindrical’),
5: radius(Opening, Radius).

Fig. 6: The fitted circles on containers’ openings

needs to be fit to an object that is a cylindrical container. The
results of the perception system after executing this query are
shown in Figure 6.

V. PERCEPTUALLY GROUNDED EXECUTION OF
ABSTRACTLY PARAMETRIZED PLANS

As we introduced it in Section II, a plan schema is a
template defined over an action verb and the set of action
roles defined within an action core.

(〈Action Verb〉 (〈Action Role0〉 . . . 〈Action Rolen〉))

A fully parameterized plan schema guides the reasoning
mechanism in inferring the most adequate plan which has to
run in order for robot to execute the instructions with which
is tasked. pipetting plan schema, Code Excerpt 3, states that
the pipetting action firstly needs a source which contains
a specific chemical and is of type container and secondly it
needs a destination which contains another specific chemical
and is of type container too. pipetting plan schema starts
to capture what has to be done for the pipetting action.
Once the pipetting action schema is fully parameterized it
specifies exactly with which objects the pipetting action has
to be performed. pipetting fully parameterized plan schema
doesn’t contain how pipetting has to be done. How an action
will be done only the control programs know. screwing fully
parameterized plan schema cannot specify how pressing and

Algorithm 3 Plan Schemata
1: (pipetting
2: (from ((source Pipetting)
3: (chemical (contains (source Pipetting)))
4: (type (is-a (source Pipetting)))))
5: (into ((destination Pipetting)
6: (chemical (contains (destination Pipetting)))
7: (type (is-a (destination Pipetting))))))
8:
9: (aspirating

10: (from ((source Aspirating)
11: (chemical (contains (source Aspirating)))))
12: (amount (quantity Aspirating))
13: (into ((instrument Aspirating))))
14:
15: (screwing
16: (the (mobile-object Screwing))
17: (on (fixed-object Screwing))
18: (using (tool Screwing)))

Algorithm 4 Action Designators
1: (pipetting
2: (from Container)
3: (with Instrument)
4: (into Container))
5:
6: (aspirating
7: (from Container)
8: (amount Quantity)
9: (into Instrument))

rotating motions must happen. Instead the screw plan knows
it must simultaneously run the press and rotate plans.

A. Reasoning On Fully Parametrized Plan Schemata

From a fully parametrized plan schema our Prolog-based
reasoning mechanism extracts designators for: actions, ob-
jects, and locations. In particular for the fully parametrized
pipetting plan schema the reasoning mechanism extracts the
action designator for pipetting action, the object designa-
tors for pipette and containers and the location designators
relative to them. In Code Excerpts 5 - 6. Designators are
symbolic descriptions. Syntactically they have the form of a
set of attribute-value pairs. Semantically they start existing

((〈attr0〉 〈val0〉) . . . (〈attrn〉 〈valn〉))

as underspecified descriptions for each entity involved by
NL instruction and needs a representation. The semantics of
a designator gives the designator’s type. While the control
system is running those symbolic representations grow com-
plex incorporating more details about the entities they are
referring to.

The Pipetting action designator from Code Excerpt 4 states
what pipetting action needs in terms of classes of entities
- specifically it needs two entities of type Container and
an entity of type Instrument. The difference between the
pipetting plan schema and the pipetting action designator
resides on their different domains of definition. The first of
them is defined over the set of action roles and the second
is defined over the set of symbolic features.

Test tube designator Code Excerpt 5 states that it is of
type Container, having a size of 500ml, contains NaOH, and
has-a cover of type cap and color blue. The robot’s Object
Recognition System detailed in Section IV accepts the vague
and symbolic object designators of test tube and returns it

Algorithm 5 Object Designators
1: (test-tube
2: (type Container)
3: (size 500ml)
4: (contains NaOH)
5: (has-a
6: (cover
7: (type cap)
8: (color blue))))
9:

10: (pipette
11: (type instrument)
12: (capacity 10ml)
13: (has-a button-designator)
14: (has-a effector-designator))

Algorithm 6 Location Designators
1: (above
2: test-tube-designator)
3:
4: (inside
5: bottle-NaOH-designator)

enriched with more perceived details like for example test
tube’s 6D pose.

Location designators are defined relative to object designa-
tors. They behave like space quantifiers and refer to different
regions around objects. Above and inside are two location
designators. They are defined relatively to at least one object.
In Code Excerpt 6 they refer to the spatial region above the
test tube and to the spatial region inside the bottle containing
the chemical compound NaOH.

B. Plan Execution

The reasoning mechanism infers from pipetting action
designator that the pipet plan, depicted in Code Excerpt 7,
is the most competent to perform it. The pipet plan takes as
arguments four designators which symbolically describe the
source holding the liquid from which the amount must be
transfered into the destination by using the instrument. Inside
its body, the pipet plan coordinates sequentially another two
plans which aspirate a specific amount of liquid into the
instrument and dispense it into the destination. At its turn
the aspirate plan coordinates other simpler plans which move
an object, press an object part respectively release an object
part. In order to move instrument’s effector (pipette’s tip)
the object-part quantifier is used to cast the effector as an
object and give it as actual parameter to the move plan call.
Internally the move plan figures out the relation between
object’s frame to be moved and object’s grasping points.
Taking into account this relation the plan is appropriately
parametrizing the controller to perform the right motions.

1) Plan Language: For coding the pipet plan we used
CRAM Plan Language (CPL) [9] which reimplements and
extends RPL [10]. CPL’s control structures are designed to
allow reasoning about the plan and revising it in case a failure
is detected. Plans implemented in CPL can be more than
a sequence of atomic actions. They can run concurrently,
in loops, they can be synchronized and they benefit of
failure handling mechanism. Reasoning on plans can be done
without a complete understanding of a whole plan because
CPL’s control structures support annotation.

Algorithm 7 Pipetting Plan
1: (def-plan pipet (source instrument amount destination)
2: (seq
3: (aspirate (source instrument amount))
4: (dispense (instrument amount destination))))
5:
6: (def-plan aspirate (source instrument amount)
7: (seq
8: (recognize source)
9: (move (object-part effector instrument)

10: (above source))
11: (recognize (object-part button instrument))
12: (press (object-part button instrument))
13: (move (object-part effector instrument)
14: (inside source))
15: (release (object-part button instrument))
16: (move (object-part effector instrument)
17: (above source))))

2) Plan Library: Top-down the plan library contains task
abstract but action specific plans. Bottom-up it contains hard-
ware specific plans which communicate with robot’s object
recognition system and controllers via ROS [11] middleware.
pipet, aspirate or screw are just few action specific plans.
recognize, move or rotate are other few hardware specific
plans. Action specific plans build on top of hardware specific
plans.

3) Reactive Execution Engine: At execution time the
pipet plan is run as a normal control program. In the first
phase the reactive execution engine queries the object recog-
nition system, detailed in the next section by sending vague
object designators and receiving them enriched with more
details about recognized objects. In the second phase, before
triggering robot’s controllers, the reactive execution engine
asks the geometric reasoning module [12] to check if the
intended manipulations are feasible. The geometric reasoning
module temporal projects the requested manipulations and
analyzes them. If an issue is detected then the plan gets the
chance to fix it. If the geometric reasoning doesn’t return
any issue then in the fourth phase the cartesian controller
is employed to move robot’s arms and perform the motions
requested. For future experiments we plan to employ either
a motion planner either more flexible controllers [13].

4) Spatial Reasoning: At the plan’s runtime within robot’s
specific context, all symbolic location designators must be
converted into numerical values understandable by robot’s
controllers. The geometric reasoning mechanism associates
a three dimensional probability distribution to each loca-
tion designator and draws a sample out of it. For moving
pipette’s tip inside bottle which contains sodium hydroxide,
the geometric reasoning mechanism draws a sample from
the probability distribution describing the volume inside the
bottle. Based on this sample the move plan will parametrize
robot’s arm controllers such that they move pipette’s tip
in the sampled three dimensional value. Besides converting
symbolic descriptions to numerical values the geometric rea-
soning mechanism has other more powerful functionalities
like asserting if the current manipulation of an object will
obstruct future manipulations involving other objects or as-
serting if the current manipulation will leave the environment
into a stable state.

5) Cartesian Controller: We focus our experiments on
observing how robots can perform NL instructions, more

precisely on bridging NL understanding with robot’s control
programs. In order to move robot’s arms, for a moment, we
chose the simplest approach of using a inverse kinematics
on top of a joint controller. For future experiments we are
integrating a more flexible controller which uses defined
constraints over a set of features.

6) Semantic Logging: When running a given plan the
reactive execution engine signals a multitude of execution
context characteristics like: plan’s goals, the relations be-
tween the plan being run and the other sub-plans called by
it or pieces of sensor data which influenced robot’s decisions
[3]. All descriptions are synchronized based on a time stamp.

7) OpenEASE: [14] collects all descriptions generated by
the semantic logging module and makes them available to
other robots [4]. OpenEASE is equiped with inference tools
which allow reasoning on this data and answering queries
regarding to what did the robot see, why, how, did the robot
behaved.

VI. EVALUATION

Our robot took part in Ocean Sampling Day [15] an event
organized with the aim of indexing all DNAs from planetary
ocean. Ideally it should have performed the entire procedure
of DNA extraction on the samples collected within this event,
but we had to limit our experiments to just few of them
due to their big number. For testing the pipeline proposed in
Section II, from DNA Extraction Procedure we selected the
neutralization instruction which according to the amount of
involved substances requires and Adding action or a Pipetting
action. PRAC successfully attached an action role to each
instruction word and inferred that the pipetting plan schema
is the most appropriate to be parametrized with the specific
details coming from instructions’ words. The Prolog-based
reasoning mechanism successfully extracted the symbolic
descriptions for the pipetting action, the containers involved
and the necessarily instrument and inferred that the pipet plan
is the most competent to perform the pipetting action. When
running the reasoning mechanism on the extracted pipetting
action designator only the pipetting plan is identified as
the most appropriate for performing the pipetting action. In
future experiments we want to test whether the reasoning
mechanism is able to infer an ensemble of plans which
combined will should perform given action designator, be it
pipetting. When executing the pipetting plan, object recog-
nition system successfully recognized all objects involved
based only on their symbolic description Figure 5. For
representing the type of knowledge the robot needs in order
to press pipette’s button such that right amount of liquid is
released we use the KnowRob [16] knowledge processing
system for our future experiments. The cartesian controller
behaved well for simple manipulations but we expect it to
be overtaken in our future experiments. When manipulating
the necessary objects, we assumed that the robot doesn’t
have to navigate and each object had a virtual grasping pose
attached to it. Currently we are extending robot’s navigation
plan library and its grasping capabilities by deriving grasps
from objects’ CAD models.

VII. RELATED WORK

The system proposed in [17] probabilistically maps NL
instructions into a set of robot primary actions and obtains
the sequence of manipulations from planning in this set.
The system [18] turns NL commands into a more structured
representation and learns a probabilistic graphical model to
associate the structured representation to a plan inferred
from the set of groundings: objects, locations, actions. For
training the probabilistic model people are shown a task
happening inside a simulator and are asked to state in NL
commands which correspond to task’s requirements. The
system described in [19] obtained very promising results by
building, at learning time, a conditional random field over the
set of NL commands and using it at runtime for minimizing
an energy function over new commands. So far these systems
skipped the problem of understanding NL instructions and
focused more on correctly associating NL instructions to
robotic primitive actions.

This approach is similar to [20] where the two robots read
instructions from web and collaborated in order to perform
them. The current approach tackles activities which require
more accurate manipulations. Pipetting action requires the
robot to use its both arms and perform accurate motions.

Adam the robot scientist is an laboratory automation
system [21] which obtained remarkable results while trying
to prove that the experimentation cycle can be automated.
While Adam requires special deployment and minimizes the
required manipulation, our robot is able to use humans’
equipment and conduct experiments into a normal laboratory.

We believe that autonomous mobile robots are able to ben-
efit of Chemical Semantic Web, access experiments recorded
by Electronic Laboratory Notebooks [22] and perform and
record their new results.

VIII. CONCLUSIONS

In this paper we present the control system of an intelligent
autonomous robot which is able to understand NL instruc-
tions and infer and run the most competent control program
for performing them. For each instruction the PRAC system
successfully inferred the implicit knowledge and assembled
a reach instruction representation. From this representation
the reasoning mechanism extracted symbolic descriptions for
action, objects, locations and the most competent control
program to coordinate robot’s required motions. When the
inferred control program was run, the robot’s reactive exe-
cution engine competently coordinated the object recognition
system, the geometric reasoning system and the robot’s
controllers in order to accurately recognize the necessary
objects and competently manipulating them. The control
programs contained in the plan library proved to be very
flexible and highly parametrizable. Overall the entire pro-
posed control architecture turned out to be very scalable.
The used symbolic mechanism is compatible with newly
developed semantic web tools for chemistry. The results
of our future experiments will report how the chemistry
semantic web can be made available to intelligent robots. The
semantic logging mechanism recorded all robot experiences

and openEASE, the web-based knowledge base for robots
makes them available to other robots.

ACKNOWLEDGEMENTS

This work is supported by the EU FP7 Projects RoboHow
(grant number 288533) and ACAT (grant number 600578).

REFERENCES

[1] M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al., “Gen-
erating typed dependency parses from phrase structure parses,” in
Proceedings of LREC, vol. 6, 2006, pp. 449–454.

[2] “WordNet,” 2008, wordnet.princeton.edu.
[3] J. Winkler, M. Tenorth, A. K. Bozcuoglu, and M. Beetz, “CRAMm

– memories for robots performing everyday manipulation activities,”
Advances in Cognitive Systems, vol. 3, pp. 47–66, 2014.

[4] M. Beetz, M. Tenorth, and J. Winkler, “Open-EASE – a knowledge
processing service for robots and robotics/ai researchers,” in ICRA,
Seattle, Washington, USA, 2015.

[5] D. Nyga and M. Beetz, “Everything robots always wanted to know
about housework (but were afraid to ask),” in IROS, Vilamoura,
Portugal, 2012.

[6] M. Richardson and P. Domingos, “Markov Logic Networks,” Machine
Learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[7] D. Nyga and M. Beetz, “Cloud-based Probabilistic Knowledge Ser-
vices for Instruction Interpretation,” in ISRR, Genoa, Italy, 2015,
accepted for publication.

[8] M. Beetz, F. Balint-Benczedi, N. Blodow, D. Nyga, T. Wiedemeyer,
and Z.-C. Marton, “RoboSherlock: Unstructured Information Process-
ing for Robot Perception,” in ICRA, Seattle, Washington, USA, 2015.

[9] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM – A Cogni-
tive Robot Abstract Machine for Everyday Manipulation in Human
Environments,” in IROS, Taipei, Taiwan, 2010, pp. 1012–1017.

[10] D. McDermott, “A Reactive Plan Language,” Yale University,” Re-
search Report YALEU/DCS/RR-864, 1991.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in ICRA, Kobe, Japan, 2009.

[12] L. Mösenlechner and M. Beetz, “Fast temporal projection using
accurate physics-based geometric reasoning,” in ICRA, Karlsruhe,
Germany, 2013, pp. 1821–1827.

[13] G. Bartels, I. Kresse, and M. Beetz, “Constraint-based movement
representation grounded in geometric features,” in ICHR, Atlanta,
Georgia, USA, 2013.

[14] M. Tenorth, J. Winkler, D. Beßler, and M. Beetz, “Open-ease –
a cloud-based knowledge service for autonomous learning,” KI –
Künstliche Intelligenz, 2015.

[15] Micro B3. (2014) Ocean sampling day. [Online]. Available:
www.microb3.eu/osd

[16] M. Tenorth and M. Beetz, “KnowRob – A Knowledge Processing
Infrastructure for Cognition-enabled Robots,” International Journal of
Robotics Research (IJRR), vol. 32, no. 5, pp. 566 – 590, April 2013.

[17] Mario Bollini, Jennifer Barry, and Daniela Rus, “BakeBot: Baking
Cookies with the PR2,” in The PR2 Workshop, from International
Conference on Intelligent Robots and Systems (IROS), 2011.

[18] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J.
Teller, and N. Roy, “Understanding natural language commands for
robotic navigation and mobile manipulation.” in AAAI, 2011.

[19] Dipendra K Misra, Jaeyong Sung, Kevin Lee, Ashutosh Saxena, “Tell
Me Dave: Context-Sensitive Grounding of Natural Language to Mobile
Manipulation Instructions,” in RSS, 2014.

[20] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner,
D. Pangercic, T. Rühr, and M. Tenorth, “Robotic Roommates Making
Pancakes,” in ICHR, Bled, Slovenia, 2011.

[21] R. D. King, “The automation of science,” Science, vol. 324, no. 5923,
pp. 85–89, April 3, 2009.

[22] C. L. Bird, C. Willoughby, and J. G. Frey, “Laboratory notebooks in
the digital era: the role of elns in record keeping for chemistry and
other sciences,” Chem. Soc. Rev., vol. 42, pp. 8157–8175, 2013.

www.microb3.eu/osd

	Introduction
	Conceptual Architecture of the Robotic Agent
	Generating Abstractly Parameterized Plans from NL Instructions
	Knowledge-enabled Perception of Experiment Setups
	Perceptually Grounded Execution of Abstractly Parametrized Plans
	Reasoning On Fully Parametrized Plan Schemata
	Plan Execution
	Plan Language
	Plan Library
	Reactive Execution Engine
	Spatial Reasoning
	Cartesian Controller
	Semantic Logging
	OpenEASE

	Evaluation
	Related Work
	Conclusions
	References

