
Executing Underspecified Actions in Real World Based on Online Projection

Gayane Kazhoyan and Michael Beetz*
{kazhoyan, beetz}@cs.uni-bremen.de

Abstract— Plan execution on real robots in realistic envi-
ronments is underdetermined and often leads to failures. The
choice of action parameterization is crucial for task success. In
this paper, we present a mechanism for a robot that is acting
in a real-world environment to think ahead of time with fast
plan projection and, thereby, choose action parameterizations
that are predicted to lead to successful execution. For finding
causal relationships between action parameterizations and task
success, we provide the robot with means for plan introspection
and propose a systematic and hierarchical plan structure to
support that. We evaluate our approach by showing how a
PR2 robot, when equipped with the proposed system, is able
to choose action parameterizations that increase task execution
success rates and overall performance of fetch and place actions
in a real world setting.

I. INTRODUCTION

There have been remarkable demonstrations of au-
tonomous mobile manipulation robots performing everyday
activities such as folding clothes [1] or washing dishes [2].
However, the robot control programs for executing these
tasks are only applicable in the specific settings that they
are implemented for. To enable the robots escape laboratory
settings and enter unstructured environments such as human
households, they need to be able to autonomously manipulate
a big variety of objects in a multitude of task contexts, while
dealing with differences in the environments and constant
failures due to inaccuracies in sensors, actuators and the
world representation.

To generalize robot control programs towards different ob-
jects, tasks, environments and robot platforms, we introduced
the concept of entity descriptions [3]. These are abstract
underspecified symbolic descriptions of task-relevant entities
(objects, locations, actions, etc.) that are being grounded
during execution into robot’s environment through perception
and reasoning. During grounding they are augmented with
symbolic and subsymbolic data that specializes them to the
environment at hand. Here is an example action description:
(an a c t i o n (t y p e t r a n s p o r t i n g)

(o b j e c t (an o b j e c t (t y p e spoon)))
(t a r g e t (a l o c a t i o n (r i g h t - o f bowl-1))))

which gets augmented with motion parameters such as where
to look for the object, with which arm to transport, with
which trajectories, etc.:
(an a c t i o n (t y p e t r a n s p o r t i n g)

(o b j e c t (an o b j e c t (t y p e spoon)))
(t a r g e t (a l o c a t i o n (r i g h t - o f bowl-1)))
(s e a r c h - l o c a t i o n l o c a t i o n - i n - d r a w e r)
(arm r i g h t)
(g r a s p - t r a j e c t o r y p o s e - 1 p o s e - 2 . . .)
. . .)

*The authors are with the Institute for Artificial Intelligence, University
of Bremen, Germany.

There can be different groundings for the same entity
description, which result in different outcomes, including a
variety of failures that can happen. For example, for trans-
porting an object from A to B, the chosen search location,
grasp pose, robot base locations, arm to use, grasping force,
placing location etc. determine if the action will be successful
or, on the contrary, if the object will slip out, be out of reach,
or if the trajectory will result in the robot colliding with the
environment or knocking objects over (see Figure 1).

Fig. 1. Projecting a plan for the “put a spoon right of the bowl” action:
(top-left) step 1: choose placement location – pose unstable,
(top-right) step 2: choose another pose, navigate – base in collision,
(middle-left) step 3: relocate, try placing – placement pose unreachable,
(middle-right) step 4: relocate and try again – successful,
(bottom) step 5: execute chosen parameterization on the real robot.

Robot control programs written with entity descriptions
profit from a clean separation between the control flow and
decision making. The control flow specifies the ordering
of actions and failure handling behaviors. Decision making
performs the reasoning necessary to find action parameter-
izations that lead to successful task execution. Introducing
entity descriptions into programs makes them more scalable
and generalizable towards different contexts as well as more
compact and readable. However, the effort of specializing
the program to the specific execution environment is thereby
shifted from the programmer onto the robot itself.

Consider a robot setting a table in a human household
environment. To successfully perform the task, the robot
might need to answer a question such as: “If I grasp the
cup from the handle with my left arm, will I be able to
place it at the designated location without having to regrasp?”
and based on the answers choose the arm and grasp pose
to use. To make this possible, the robot requires foresight.
We present an approach and an implemented system1 that
can be used by a robot at runtime to evaluate by the means
of fast plan projection how well a plan with a particular
parameterization will perform. The parameters of actions can
be optimized by executing multiple runs of the same part of
the plan with different parameterizations in the projection
environment and choosing the best ones according to a cost
function. The cost function can be based on the number of
occurred failures, on lengths of trajectories, etc. Projection
results are easily integrated into the robot’s plan to execute
the optimized part of the plan in the real world right away.

To enable the robot to find causal relationships between
action parameterizations and task success, i.e. to infer which
parameters resulted in successful execution and which trig-
gered failures, and to be able to measure execution perfor-
mance, the robot needs to have means for introspection. To
implement that, we store plan-relevant information during
real-world and projected execution into a data structure and
provide the robot or its programmer with an interface for
querying and reasoning with this knowledge. Plans have to
be well-structured such that relevant information — action
outcomes, failures that happened, parameterizations used,
order of action execution etc. — is available and easily re-
trievable to support introspection. We propose systematic and
hierarchical plan structure, based on the entity descriptions
concept [3], and demonstrate how such a plan structure is
advantageous for introspection on the example of fetch and
place plans.

The novel contributions of this paper are, thus, as follows:
• an approach to structure real-world robot plans that

enables easy introspection, and an implementation of
fetch and place plans that have such a structure;

• means to generate different behaviors for the same
symbolically-represented mobile manipulation action
through sampling over parameter distributions;

• mechanisms to incorporate projection-based inference
of best action parameters online into the robot executive.

1Open-source code and tutorials: http://cram-system.org

We evaluate our approach by showing how a PR2 robot
is able to choose action parameterizations that increase task
execution success rates and overall performance of fetch and
place actions in a real world setting by using our system.

II. RELATED WORK

In classical AI, symbolic plan projection is applied to pre-
dict the future state of the world. Projection is considered on
the basis of axiomatized models of actions, which are atomic
entities that have preconditions and effects. For example,
an atomic grasping action is assumed to have an effect of
an object necessarily being in hand after its execution, if
certain preconditions have been met. State-space planners,
such as STRIPS [4] and more recent HTN-based planners
such as SHOP2 [5], search through state transition systems
with atomic transitions to find a sequence of actions, which is
predicted to lead to the goal state. These kind of approaches
work very well in constrained domains. However, in the
domain of mobile manipulation for realistic environments,
there is a large number of action parameters and most of
them are subsymbolic. Unfortunately, classical AI planners
cannot handle such complex domains. As a workaround, they
abstract away from motions. However, in real world, grasping
trajectories, reachability, occlusions, world dynamics etc. are
crucial for successful action execution. In our system, we
consider all of the above-mentioned and project our plans
all the way down to the low-level motion parameters.

To enable classical planners to work in continuous do-
mains, one often combines them with motion planners.
In task and motion planning, one can solve a planning
problem in a given environment by using an IK solver and
a collision detection engine [6], [7], [8]. With our projection
mechanism, the robot can solve the task of how to move
its body to accomplish a task successfully and use semantic
reasoning to infer that. Task being successful can include
not having collision or reachability failures, but we are not
limited to only motion planning. For example, we can infer
where to place an object such that it does not fall of the
supporting surface, where to place the robot such that it can
see the object with no occlusions in the way, where to direct
the robot’s gaze to ensure successful perception etc. Addi-
tionally, we can execute different runs of the same action
by varying any of its symbolic or subsymbolic parameters,
including the standard motion planning parameters such as
which grasp pose to use, but also semantic parameters, e.g.,
in which container to look for the object.

As opposed to deterministic action planners, in classical
AI prediction of the future has also been considered based on
probabilistic methods. One of the first works in that direction
is by Hanks [9], where he argues that the classical AI ap-
proach of constraining the search space of possible outcomes
by simplifying the world state and action representations
may not generate accurate enough projection results to be
practically applicable. Instead, he suggests to consider com-
prehensive world and action representations but restrict the
search space to only “important” or “significant” outcomes.
Continuing this line of work, Beetz and McDermott [10]

present a plan revision technique that improves the behavior
of agents by eliminating probable execution failures. They
apply plan transformation rules to forestall the most probable
failures based on running a small number of execution
samples in projection. The work demonstrates advanced
techniques but the application domain of the system is a
delivery robot in a 2D grid world, whereas in the real world
it is very difficult to construct a realistic probabilistic model
of robot’s actions and their effects.

In robotics, full-fledged dynamics simulators have been
used to improve execution. Rockel et al. [11] show a system
where simulation is integrated into the planner, such that the
latter can choose the appropriate action and parameters based
on simulation. This allows the robot to learn a new skill such
as balancing an object on a tray. Kunze et al. [12] present
a temporal projection system that translates naive physics
problems into parameterized simulation tasks with support
of first-order representation reasoning over the execution
results. With this system the robot can estimate parameters
of actions, e.g., for manipulating an egg. Abelha et al. [13]
use a simulator to estimate how a particular tool performs
in a given task: they wary the parameters of the action of
using a tool to estimate the best parameterization based on
a “task function”. The difference between the aforemen-
tioned works and our approach is that they concentrate on
simulations of short time span tasks, whereas our approach
projects over multiple plan steps and can infer a full set
of parameters at once, e.g., for a complete mobile fetch
and place sequence including opening / closing containers.
From a practical perspective, traditional simulation-based
approaches are computationally expensive and have a low
real-time factor, whereas our projection is very fast w.r.t.
the pace of action execution (see Section VI). Finally, using
simulation for reasoning requires to implement the data
exchange between the planner and the simulator, whereas
we can project any code segment to infer any parameters
with no extra configuration effort.

The closest related work that deals with large time span
plan projection that goes all the way down to low-level
motion parameters is by Mösenlechner et al. [14]. The system
described in [14] can be used for offline plan projection and
manual introspection. In this paper, we equipped the robot
with a plan projection mechanism such that it can optimize
its own plans autonomously by running multiple runs of pro-
jection during execution and integrating results of projection-
based reasoning back into the executive. Additionally, in
order to generate different variations of the same plan for
choosing parameters that are likely to succeed, the plans are
written with underspecified action descriptions, which allow
for sampling from the distributions of any of their symbolic
or subsymbolic parameters. Finally, we project plans that
run in the real world, which are of much higher complexity
than those only used in simulation: real-world plans contain
concurrent behaviors to monitor the environment and react
to changes therein as well as comprehensive failure handling
strategies This requires an approach to structure even such
complex plans in a way that allows easy introspection, which

we present in the next section.
To authors’ best knowledge, the projection mechanism

presented in this paper is the first mechanism, which goes
all the way down to the low-level motion parameters and
allows an autonomous robot to use it online to improve its
own mobile manipulation plans.

III. PLAN ARCHITECTURE

Let us consider an example plan for real-world applica-
tions, e.g., a fetch plan. It consists of sequentially executing
four other subplans – go, move-neck, perceive, pick-up –
which can generate failures of 5 different types that fetch
has to be able to handle. Some of the failures relevant for
fetch and place tasks are listed in Table I.

perception-object-not-found perception system returned no match-
ing object

navigation-pose-unreachable navigation trajectory is blocked
navigation-pose-in-collision navigation goal results in a collision

with the environment
navigation-goal-not-reached navigation controller finished but goal

was not reached
neck-goal-unreachable look goal tries to twist robot’s neck
manipulation-pose-unreachable no IK solution exists for pose
manipulation-goal-not-reached manipulation controller finished but

goal was not reached
manipulation-pose-in-collision manipulation trajectory generates a

collision with the environment
gripper-closed-completely gripper closed completely although an

object was expected to be grasped

TABLE I
COMMON FAILURES FROM THE FETCH AND PLACE DOMAIN

The default failure recovery strategy of fetch is: if the ob-
ject could not be fetched due to any of the possible failures,
relocate the robot’s base to a new location for reaching the
object and retry the fetch plan again. If fetch cannot handle a
failure locally, it throws an object-unfetchable failure to the
higher level of the plan hierarchy.

To enable convenient performance introspection, plans
have to be well structured, i.e. be modular, explicit and
transparent. In our fetch and place plans that is achieved
by separating the control flow from the reasoning necessary
to ground abstract action descriptions into the environment.
The knowledge required to execute the plan successfully
in a given environment is inferred through reasoning rules
for grounding entity descriptions. For example, the fetching
action has seven parameters, and each one has a reasoning
rule, which is used to generate different parameter values
(see Table II). Thus, the rules define the search space of
plan projection, from which the sampling is done.

robot base location(ReferenceLocations, Robot, Constraints, BaseLoc)
arm(Object, Robot, Arm)
grasp pose(ObjectType, GraspPose)
gripper opening(ObjectType, Distance)
reaching trajectory(ObjectType, Arm, GraspPose, ObjectPose, Traj)
grasping force(ObjectType, Force)
lifting trajectory(ObjectType, Arm, GraspPose, ReachTrajectory, Traj)

TABLE II
REASONING RULES FOR INFERRING PARAMETERS OF A FETCH ACTION

The inference of the missing parameters of an underspec-
ified action description happens during action grounding,
namely, within the body of the action grounding rule. The
implementation of action grounding is defined by the plan
designer, such that each action has a set of reasoning rules
associated with it. For example, for the fetching action,
action grounding is implemented as follows:
1 a c t i o n g r o u n d i n g (Act ion , [f e t c h , NewAction]) : -
2 p r o p e r t y (Act ion , [type , f e t c h i n g]) ,
3 p r o p e r t y (Act ion , [o b j e c t , O b j e c t]) ,
4 p r o p e r t y (Objec t , [type , Objec tType]) ,
5 p r o p e r t y (Objec t , [l o c a t i o n , Objec tLoc]) ,
6 r o b o t (Robot)
7 RobotLoc = [a , l o c a t i o n ,
8 [r e a c h a b l e - f o r , Robot] ,
9 [l o c a t i o n , Objec tLoc]] ,

10 arm (Objec t , Robot , Arm) ,
11 g r a s p p o s e (ObjectType , GraspPose) ,
12 g r i p p e r o p e n i n g (ObjectType , D i s t) ,
13 . . . ,
14 a u g m e n t e d d e s c r i p t i o n (Act ion ,
15 [[r o b o t - l o c a t i o n , RobotLoc] ,
16 [g rasp , GraspPose] ,
17 [arm , Arm] ,
18 [g r i p p e r - d i s t , D i s t] ,
19 [reach - t r a j , T r a j e c t o r y] ,
20 [g rasp - f o r c e , Force] . . .] ,
21 NewAction) .

The code snippet reads as following: for any action descrip-
tion Action (line 1), which has a property [type, fetching]
(line 2) and a property [object, Object] (line 3), such that
the Object has properties [type, ObjectType] and [location,
ObjectLoc] (lines 4-5), the location for the robot to stand
to pick up the object is defined as [a, location, [reachable-
for, Robot], [location, ObjectLoc]] (lines 7-9), the arm with
which to perform the fetching is defined through the arm rule
(line 10), the grasp pose is inferred based on the grasp pose
rule (line 11), etc. The inferred parameters are then added
to the original underspecified action description to create a
new augmented fully-specified description NewAction (lines
14-20), which is then passed to the fetch plan (line 1).

If the fetch plan encounters a failure, it asks for the next
grounding of the fetching action. This results in the reasoning
rules giving the next suitable set of action parameters, with
which the plan is retried. In this paper, we go through the
different groundings of the same action not in the real world,
which would result in, e.g., the robot physically repositioning
itself, but in projection, such that only one attempt, which
has been predicted to succeed by projecting into the future,
is executed in the real world.

IV. ONLINE PLAN PROJECTION

The projection library that we took as a base for imple-
menting our online plan projection is the one described in
[14]. It contains functionality for setting up a projection
environment and a 3D world [15], where one can execute
robot plans. It uses Bullet physics engine2 to represent the
3D state of the world and to do physics simulation, OpenGL’s
GLUT library3 to do visibility reasoning and to visualize
the world state, KDL-based4 inverse kinematics solver to

2http://bulletphysics.org/
3https://www.opengl.org/resources/libraries/glut/
4http://www.orocos.org/wiki/orocos/kdl-wiki

do reachability reasoning, and other external and internal
tools. Visualizations shown in Figure 1 are screenshots of
this 3D environment. In projection, all the motions of the
robot are not continuous, as in traditional simulators, but
discrete, so the robot goes through key poses of motions by
“teleporting”. This is the level of abstraction sufficient for our
plan projection framework for making realistic predictions
about action outcomes: physics-based methods provide fine-
grained information sufficient to perform geometric rea-
soning. Opposite of the precision requirement, projection
also should not significantly delay execution, i.e. it should
be much faster than realtime. Hence, projection does not
ensure the correctness of trajectories generated by the motion
planner to connect the inferred via points. In case the
motion controllers throw a failure, those are handled by well-
designed failure recovery strategies, specified in the plan (see
related discussion in Section VII).

To be able to use the projection library, we provided it
with two equivalent implementations of all the low-level
motions that the robot can execute – one for the real robot
and one for projection. We have plugged these low-level
motions into our plans, in order to be able to project complete
plans. To be able to switch between execution in the real
world and in projection, we made sure that the real-world
data of the robot and data produced in projection mode,
which are both generated concurrently, is published to other
software components of the robot on different channels to
avoid “sleepwalking”: the robot should not move in the real
world, when projecting actions in its “imagination”.

We use the same geometric world for robot’s world
state representation and for projection. Due to this tight
integration, it is easy to initiate projection with the current
world state of the robot at any point in time and manipulate it
for projecting into the future, then reset it back to the original
state representing the real world once projection is over. This
is important for implementing online plan projection, as the
robot should be able to start projection runs at any designated
point in the code.

To run projection online for finding plan parameterizations
that lead to successful task execution, we have implemented
the with-projected-task-tree construct. It is wrapped around
the segment of the robot control program that we would like
to project. For example, let us consider a transporting action
(see Figure 2).

transport

deliversearch fetch
with-projected-task-tree

Fig. 2. Task tree of transporting action

We would like to project its plan with different parameter-
izations of the fetching and delivering actions and choose the
one that leads to successful execution. The searching action

is not being projected, such that the projection is performed
after the object has been found: we need to know the exact
location of the object in order to calculate correct positioning
of the robot base and the manipulation trajectories.

The signature of with-projected-task-tree is as follows:
(w i t h - p r o j e c t e d - t a s k - t r e e

p a r a m e t e r s - t o - i n f e r
n u m b e r - o f - p r o j e c t i o n - r u n s
c o s t - f u n c t i o n - t o - c o m p a r e - r e s u l t s

c o d e - t o - p r o j e c t - a n d - e x e c u t e)

The transporting plan is, therefore, defined as follows:
(d e f - p l a n t r a n s p o r t (? o b j e c t ? s e a r c h - l o c a t i o n)

(pe r fo rm (an a c t i o n
(t y p e s e a r c h i n g)
(o b j e c t ? o b j e c t)
(l o c a t i o n ? s e a r c h - l o c a t i o n)))

(w i t h - p r o j e c t e d - t a s k - t r e e
(? f e t c h - r o b o t - l o c a t i o n ?arm ? grasp

? d e l i v e r - r o b o t - l o c a t i o n ? o b j - t a r g e t - l o c a t i o n)
∗ n u m b e r - o f - p r o j e c t i o n - r u n s ∗
’ p i c k - b e s t - p a r a m e t e r s - b y - d i s t a n c e

(pe r fo rm
(an a c t i o n

(t y p e f e t c h i n g)
(o b j e c t ? o b j e c t)
(r o b o t - l o c a t i o n ? f e t c h - r o b o t - l o c a t i o n)
(arm ?arm)
(g r a s p ? grasp)))

(pe r fo rm
(an a c t i o n

(t y p e d e l i v e r i n g)
(o b j e c t ? o b j e c t)
(r o b o t - l o c a t i o n ? d e l i v e r - r o b o t - l o c a t i o n)
(t a r g e t ? o b j - t a r g e t - l o c a t i o n)))))

The code segment with fetching and delivering actions will
be executed in projection *number-of-projection-runs* times
and the different executions will be compared with the pick-
best-parameters-by-distance cost function. Finally, the five
parameters (?fetch-robot-location, ?arm, ?grasp, ?deliver-
robot-location and ?obj-target-location) of the best run will
be used when executing the same code segment on the real
robot.

In order to be able to find the best run, i.e., in our
case, to implement the pick-best-parameters-by-distance cost
function, we need to have access to all the relevant param-
eters of both fetching and delivering actions. Thus, we use
performance introspection tools. As opposed to the typical
model-based approach to AI planning, where control routines
are modeled in a purely symbolic way, our system represents
the control routines in a subsymbolic way but, at the same
time, such that it would be possible to symbolically infer
consequences of executing a plan.

V. PERFORMANCE INTROSPECTION

The main data structure in which plan-relevant information
is stored during execution is the task tree [16] (see Figure 3).
The nodes of the tree correspond to tasks. A task is a repre-
sentation of the runtime state of an annotated segment of the
robot control program that is semantically meaningful in the
context of plan execution and is important for introspection
purposes. The most common task is the representation of an
action description that is performed within the plan. Every
node in the task tree contains a unique path that is used

search
path (search transport ...)

parent *
code ...
params object, search-location
children ...

transport

status running
parent ...
code code s-expressions
params object, search-location,
 placement-location
children * * *

path (transport parent-path)

status running

status succeeded

fetch
path (fetch transport ...)

parent *
code ...
params object, pick-up-action,
 robot-pick-up-location
children ...

status created

deliver
path (deliver transport ...)

parent *
code ...
params object, place-action,
 placement-location,
 robot-place-location
children * * *

Fig. 3. Diagram of the task tree data structure

for indexing and searching, a status (succeeded or failed),
pointers to the parent node and children nodes, the code
expressions of the task, the parameters with which it has
been called, information about its failures etc. The task tree
is automatically generated at runtime while tasks are being
executed. To access the task tree and to reason on it, an API
consisting of first-order logic predicates is defined. The ones
relevant for this paper are listed in Table III.

task(, Task) Binds Task to any task of the current task
tree

task(SubtreePath, Task) Binds Task to any task of subtree defined
with SubtreePath

task path(Task, Path) Gives the unique path of the task node
defined with Task and binds it to Path

task outcome(Task, Outcome) Binds the result of Task to Outcome
task failure(Task, Failure) If Task failed, binds its failure object to

Failure
task created at(Task, Time) Binds the timestamp of creation of Task

to Time
task started at(Task, Time) Binds the timestamp of when Task started

execution to Time
task ended at(Task, Time) Binds the timestamp of when Task exe-

cution ended to Time
action subtask(SubtreePath,
, Task, Action)

Binds all tasks from SubtreePath corre-
sponding to action descriptions to Task
and their action description to Action

action subtask(SubtreePath,
ActionType, Task)

Binds all tasks from SubtreePath corre-
sponding to action descriptions of type
ActionType to Task

action task previous sibling(
SubtreePath, Task,
ActionType, PrevTask)

For an action task Task in SubtreePath
finds the previous action task of type
ActionType and binds it to PrevTask

action task next sibling(
SubtreePath, Task,
ActionType, NextTask)

Binds the next action of type ActionType
of an action task Task in SubtreePath to
NextTask

TABLE III
PREDICATES FOR ACCESSING TASK TREE DATA

These predicates can be used by the robot as building
blocks for answering questions such as “What was the
last action I was trying to perform?”, “Which parameters
did I use?”, “Was the action successful?”, “Where was I
standing at that moment?”, “What were the failures?” etc.
For example, if a placing action failed, the robot could crawl

the task tree for the picking up action that preceded the
failed placing action to see if the source of failure could
have been that the object was picked up in a wrong way.
As the input arguments of plans are stored in the task tree,
the robot can access all the action parameterizations that
it used during execution and reason about them. To keep
introspection queries simple and straightforward it is crucial
for the task tree to be well structured. This is achieved
automatically if the plans are designed in a structured and
systematic way, as is, for example, the case with our fetching
and delivering plans.

Let us consider the introspection queries that compare
different parameterizations of the tranport plan that resulted
in successful execution, based on a certain cost function,
e.g., a function that compares lengths of trajectories the robot
would have to execute:

s u c c e s s f u l f e t c h a n d d e l i v e r p a r a m s (P a r e n t T a s k P a t h ,
PickNavAct ion , P i ckAc t ion ,
P laceNavAct ion , P l a c e A c t i o n) : -

a c t i o n s u b t a s k (P a r e n t T a s k P a t h , f e t c h i n g ,
Fe tchTask , F e t c h A c t i o n) ,

t a s k p a t h (Fe tchTask , F e t c h T a s k P a t h) ,
a c t i o n s u b t a s k (Fe t chTaskPa th , p i c k i n g - up ,

PickTask , P i c k A c t i o n) ,
t a s k o u t c o m e (PickTask , s u c c e e d e d) ,
a c t i o n t a s k p r e v i o u s s i b l i n g (Fe t chTaskPa th ,

PickTask ,
n a v i g a t i n g ,
PickNavTask) ,

a c t i o n s u b t a s k (Fe t chTaskPa th , n a v i g a t i n g ,
PickNavTask , P ickNavAct ion) ,

a c t i o n s u b t a s k (P a r e n t T a s k P a t h , d e l i v e r i n g ,
D e l i v e r T a s k) ,

t a s k o u t c o m e (D e l i v e r T a s k , s u c c e e d e d) ,
t a s k p a t h (D e l i v e r T a s k , D e l i v e r T a s k P a t h) ,
a c t i o n s u b t a s k (D e l i v e r T a s k P a t h , p l a c i n g ,

P laceTask , P l a c e A c t i o n) ,
t a s k o u t c o m e (P laceTask , s u c c e e d e d) ,
a c t i o n t a s k p r e v i o u s s i b l i n g (D e l i v e r T a s k P a t h ,

P laceTask ,
n a v i g a t i n g ,
P laceNavTask) ,

a c t i o n t a s k (D e l i v e r T a s k P a t h , n a v i g a t i n g ,
PlaceNavTask , P l aceNavAc t ion) .

We extract the fetching and delivering tasks from the task
tree and make sure that their outcomes are succeeded. If not,
the rule fails and we do not get any parameter bindings,
which means that the projection run was not successful.
Next, as picking up is a subaction of fetching, we extract
the picking up task from the fetching subtree and the action
description corresponding to that task. As we are applying
introspection after execution has finished, we can access all
the parameters of the picking up action, including the arm
that was used, the grasp pose, even the trajectories. Once we
have the picking up action, we find the navigating action that
last preceded it. That action contains the location description
that was used to position robot’s base. Similarly, we can
do the same for the placing action, which is a subaction
of delivering. Having the navigation locations that preceded
the picking up and placing actions, we can, for example,
approximate the distance driven during the transporting
action.

Thus, with a small number of queries we can access all
the parameterizations of the general plan that were used to
ground it into the environment at hand.

VI. EXPERIMENTAL ANALYSIS

We evaluated our approach on a breakfast table setting
scenario with a PR2 robot. The scenario included fetching 5
different objects and bringing them to the table. We executed
it 10 times without our system and 10 times with it. In
an effort to reduce the randomness factor in execution we
constrained the initial as well as goal locations of objects to
be constant in all the runs. The initial configuration we chose
was random, with the constraint that the objects should be
at least 2 cm away from each other and not be completely
out of reach of the robot. The setup is shown in Figure 4.
The robot transports the objects one by one in the following
order: milk, cup, cereal, bowl, spoon.

Fig. 4. Experimental setup – initial configuration

The first action in the transport plan is the searching
action, so the robot searches for the object of a specific type
on the surface of the counter. As it does not know where
exactly the object is and as its field of view is limited to the
sensor’s image size, it samples random poses on the surface,
navigates to a location from where the pose is visible, and
moves its head to point at it. Then it calls the perception
system [17]. If perception fails, the robot picks a different
pose on the surface and retries.

Once the object has been found, next in the plan are the
fetching and delivering actions wrapped into with-projected-
task-tree as shown in Figure 2. If projection is disabled, the
robot samples a location to stand to reach the object, drives
to the location, samples an arm and a grasp pose to use
and tries to reach. If a manipulation failure occurs, the robot
samples a different location to stand, drives there and retries.
This backtracking behavior is time consuming and leaves
an impression of incompetent behavior. Additionally, if the
object placing orientation is difficult to achieve with a certain
grasp and the robot is unlucky to sample that particular grasp,
deliver will completely fail.

If projection is enabled, the robot executes four runs of
projection. We refer to [10] for the proof of an argument that
even with a small number of randomly generated execution
scenarios it is nonetheless very likely that the probable
failures will be eliminated. Projection is used to choose
the following four parameters: the arm to grasp with, the
grasp pose and the locations of the robot base for picking
up and placing the objects. Action parameterizations in

successful projection runs are evaluated based on a heuristic
approximation of distances that the robot would have to move
and, thus, the best run is chosen. Chosen plan parameters
are then used in the real world to execute the fetching and
delivering actions.

Our perception system has about 2 cm precision for the
objects in the experimental setup, which tends to improve
when the robot gets closer to the object. Due to that, the
fetching plan reperceives the object directly before grasping.
We were faced with two alternatives: either perceive the
object once, project, then reuse generated trajectories even
if the result of reperception varies highly from the previous
result, or not reuse the trajectories but rather only predict the
arm and the grasp pose that is most likely to succeed. We
went in favor of the second, as reusing trajectories proved
to be very prone to misgrasping errors.

As the aim of projection is to find the action parame-
terization that leads to successful execution, we chose our
evaluation criteria to be the success rate of actions and the
number of failures that happen. Table IV shows statistics
from the first run of the system without using projection.

Object milk cup cereal bowl spoon Total
Runtime 411.6 207.2 142.4 170.9 229.2 1181.4
Arm used left right right right right
Grasp used front front back top top
Success no yes yes yes yes 4 of 5
Num. fail. 52 22 14 3 4 95

TABLE IV
EXPERIMENTAL RESULTS OF ONE SCENARIO RUN WITHOUT PROJECTION

In Table IV it can be seen that the delivering action of
the milk object failed and created 52 manipulation failures,
which resulted in applying failure handling strategies that
relocate robot’s base. The average number of failures that
happened in the 10 scenario runs that did not use projection,
as seen in Table V, is 55.45 failures per run.

Object milk cup cereal bowl spoon Total Per
obj.

Num. fail. 22.25 9.0 11.8 5.4 7.0 55.45 11.09
Success rate 75% 100% 100% 100% 80% 91% 91%

TABLE V
RESULTS AVERAGED OVER TEN SCENARIO RUNS WITHOUT PROJECTION

Experimental results of one scenario run with the projec-
tion system enabled are shown in Table VI. It can be seen that
the number of failures is very small. There is one collision
failure that happened when transporting the spoon object.
However, it was expected to be 0 if the parameterization
was predicted to generate successful behavior. As mentioned
before, we only infer the arm to use and the grasp pose,
which should lead to successful execution, and do not reuse
the trajectory generated in projection. As the trajectory
generation algorithm is randomized, even slight changes in
object pose can result in no valid trajectory being found.
The collision failure happened when picking up the spoon
because the perception system changed the pose estimate of
the object significantly enough for the inverse kinematics
solver to fail for the new pose with the given arm and grasp

pose. This poses an issue for the projection mechanism if
the perception results are inconsistent with respect to object
orientations, which is the case in our perception system: the
axes of the object pose can flip randomly. In that case, e.g.,
a front grasp that was supposed to be ideal for the current
world state becomes unreachable and a back grasp should
be chosen instead. This situation happened in one of the 10
runs of the scenario with projection, where the grasp for
the milk object failed although a valid parameterization was
successfully inferred.

Object milk cup cereal bowl spoon Total
Proj. time 47.9 25.0 23.3 12.4 15.5
Infer. time 31.9 5.6 4.2 3.3 3.8
Runtime 193.8 155.6 151.5 132.5 160.7 823.2
Arm used right right right right right
Grasp used front front back top top
Proj. success 2 of 4 4 of 4 4 of 4 4 of 4 4 of 4
Success yes yes yes yes yes 5 of 5
Num. failures 0 0 0 0 1 1

TABLE VI
EXPERIMENTAL RESULTS OF ONE SCENARIO RUN WITH PROJECTION

Table VII shows the average number of failures that
happen in real world when using fast plan projection.

Object milk cup cereal bowl spoon Total Per
obj.

Num. fail. 6.9 2.22 0.5 0.0 0.2 9.82 1.96
Success rate 80% 100% 100% 100% 100% 96% 96%

TABLE VII
RESULTS AVERAGED OVER TEN SCENARIO RUNS WITH PROJECTION

Based on experimental data, we conclude that our system
improves the success rate of fetch and deliver plans from
90% to 96%, which is not substantial since the robustness of
the evaluation scenario is already considerably high. How-
ever, we additionally decrease the amount of manipulation-
related failures and, therefore, times when robot physically
backtracks, from 55.45 per run to 9.82, which is more than
a 500% improvement (see Figure 5).

avg. over 10 runs
0

50

100 91 96

su
cc

es
s

ra
te

(%
)

avg. over 10 runs
0

20

40

60

80

100

55.45

9.82m
an

ip
.f

ai
lu

re
s

without projection with projection

Fig. 5. Success rate and number of manipulation failures comparison
between executions without and with projection.

In the 10 times we ran the scenario with projection-based
reasoning disabled, execution time varied between 696.4s
and 1181.4s. There is a vast number of factors that affect
the runtime of execution on a robotic system, including
the efficiency of computational processes, power of the
underlying hardware, time optimality of robot’s controllers

etc., as well as the amount of physical backtracking that
happens due to, e.g., perception failures or suboptimal action
parameterization samples. Due to such high variety, we do
not consider 10 execution runs to be enough to provide sta-
tistically meaningful empirical estimates of execution time.
Considering that one scenario run takes about 15min, a large-
scale evaluation might not be feasible. However, below we
give a short report on observed runtime to give a general
intuition of our implementation efficiency for practical rea-
sons. In the 10 runs of the scenario with projection enabled,
196 action projections have been executed. The average
projection time per one run of transporting one object was
6.2s, and 4.1s if excluding all the non-successful runs. This
can be considered sufficiently fast with respect to the pace
of action execution. The hardware used for projection was a
laptop with 8GB RAM, an 8 core i7 CPU and an NVIDIA
GeForce GT 650M graphics card. The average runtime of a
full scenario run was 877.28s without projection and 823.85s
with projection.

VII. CONCLUSION, DISCUSSION AND FUTURE WORK

In this paper we presented the fast plan projection mech-
anism, which can be used to specialize a general plan
towards the environment and task at hand by choosing action
parameterizations that are predicted to lead to successful task
execution. We showed how carefully designed plan structure
can benefit plan introspection and how to apply introspection
tools to choose parameterizations of executed actions that
were predicted to succeed in the projection environment.
We demonstrated how the results are easily integrated into
robot’s executive module such that the optimized part of the
plan can be executed right away in the real world. Finally,
we evaluated our approach by showing how a PR2 robot
is able to use the system to choose action parameterizations
that increase task execution success rates and decrease failure
rates of fetch and deliver actions in a real world setting.

In the evaluation section, we mentioned one limitation of
our approach, which is a general limitation that any system
that thinks ahead of time based on the current world state has:
if the world state representation is inaccurate, projection has
a higher chance of producing action parameterizations, which
do not lead to successful task execution when transferred
onto the real world. We address this problem by integrating
our projection results only as a suggestion for the planner,
and if suggested parameterization fails, execution continues
with its default failure handling routines, trying to find a
better parameterization without the help of projection-based
reasoning. A similar limitation is the danger of the world
state changing while projection performs its inference. In
our application scenarios, which happen in semi-controlled
environments, external influences and, therefore, unexpected
world state changes happen with a sufficiently low frequency
compared to the runtime of the projection-based inference.

One important assumption that has to be made about the
projection mechanisms is that the probability distribution

of failing in projection is similar to the real world. In our
fetch and deliver scenarios, we use a high-precision model
of the environment, which makes geometric reasoning and
basic world dynamics sufficiently realistic. However, some
failures such as an object slipping away from the gripper
or a shiny object causing misdetection, are not represented
in our system, and that is a limitation. In future, we are
planning to learn failure models to use in our projection
environment based on large-scale data collected from real
world experiments.

ACKNOWLEDGMENTS

This work was supported by DFG Collaborative Research Center
Everyday Activity Science and Engineering (EASE) (CRC #1320).

REFERENCES

[1] S. Miller, J. Van Den Berg, M. Fritz, T. Darrell, K. Goldberg, and
P. Abbeel, “A geometric approach to robotic laundry folding,” The
International Journal of Robotics Research, vol. 31, no. 2, 2012.

[2] K. Okada, T. Ogura, A. Haneda, J. Fujimoto, F. Gravot, and M. Inaba,
“Humanoid motion generation system on hrp2-jsk for daily life
environment,” in IEEE International Conference Mechatronics and
Automation, 2005.

[3] G. Kazhoyan and M. Beetz, “Programming robotic agents with action
descriptions,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[4] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: theory and
practice. Elsevier, 2004.

[5] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman, “SHOP2: An HTN planning system,” Journal of artificial
intelligence research, vol. 20, 2003.

[6] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning.” in IJCAI, 2015, pp.
1930–1936.

[7] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” The International Journal of Robotics
Research, vol. 32, no. 9-10, 2013.

[8] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 639–646.

[9] S. Hanks, “Practical temporal projection,” in AAAI, vol. 90, 1990.
[10] M. Beetz and D. McDermott, “Fast probabilistic plan debugging,”

Recent Advances in AI Planning, 1997.
[11] S. Rockel, Š. Konečnỳ, S. Stock, J. Hertzberg, F. Pecora, and J. Zhang,

“Integrating physics-based prediction with semantic plan execution
monitoring,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015.

[12] L. Kunze, M. E. Dolha, E. Guzman, and M. Beetz, “Simulation-based
temporal projection of everyday robot object manipulation,” in The
10th International Conference on Autonomous Agents and Multiagent
Systems, 2011.

[13] P. Abelha and F. Guerin, “Learning how a tool affords by simulating
3d models from the web,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017.

[14] L. Mösenlechner and M. Beetz, “Fast temporal projection using
accurate physics-based geometric reasoning,” in IEEE International
Conference on Robotics and Automation (ICRA), 2013.

[15] L. Mösenlechner and M. Beetz, “Parameterizing Actions to have
the Appropriate Effects,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2011.

[16] L. Mösenlechner, N. Demmel, and M. Beetz, “Becoming action-aware
through reasoning about logged plan execution traces,” in International
Conference on Intelligent Robots and Systems (IROS), 2010.

[17] M. Beetz, F. Balint-Benczedi, N. Blodow, D. Nyga, T. Wiedemeyer,
and Z.-C. Marton, “RoboSherlock: Unstructured Information Pro-
cessing for Robot Perception,” in IEEE International Conference on
Robotics and Automation (ICRA), 2015.

