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Abstract— In this paper, we present an approach and an im-
plemented pipeline for transferring symbolic and subsymbolic
data acquired from observing humans performing fetch and
place tasks in virtual environments onto the robot, and adapting
the data accordingly to achieve successful task execution in the
real world. We demonstrate our pipeline by inferring seven
different motion parameters in the context of setting a simple
breakfast table. We propose an approach to learn general
motion parameter models and discuss, which parameters can
be learned at which abstraction level.

I. INTRODUCTION

Robots acting in real-world environments, such as human
households, require a vast amount of various knowledge
to be able to execute their tasks, including naive physics,
commonsense and task-specific knowledge. For example,
consider the task of setting a table for breakfast. The robot
needs to know which objects are involved in the task, where
to find them, how to stand to have an object in the field of
view, how to grasp objects, where to stand to be able to reach
them, what is the appropriate table setting configuration in
the particular context, etc.

This knowledge is difficult to obtain: one either has to
write specialized reasoners for each task, or learn from own
experience with a trial and error approach over all the pos-
sible solutions in the domain of the problem. Alternatively,
the robot could learn from humans through imitation.

Virtual reality (VR) technology nowadays is getting very
popular and easily accessible. VR systems allow humans to
interact with a virtual environment in a natural and intuitive
way. Logged data of humans executing tasks in VR is a
powerful source of everyday activity knowledge that can be
used to teach robots. As opposed to more traditional camera-
based human motion tracking in real world, using VR gives
the advantage of easily varying the environment and task
scenarios, it provides highly accurate ground truth data, and,
finally and perhaps most importantly, it has the advantage
of having direct access to the underlying world physics.
This means that contacts, supporting relations, visibility,
occlusions, furniture states (drawer is open X cm), all force-
contact events (e.g., hand touched cup, cup lost contact with
supporting surface) can be directly read out from the physics
engine, which is otherwise difficult to estimate in the real
world without using accurate internal and external sensors.

Using a mechanism for automatic knowledge extraction
from VR data, the robot can learn to answer questions
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Fig. 1. Process pipeline of the presented approach: humans perform
experiments in VR, the observations are logged into a subsymbolic database
and symbolic ontology, motion parameter data is transferred onto the robot
and its environment in plan projection simulator, and, finally, the learned
parameters are used on the real robot for its tasks.

necessary to parameterize its motions. In this paper, we
present an approach and an implemented pipeline for trans-
ferring symbolic and subsymbolic data acquired from VR
human data onto the robot and for adapting it accordingly
to achieve successful task execution (see Figure 1). This
requires to solve a correspondence problem between the
observed actions and robot actions, and how to transform
the observed data into executable one. The data cannot be
transferred as is, due to the differences between the virtual
and real environments and objects in them, the physical body
and capabilities of robots and humans, and the contexts of
tasks performed in VR and the real world. We perform an
experimental analysis of which data is possible to transfer
and present approaches to generalize the data such that it
becomes applicable to robot’s own environment and task con-
text. Additionally, we discuss the limitations of data transfer
and what is impossible to learn from VR demonstrations with
the state of the art techniques.



An important property of our approach is that we transfer
the knowledge from humans to robots in a white box manner.
As opposed to end-to-end approaches, where the learned
model is very high dimensional and is a black box, we
factorize our problem into smaller subproblems, such that the
learned models are directly associated with the corresponding
motion parameters, and the causal effects of good or bad
parameter choices are easy to track.

The contributions of this paper to the state of the art are:
• a pipeline for transferring motion parameterizations

from VR onto the robot, which generalizes over dif-
ferent environment setups;

• an analysis of transferability of data acquired in VR
onto the robot in the context of fetch and place tasks.

We demonstrate our pipeline by inferring answers to seven
questions, including semantic information such as that bowls
should be grasped from the top side, and subsymbolic data
such as geometric arrangements of objects on a table for
setting it for a meal or the distribution of locations, where
the robot should stand to be able to reach an object. We
prove that the transferred data is of high quality and enables
the robot to execute a mobile manipulation task of setting a
breakfast table in a real world kitchen environment.

II. RELATED WORK

Teaching robots to perform tasks based on imitation learn-
ing from observing humans and using imitation to bootstrap
reinforcement learning problems is a wide-spread approach
in robotics [1], [2]. In this section, we review related work in
mobile manipulation and learning from virtual environments.

Welschehold et al. [3], [4] learn manipulation action
trajectories of tasks like opening and closing drawers by
observing humans acting in the real world and adapting
the data to the robot’s capabilities through a hyper-graph
optimization algorithm. The data generalizes towards a new
body that executes the task but it does not generalize to
different environments, as the trajectories are learned for
a specific furniture piece. Additionally, Welschehold et al.
learn very specific motion parameters, whereas, in this paper,
we present a general pipeline that can learn any motion
parameterization based on an extensive log of everything that
the human does in the virtual environment, and we learn a
full set of parameters, as many motion parameterizations of
a certain task are interdependent (see Section IV).

Zhang et al. [5] use a VR setup for teleoperating a PR2
robot to perform a manipulation task, such as attaching
a wheel to a toy plane, in order to use the gained data
for deep imitation learning. Teaching by teleoperation can
be costly, as it requires access to robot hardware. On the
other hand, collecting data from humans interacting with
the environment in VR is a promising approach to crowd-
source data collection for robots. In our paper, VR is used to
create an environment for a human to naturally execute tasks.
However, this creates the problem of mapping between the
human and robot bodies, which we consider in this paper.

An example of learning directly from human experiments
in VR is [6] by Bates et al. Their setup and the fundamental

idea is similar to ours, however, they do not learn low-level
motion parameterizations from human demonstrations but
apply automatic motion segmentation algorithms to infer the
sequence of actions the human has performed, in order to
generate a high-level plan for the robot. In this paper, we go
all the way to the low-level motion parameters up until the
limitations of what is possible to learn realistically from a
simulated environment.

Dyrstad et al. [7] utilize VR to teach a robot to grasp real
fish by observing humans perform fish grasping actions in
a virtual environment. The particularity of their approach is
that the humans control a robot gripper in VR, such that the
complication of mapping between the two bodies does not
arise. They use the data acquired in VR to generate a large
amount of synthetic data, which is used to train a CNN.

In our paper, we do not concentrate as much on the
learning algorithms themselves as on the general pipeline
that can learn answers to various questions, supporting both
symbolic and subsymbolic learning models. We demonstrate
a number of simple algorithms that can be used to learn
generalized models, which we found work best with our data,
but the proposed pipeline can be combined with any other
state of the art learning approach as well.

III. DATA ACQUISITION BY OBSERVING HUMANS IN VR

In this section, we present the adapted knowledge acqui-
sition pipeline from our previous work [8] that is used to
collect robot understandable data from observing humans in
virtual environments. We explain how the data is generated,
stored, and accessed by the robot.

Fig. 2. Collecting symbolic and subsymbolic data in VR

Figure 2 visualizes the process of collecting the data: we
ask the human user to execute an underdetermined task in the
virtual environment, and during execution we automatically
log subsymbolic (trajectories, poses) and symbolic (actions,
events) data. The virtual environment is connected to the
knowledge base of the robot, by maintaining a mapping of
every entity from the virtual world to its corresponding class
in the robot’s ontology [9]. Thus, every time an action (such
as grasping) or a physics event (such as contacts between
objects) is logged, we automatically know the types of the
objects that were participating in the logged event.

To interact with the virtual world we use an off-the-
shelf VR headset with hand tracking controllers. The tracked
poses of the headset and of the controllers are mapped
onto the virtual head and the hands of the user. Since the



interaction with the environment is force-based (e.g., one
needs to pull/push against handles to open/close drawers),
the mapping of the hands’ movements to the controllers’
tracked position is done using force-based PID controllers.

During task execution the data is saved in two places:
(1) the low-level (subsymbolic) data is stored with high-
frequency in a MongoDB database, representing the world
state at every timestamp, which allows us to re-create the
complete state of the world at any given timestamp; (2) the
high-level (symbolic) data, such as contact events or grasping
actions, are stored in an OWL format, making it available to
reason upon in the robot’s knowledge base.
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Fig. 3. openEASE web interface with visualization of data acquired in VR,
where: (1) shows the terminal results of executed queries; (2) is the input
panel for queries; (3) shows predefined queries stated in natural language;
(4) is a 3D rendering of the results of the query; and (5) is an interactive
timeline visualization of the logged events.

To visualize the data one can use openEASE1 [10], which
is a web interface capable of accessing the semantically
logged data, with the possibility to graphically visualize it.
Figure 3 shows the visualization of an example query from
a table setting scenario.

IV. PARAMETERIZATIONS OF FETCH AND PLACE TASKS

In this section, we explain the fetch and place plans that
control robot execution in the real-world environment, based
on the knowledge extracted from the VR data. In our system,
the plans are written with the so-called action descriptions
[11], which are abstract underspecified descriptions of the
actions the robot needs to execute. For example, the plan
can contain the following command to perform an action:
( pe r fo rm

( an a c t i o n ( t y p e f e t c h i n g )
( o b j e c t ( t h e o b j e c t

( t y p e cup )
( pose some-pose ) ) ) ) )

which describes the action of fetching a cup object that
has already been found in the environment. When execution
reaches a command to perform an underspecified action
description, reasoning queries are asked to the knowledge
system to infer the missing parameters of the action, resulting
in a fully specified and executable action description. In our

1http://open-ease.org

example, the missing parameters would be the arm, with
which to grasp, if the robot has multiple arms, the base
location where to stand, such that the robot can successfully
reach the object with the given arm, as well as the grasp
pose for the specific object, including the grasp point and
the orientation of the gripper, such that the robot can reach
the object from the given base position. The question of
how to grasp an object requires the robot to have knowledge
of kinematics of its body, the properties of the object (e.g.,
heavy, fragile) and the context (e.g., do not touch the inside
of a cup if it is going to be used for drinking). Such
knowledge is difficult to program. Our approach in this paper
is to make use of human’s commonsense and task knowledge
instead of programming it directly into the robot.

Our fetch and place plans are designed as hierarchical
structures, which are comprised of a set of calls (sequential
or concurrent) to perform action descriptions. Performing an
action description is a two-step process: first, the missing mo-
tion parameterizations are inferred, then, the plan associated
with the given action description is executed with the inferred
parameters. The plan, in its turn, may contain calls to perform
lower-level action descriptions. This results in a hierarchy of
plans, where the leaves are calls to perform lowest-level robot
actions that are executed by directly calling robot’s hardware
controllers or the perception system.

The highest-level action in our fetch and place plans is
the transporting action. The plan that executes it contains
calls to perform three child actions: searching, fetching and
delivering. Table I lists their motion parameters.

Plan Direct parameters Parameter type

search object-likely-location subsymbolic
base-location-for-perceiving subsymbolic

fetch
base-location-for-grasping subsymbolic
grasp symbolic
arm symbolic

deliver object-placement-location subsymbolic
base-location-for-placing subsymbolic

TABLE I
PARAMETERS OF THE CHILD ACTIONS OF THE TRANSPORTING PLAN.

The searching action looks in the environment for an
object that satisfies the constraints given in the abstract
object description. For example, performing (an action (type
searching) (object (an object (type cup)))) results in the robot
searching for a cup object in its environment. The main
parameters of search are: (1) object-likely-location, which
is the likely location of where the object could be, including
semantic information on what kind of surface or in what
kind of container it can be, and the exact point on the
surface or container to look at; and (2) base-location-for-
perceiving, which is the pose at which to position robot’s
base such that the robot can perceive object-likely-location
from a near-enough distance and without occlusions. As one
can see, base-location-for-perceiving depends on the choice
of object-likely-location.

The fetching action assumes that the object to fetch has
already been found and the exact pose is known. base-
location-for-grasping is the pose for the robot to stand, such
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that it is able to reach the object and the trajectory does not
result in a collision. grasp is one of the symbolic values top,
left-side, front, handle, etc., which corresponds to the side of
the object that the robot is going to grasp from. The actual
subsymbolic grasp poses are defined in our system in the
knowledge base, such that at runtime the robot only needs
to choose a suitable grasp from the list of available ones for
the given object. The arm parameter of the fetching action
defines if the robot grasps with its left or right arm.

For the delivering action the following two parameters
have to be inferred. The first one, object-placement-location,
defines on which symbolic type of surface or container the
object has to be placed and the exact pose on that specific
surface/container, e.g., the location for a spoon would be on
a DiningTable surface, specifically at a pose right of the bowl
and aligned with the table. Depending on object-placement-
location, base-location-for-placing is the robot base pose
such that the object placement pose is reachable.

An important property of our plans is that they contain
carefully designed failure handling strategies. This implies
that the inferred motion parameters of the plans do not have
to always be correct. Instead, when a parameter results in a
failure, the failure handling strategies pick another parameter
from the list of suggestions from the (VR-based) knowledge
base, and retry the plan with this new solution. As a result,
the better the quality of the VR data, the less retries and,
therefore, runtime the robot requires to successfully execute
the task. Below is a code snippet showing a simple failure
recovery strategy for choosing a different grasp when picking
up an object fails:
1 ( w i t h - f a i l u r e - h a n d l i n g
2 ( pe r fo rm ( an a c t i o n ( t y p e p i c k i n g - u p )
3 ( o b j e c t ? o b j e c t )
4 ( g r a s p ? g r a s p ) ) )
5 ( m a n i p u l a t i o n - f a i l u r e ( f a i l u r e - i n s t a n c e )
6 ( s e t f ? g r a s p ( n e x t ? g r a s p ) )
7 ( i f ? g r a s p ( r e t r y ) ) ) )

We wrap the command for performing the action (lines
2-4) in a failure handling guard (line 1), which, when a
failure of type manipulation-failure happens (line 5), sets
the value of variable ?grasp to the next value from the
grasp generator (line 6), and if there is a next value, retries
to perform the action (line 7). with-failure-handling and
retry are language constructs from our domain-specific robot
programming language CPL [12].

V. TRANSFERRING HUMAN DATA ONTO THE ROBOT
AND ITS ENVIRONMENT

We access our knowledge databases through a Prolog
interface. Let us consider, how the seven parameters from
Table I are inferred from the data acquired in VR.

To infer object-likely-location when searching for an
object, we use the relative location of the object to its
supporting surface that has been observed in the human
data. The object the robot is searching for is described
by its ontological type, e.g., in (an action (type searching)
(object (an object (type bowl)))), bowl is any object of the
corresponding class in the ontology. Thus, our first constraint

is that the specific object instance from the VR data is of type
bowl or any of its subclasses:
s u b c l a s s o f ( Objec t , ’ bowl ’ ) ,

Next, we find all the events from all the experiment
episodes, where the human grasped an object of the given
type, and take the timestamp of the beginning of that event:
e p i s o d e ( Ep i sode ) ,
o c c u r s ( Episode , Event , S t a r t T i m e , EndTime ) ,
t y p e ( Event , ’ Grasp ingSometh ing ’ ) ,
p r o p e r t y ( Event , ’ ob j ec tAc tedOn ’ , O b j e c t ) ,

Taking the time of the beginning of the event (StartTime)
ensures that the object is at its initial location where the
human has found it, and not, e.g., at the location where it
has been placed later on.

To find the supporting surface, we look up a TouchingSi-
tuation event, which involves our object:
o c c u r s ( Episode , TouchEvent , T o u c h S t a r t , TouchEnd ) ,
t y p e ( TouchEvent , ’ T o u c h i n g S i t u a t i o n ’ ) ,
p r o p e r t y ( TouchEvent , ’ i n C o n t a c t ’ , O b j e c t ) ,
p r o p e r t y ( TouchEvent , ’ i n C o n t a c t ’ , S u r f a c e ) ,
n o t ( O b j e c t == S u r f a c e ) ,

The grasping event has to have happened while the contact
situation has been active, otherwise we might get the contact
event with the surface at the target location:
t i m e b e t w e e n ( S t a r t , T o u c h S t a r t , TouchEnd ) ,

Note, how we are using the force-contact events stored
in the database to segment the continuous data stream of
observations into discrete human action sequences. By doing
so, we establish matches between human actions and their
corresponding counterparts in the robot plans, to extract the
relevant data for estimating a given motion parameter.

In order to make sure that our grasping event corresponds
to the object being transported to the correct destination, we
need to take into account the task context. In our scenario,
the context is of setting a table, so all other actions, e.g., of
cleaning it up afterwards, need to be disregarded. We filter
the grasping events by looking at the destination surface
of the event: if the destination is of type DiningTable, we
assume that the action was to set a table:
t y p e ( Con tac tSur faceAtEndOfGrasp , EndSurfaceType ) ,
n o t ( s u b c l a s s o f ( EndSurfaceType , ’ D i n i n g T a b l e ’ )

Now that we have constrained the grasping event to the
context of our scenario and inferred the supporting surface
of the object at the beginning of the object transport, we
infer the location of the object relative to the surface. For
that we need the object location and the surface location in
the global coordinate frame:
a c t o r p o s e ( Episode , Objec t , S t a r t T i m e , O b j e c t P o s e ) ,
a c t o r p o s e ( Episode , S u r f a c e , S t a r t T i m e , S u r f P o s e ) .

The other parameters are inferred similarly. base-location-
for-perceiving is inferred from the pose of the human relative
to the object to perceive at the time point when the grasping
event started. As we can only track the head of the human
in VR and not his feet, we map from the human head pose
to the robot’s base location by, first, projecting the pose onto
the floor, and then straightening the orientation to get rid



of the tilt of the head, such that the robot base is parallel
to the floor. Additionally, as our robot’s base is wider than
the human feet by approximately 20 cm, we add a constant
offset of 20 cm in the -x direction of the pose, i.e. towards
the back. This is the only explicit offset that we use to adjust
the human data to the robot body. When transferring the data
onto a different robot body, this and only this value has to
be adjusted towards the new robot platform.

base-location-for-grasping and base-location-for-placing
are inferred similarly. grasp is inferred from the relative
position of human’s wrist with respect to the object, e.g.,
if the wrist was located above the object, it is a top grasp.
arm is bound to the value left or right based on the hand,
with which the human grasped the object.

object-placement-location is a parameter, which greatly
depends on the task context. For example, the location of
a spoon on a surface near the sink in the context of cleaning
the table does not imply strict constraints on its orientation or
position. On the other hand, in the context of table setting, the
orientation of the spoon has to be aligned with the supporting
surface. Additionally, if there is another object, such as a
plate or a bowl, on the table, the position of the spoon is
constrained to being right of the other object. This depends
on the viewpoint of the person using the utensils, therefore,
the location of the human also influences object-placement-
location in this context. The relative positioning of the object
on the table is, thus, calculated based on the bounding box
of the supporting surface, the relative poses of the objects
involved, as well as the human pose when placing the objects.

VI. LEARNING GENERALIZED MODELS
FOR FETCH AND PLACE TASKS

In this section, we outline how the data generated by
executing plans on the robot with VR-based inference can
be used to learn general models of motion parameters. We
show how three of the seven parameters from Table I can
be inferred from learned models. The other four parameters
are calculated directly from the VR data as a one to one
mapping, without using a generalized model in between.

In [13] we inferred fetch and place action parameteri-
zations from robot’s own experience data. To generate the
data, the robot utilized heuristics for plan parameterization.
Heuristics allow to minimize the search space, however, they
have to be handcrafted for each parameter inference task
and are very prone to failures. In this paper, the heuristics
have been replaced by VR-based inference. We reused the
statistical models from our previous work and retrained them
based on data acquired by the robot performing its plans,
where motion parameterizations are inferred from VR.

In the context of a fetching action, to infer grasping poses
and robot base locations that are expected to lead to suc-
cessful action execution, we utilize a probability distribution,
defined as follows:

P (S | GP,RFF, RP,OT, SF,ARM)∑RP
rp P (S | GP,RFF, rp,OT, SF,ARM)

where

GP = argmax
GP

P (GP | RFF, OT, SF )

RFF = argmax
RFF

P (RFF | RP,OT, SF )

We determine the maximum probability of success S, given
the robot base pose RP relative to the object, grasping pose
GP represented as a discrete variable, object type OT , arm
ARM and the object orientation represented as two discrete
random variables – supporting face (SF ) and robot facing
face (RFF ) – which take the same values as GP . We
assume that the object orientation is always constrained by its
supporting surface, thus, we represent it using the face of the
object that is in contact with the supporting surface (SF ) and
the angle around the axis perpendicular to the surface. We
discretize the continuous space of angles into four symbolic
object faces, and the face, the normal of which points towards
the robot, we call the robot facing face RFF . To infer the
robot facing face (RFF ), we are applying linear algebra,
which allows us to determine it with a probability of 1.0.

We use Fuzzy Markov logic networks (FUZZY-MLN) [14]
as a statistical model, to infer the discrete grasping pose GP
for picking up an object. A general Markov logic network
(MLN) is a model, which combines probabilistic graphical
models and first order logic [15]. FUZZY-MLN enhances a
general MLN by utilizing the fuzzy logic calculus during
inference. The advantages of MLNs are that they can repre-
sent complex relations and that they are white box models,
which allows to easily interpret the results of learning
and understand the causal relationships between the learned
features. Based on the discrete object pose representation, we
are able to infer from the learned FUZZY-MLN the required
grasping pose GP , which with highest probability results in
the robot grasping the object successfully.

Having RFF and GP inferred, we are able to create
a distribution, which represents the success probability to
grasp the object based on the robot position. To calculate
the success probability, we created a binary classifier, which
labels if the fetching action will be successful or not given the
evidence such as grasping pose, object type and robot base
pose. Since, at this moment, we did not have enough data
points from the virtual reality for deep learning approaches,
we decided to use generative models (Gaussian naive Bayes)
to represent the success probability. We have one Bayes
classifier for each combination of (OT × GP × RFF ×
SF × ARM ) to keep the models simple and to be able to
perform fast reasoning.

The probability distribution for the fetching action has the
advantage that it can be reused for delivering an object to a
given location. We interpret the delivering action as a reverse
of fetching, and, thus, represent the probability of success of
a delivering action similarly to the fetching probability:

P (S | GP,RFF,RP,OT, SF,ARM)∑RP
rp P (S | RFF,GP, rp,OT, SF,ARM)

In the delivering action, the agent already has the object in
the hand, so we consider the grasping pose as given.



Figure 4 shows the learned models for positioning the
robot’s base for fetching a bowl object and placing a cup.

Fig. 4. Distribution for a robot base pose to (left) grasp a bowl with the
left arm and (right) place a cup with the right arm, visualized as heat maps.

VII. EXPERIMENTAL ANALYSIS

In this section, we empirically investigate the effectiveness
of using data, acquired by observing humans performing
tasks in VR, for executing mobile fetch and place tasks on
a real robot. Specifically, we investigate the following:

1) Is it possible to successfully execute a simple table
setting task on a robot by inferring motion parameters
based on VR data?

2) How does VR-based motion parameter inference com-
pare to hand-crafted heuristics?

3) How does the quality and quantity of the data collected
by observing humans in VR affect robot performance?

4) How does the system scale to changes in robot’s
environment?

5) Can the system be applied to different robots?
6) Are human preferences reflected in the robot behavior?

The task in all the experiments is to set a simple breakfast
table with three objects – bowl, spoon and cup – by bringing
them from the sink counter to the dining table.

A. Data Acquisition in VR

We have recorded data in VR in separate batches, which
differ in a number of properties, listed in Table II.

VR Data
Batch ID

# Table
Setting
Episodes

Virtual
Environment

Human
Handedness

LikeReal 60 1 kitchen, similar to real Right
3Var 20 * 3 3 kitchen variations Right
3VarHalf 10 * 3 3 kitchen variations Right
LeftSide 3 * 3 3 kitchen variations Left

TABLE II
BATCHES OF DATA ACQUIRED BY OBSERVING HUMANS IN VR.

The first batch was recorded in a virtual environment that
closely resembles robot’s kitchen in the real world. The
positions and orientations of the objects on the source and
destination surfaces have been varied in each episode.

For the other batches, we have created three different
kitchen environments, where the scale, position and orienta-
tion of the furniture pieces have been greatly varied, making
sure to create environments as different from the real one as

possible (see Figure 5). The third batch is simply a subset of
the second batch, for evaluating quantitative effects of data
on robot performance. In the fourth batch, the human user
put the spoon only on the left side of the bowl, to investigate
if human preferences are reflected in the robot behavior.

Fig. 5. The real environment and the three virtual ones. The position,
orientation and scale of furniture in all four environments is different, such
that no virtual kitchen is similar to the real one.

B. Experiments

To answer the questions, listed at the beginning of this
section, we have executed the table setting task in many
different variations, listed in Table III.

Experiment ID # Table
Setting
Exe-
cutions

Robot Robot
Environment

Infe-
rence
En-
gine

VR
Data
Batch
ID

Pr2HrSim 100 PR2 Simulated,
similar to real

Heur. –

Pr2VrSimLikeReal 100 PR2 Simulated,
similar to real

VR LikeReal

Pr2VrSim 100 PR2 Simulated,
similar to real

VR 3Var

Pr2VrSimHalf 100 PR2 Simulated,
similar to real

VR 3VarHalf

Pr2HrReal 20 PR2 Real Heur. –
Pr2VrRealLikeReal 20 PR2 Real VR LikeReal
Pr2VrReal 20 PR2 Real VR 3Var
Pr2HrSimMod 100 PR2 Simulated,

modified
Heur. –

Pr2VrSimMod 100 PR2 Simulated,
modified

VR 3Var

Pr2VrSimLeft 10 PR2 Simulated,
similar to real

VR LeftSide

Pr2VrSimModLeft 10 PR2 Simulated,
modified

VR LeftSide

Pr2VrRealLeft 3 PR2 Real VR LeftSide
BoxyHrSim 100 Boxy Simulated,

similar to real
Heur. –

BoxyVrSim 100 Boxy Simulated,
similar to real

VR 3Var

TABLE III
EXECUTION VARIATIONS OF TABLE SETTING TASKS.

Experiments were executed on a real-world robot, as well
as in a fast simulation environment [16], randomly varying
the position and orientation of the objects’ initial location
on the sink counter. The two robots that were used are
PR2 and Boxy, which are mobile manipulation platforms
with two arms. Boxy is bulkier than PR2 and has less



Experiment ID Success Success Rate Per Object (%) # Non-recoverable Failures # Recoverable Failures Execution
Rate (%) Bowl Cup Spoon Search Fetch Deliver Percept. Nav. Manip. Time (s)

Pr2HrSim 33 81.5 44 90 0 0.3 0.545 11.89 4.5 44.26 16.3 ?
Pr2VrSimLikeReal 60 100 60 100 0 0.1 0.3 2.8 160.8 30.8 14.74
Pr2VrSim 75 95 85 95 0 0.1 0.15 6.5 304.9 24.1 17.9
Pr2VrSimHalf 33 83 77 52 0.02 0.7 0.15 9.79 1000.46 46.56 15.52
Pr2HrReal 50 60 80 90 0 0.5 0.2 11 14.9 61.7 373.62
Pr2VrRealLikeReal 90 100 90 100 0 0 0.1 4.2 203.1 53.5 420.3
Pr2VrReal 90 100 90 100 0 0.1 0 1.56 259.4 34.8 349.43
Pr2HrSimMod 12 38 63 68 0.1 1.03 0.18 14.57 45.47 63.04 13.25
Pr2VrSimMod 11 39 72 66 1.2 0.22 0 2.09 3627.39 4.74 21.77
BoxyHrSim 72.5 94 83.5 94 0 0.28 0.005 10.05 13.64 42.53 15.01
BoxyVrSim 48 84 66 84 0 0.62 0.04 7.12 836.3 49.54 24.83

TABLE IV
SUCCESS RATES AND EXECUTION TIME OF EXPERIMENTS FROM TABLE III, AVERAGED OVER THE NUMBER OF EXECUTIONS.

EXECUTION TIME IS THE AVERAGE DURATION OF ONE SUCCESSFUL OBJECT FETCH AND PLACE.

reachability (see Figure 6(left)). In order to show that the
system scales towards changes in robot’s environment, we
designed a modified kitchen for the simulator, which is unlike
the real kitchen or any of the VR ones (see Figure 6(right)).

Fig. 6. A different robot (left) and a different robot environment (right).

As a baseline for comparison, we have used handcrafted
heuristics to infer missing motion parameterizations [16]: to
calculate object likely locations and destination poses, we
use bounding boxes of supporting surfaces; for visibility
calculations, offscreen rendering is used; for reachability, a
simple robot-specific circular region is generated; and the
choice of the arm and the grasp is done by random sampling.

A few experiments have been performed with the LeftSide
VR data batch loaded, in order to show that the robot is able
to not only learn suitable table setting arrangements for the
given task context but also takes into account the preferences
of the human, who collected the data in VR (see Figure 7.

Table IV shows the results of the experiments, averaged
over the number of table setting executions per experi-
ment2. By looking at action execution success rates, we can
conclude that our system successfully learned the motion
parameters of a transporting action (see Table I), including
(1) where to look for objects in the environment, (2) where

2The specs of the simulation PC are: Ryzen7 8 core 3.2GHz processor,
32 GB RAM and an NVidia GeForce GTX 1050 Ti graphics card. The
high-level of the real-world experiments ran on a laptop with an 8 core i7
CPU, 8GB RAM and an NVIDIA GeForce GT 650M graphics card.

Fig. 7. Plot of all placement poses for a spoon that the human used
(visualized as blue arrows), mapped onto robot’s environment and reference
bowl object (the red object on the table): (top left) 3Var VR data batch was
used in a similar to the real world kitchen, (top middle) LeftSide VR data
batch was used, (top right) LeftSide data was used in the modified robot
kitchen, (bottom left) zoomed in version of the plot, (bottom right) PR2
setting a table through LeftSide data.

to position the robot in the environment such that the object
is visible and not occluded, (3) where to position and how
to orient the robot in order to reach an object, (4) from
which side to approach the object with the gripper, (5) which
arm to use for picking up the object, (6) where to stand in
the environment to place the object, and, finally, (7) how
to arrange objects in the given context, in our case, table
setting, also based on the preferences of the human user.

Surprisingly, a small amount of data recorded in VR was
already enough to ensure successful motion parameteriza-
tions on the robot (60 table setting episodes).

From Table IV we can see that our system often outper-
forms the heuristics baseline in execution success rates but
encounters more intermediate recoverable failures. Action
executions are overall successful, as the recoverable failures
are handled by our failure handling strategies, which ask for
the next answer to the same query in case of an intermediate
failure. Please note that our heuristics have been improved
over the years to better fit our environment and robots.



VIII. CONCLUSION, DISCUSSION AND FUTURE WORK

In this paper, we presented a pipeline for learning motion
parameterizations of fetch and place tasks for robots, from
observing humans in VR. We explained how data from VR
can be transferred onto the robot and its environment using
data transfer rules and how general motion parameter models
can be learned based on the data. We showed that the data
scales towards different environments and robot platforms
and produces successful execution of a simple table setting
task on different robots in simulation and real world.

Our data transfer rules have been carefully designed by
hand and they are currently quite complex. Using machine
learning approaches, especially data-driven deep learning
models, we could simplify those rules. For example, the
pose of the spoon in the table setting context is currently
calculated with linear algebra formulas, based on a large
amount of parameters, such as supporting surface pose and
dimension, human relative pose, the pose of the reference
bowl object and the robot pose. This could be simplified,
in future work, by training a CNN on visual features from
images of different table setting arrangements.

An important consideration for any imitation learning
framework is the problem of transferring knowledge between
agents with different bodies. We approach this problem by
executing the plan in a simulation environment to validate the
inferred motion parameterization before executing them, and
by retrying the plan with the next inferred motion parameter
value on failure. Naturally, the closer the robot hardware
is to a human, the higher are the assumed task execution
success rates and retry counts. It is unknown if our system
would work on a non-anthropomorphic robot design, e.g.,
a quadruped. We have shown, however, that the system
does scale towards different robot platforms, by performing
experiments on two different robots. Our approach can be
further improved by learning complete black-box mapping
models between the human and robot bodies.

From the seven motion parameterizations that we have
considered, we had to abstract away onto a symbolic level in
only one of them: as grasping in our system is implemented
as simple rigid attachments and not using dynamics and
friction simulation, the degree of realism was not enough
to learn exact grasping poses from the VR data. Physically
stable force-based grasping is difficult to implement in a
physics engine, as the hands and the object they interact
with are typically represented as rigid bodies, which makes
contacts rather unstable. Additionally, the dexterity of the
human hand allows for rather impressive grasps, e.g., holding
multiple objects in one hand. Replicating this on a robot is
very difficult, especially if it has only two fingers. Thus, it is
uncertain if detailed knowledge of how humans grasp objects
with their hands can be of much use for a robot.

Our pipeline opens up vast possibilities for learning many
more motion parameters outside of the fetch and place
domain, e.g., parameters of pouring, cutting, environment
manipulation, etc., which we will consider in the future.

To authors’ best knowledge, in the state of the art there

exists no other system that can transfer symbolic and sub-
symbolic data from VR onto the robot with a general
pipeline. There exist specialized solutions for specific tasks.
In our paper we presented a general purpose pipeline that
can be used for learning any motion parameterization that is
realistically enough represented in the virtual environment.
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