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Abstract—The complexity and dynamics in groupage traffic
requires flexible, efficient, and adaptive planning and controlling
processes. While the general problem refers to the Vehicle
Routing Problem (VRP), additional requirements have to be
fulfilled in application. Individual properties and priorities of
orders, a heterogeneous fleet of vehicles, dynamically incoming
orders, unexpected events etc. require a proactive and reactive
system behavior. To enable automated dispatching processes, we
have implemented a multiagent system where the decision making
is shifted from a central system to autonomous, interacting,
intelligent agents. To evaluate the approach we used multiagent-
based simulation and modeled several scenarios on real world
infrastructures with orders provided by our industrial partner.
The results reveal that agent-based dispatching meets the in-
creasing requirements in groupage traffic while supporting the
combination of pickup and delivery tours and accommodating
request priorities, time-windows, as well as capacity constraints.

I. INTRODUCTION

In recent years, the complexity and dynamics in logistic pro-
cesses have been increased due to shorter product life cycles,
the rising number of product variants, as well as the growing
number of transnational links and dependencies within the
production processes between companies. As a result, the
requirements of transport processes are increasing through
shorter transit times, the individual qualities of shipments,
and higher amounts of small sized orders. In addition, the
rising traffic density on transport infrastructures and growing
demands wrt. sustainable transportation encourage logistic
companies to improve the efficiency of their processes.

In the last decades, numerous efficient heuristics and meta-
heuristics have been developed for the transportation domain
like ant systems, tabu-search, simulated annealing and genetic
algorithms, just to name a few, e.g., [1]–[6]. However, central
planning and control in dynamic and complex logistic pro-
cesses is limited due to the requirements of flexibility and
adaptability to changing environmental influences.

In autonomous logistic processes, the decision making
is shifted from central, hierarchical planning and control-
ling systems to decentralized, heterarchical systems [7]. Au-
tonomously acting software agents represent logistic objects,
e.g., shipments, trucks, and containers. They have the ability to
interact with other agents by the use of negotiation and com-
munication mechanisms. By delegating planning and control
processes to decentralized entities, e.g., agents that represent
vehicles, the overall problem is split into smaller problem
instances that can be solved optimally.

We present an autonomous dispatching system that accom-
modates the requirements in groupage traffic. The paper is
structured as follows. Section II gives insights to the logistic
problem that was extracted in a foregoing process with a
forwarding agency and specifies the problem formally. In
Section III, we present the implemented multiagent system
including the interaction protocols as well as the decision
making processes of the agents. Thereby, we look at the
effects of increasing the complexity of the problem by adding
constraints that have to be considered in groupage traffic.
In Section IV we present the multiagent simulation system
PlaSMA [8].

For evaluation, we use PlaSMA in combination with cus-
tomer orders based on real-world data provided by our in-
dustrial partner. The experimental setup and the results are
provided in Section V. Finally, we conclude and provide future
research directions.

II. GROUPAGE TRAFFIC

In groupage traffic, several orders to different destinations
with less-than-truckload (LTL) shipments are served by the
same truck to decrease total cost. In pickup tours, trucks
transport loads from their origin to a local depot where
the shipments are consolidated to build economical loads.
Through LTL networks the load is transported to a depot
in the destination area where each good is delivered to its
final destination. Consequently, the general problem of a
participating forwarding agency refers to the Vehicle Routing
Problem (VRP) [9] with Simultaneous Delivery and Pickup
(VRPSDP) [10].

In general, the VRP is concerned with determining tours
with minimum costs for a fleet of vehicles to satisfy customer
requests at different destinations while the start and end point
of the tour is the depot.

Definition 1 (Vehicle Routing Problem): Let V denote a set
of vehicles and S a set of service requests. Given the costs
cvi,j for a vehicle v ∈ V for traveling from i ∈ S to j ∈ S and
choosing indicator variables

xvi,j =

{
1, if (i, j) is part of the vehicle v’s tour
0, otherwise (1)

the general objective function of VRP is

min
∑
v∈V

∑
j∈S

∑
i∈S

cvi,j · xvi,j (2)



with subject to ∑
v∈V

∑
i∈S

xvi,j = 1 for all j ∈ S (3)

∑
v∈V

∑
j∈S

xvi,j = 1 for all i ∈ S (4)

∑
v∈V

xvi,j = {0, 1} for all i, j ∈ S (5)

∑
v∈V

∑
j∈S

∑
i∈S

xvi,j ≤ |Y | − 1 for all Y ⊆ S. (6)

Moreover, time window constraints as well as time con-
sumption at the warehouse/customer have to be considered. If
ls denotes the latest delivery time, ts the time consumption
of the boarding or deboarding process, rs the release time at
s ∈ S and timevi,j vehicle v’s time for driving from i to j

xvi,j = 1⇒ li ≥ ri + ti + timei,j (7)

has to be fulfilled. In addition, we have to ensure that the
maximum capacity of a vehicle is not exceeded at any time.
Let CCv

s denote the current capacity of vehicle v at stop s ∈ S
and MCv the maximum capacity of vehicle v, we require

CCv
s ≤MCv for all s ∈ S, v ∈ V. (8)

In VRPs containing exclusively pickup or delivery orders the
current capacity is decreasing or increasing monotonously. The
combination of pickup and delivery tours leads to an increasing
complexity due to fluctuating capacities. Consequently, the
sequence of a tour has a significant impact to the truck’s load.

The process planning complexity is even increased by
individual qualities of shipments like weight, volume, priority,
and value. Handling the complexity is aggregated by the high
degree of dynamics that result also from unexpected events,
such as an exact amount and properties of incoming orders are
not known in advance. Actual capacities are only known while
serving tasks. To react to changing conditions and incoming
orders, it is essential to adapt tours and timetables in respect
to actual capacities.

In general, it is not possible to transport all orders that are
available on a certain day. However, the quality of service
is an important factor to fulfill the economic objectives. The
transportation of so-called premium services must be guar-
anteed with respect to their time windows while considering
other hard constraints, e.g., the capacity of vehicles. Premium
services have to be delivered on date of receipt until 8am,
10am, 12am or not later than 5pm. Within a logistic transport
network the participating forwarding agencies have to pay
high amounts of penalty if they are not fulfilling the agreed
commitments.

Definition 2 (Premium Stop): Pickup or delivery stops be-
ing premium services are defined by the boolean function

pi =

{
true, if i is a premium stop
false, otherwise. (9)

On the other hand, conventional orders can be hold up to
two more days. As a result, the objective function of the VRP
includes not only to find a solution with minimum costs, but
tours that maximizes the number of premium services with
highest priority:

max
∑
i∈S

∑
j∈S

pi · xi,j (10)

and conventional orders with second highest priority:

max
∑
i∈S

∑
j∈S

¬pi · xi,j . (11)

In order to increase the service quality through short transit
times and reliable deliveries it is mandatory to handle the high
degree of dynamics and complexity of logistic processes with
adaptive, reactive system behavior.

III. A MULITAGENT SYSTEM FOR GROUPAGE TRAFFIC

The advantages of applying multiagent systems are high
flexibility, adaptability, scalability, and robustness of decentral-
ized systems through problem decomposition and proactive,
reactive, and adaptive behavior of intelligent agents [11].
Therefore, agent systems are especially applied in open, unpre-
dictable, dynamic, and complex environments. There are many
examples of multiagent systems within logistic processes for
resource allocation, scheduling, optimization, and controlling.
Agent-based commercial systems are used within the planning
and control processes of containerized fright [12], [13]. Team
formation and interaction protocols have been designed for
efficient resource allocation [14] as well as for concurrent
negotiations between logistic service providers and service
consumers [15]. Agent-based systems have optimized planning
and control processes within dynamic environments [16], [17].
Other ranges of application have been provided for industrial
logistic processes [18]. A comprehensive survey in research on
autonomous logistic processes is provided by [19] and [14].

A. Agent Interaction and Execution

In this investigation, we extended the agent system de-
scribed in [20]. In our setting agents represent trucks and
orders. Whenever a new request has to be acted upon, an
agent is created that represents the given order. The goal of
the agent is to find a proper transport service provider for
carrying the shipment from the depot to the destination or
from its origin to the depot while satisfying to the given time
window constraints.

At first, the shipment agent send a cluster request to a cluster
agent which collects all requests until the operational processes
of the trucks start in the morning. The rough planning is
done by applying a K-Means clustering [21]. The goal is to
assign each received shipment to one of k available trucks.
The clustering considers the coordinates of the pickup or
delivery location of the shipment. Therefore, the algorithm
consolidates shipments that have to be transported from or to
nearby districts in the same cluster. In order to accelerate the
clustering, other constraints are neglected, but considered in
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n

Fig. 1. The interaction protocol for rough planning.

the detailed planning processes for tour determination of each
truck (see Section III-B).

The implemented interaction protocol is shown in Figure 1.
If n denotes the number of shipments, the communication
effort of the protocol is O(n2). It is a stable interaction
protocol that prevents manipulation of the outcome by a
participant. Moreover, it ensures that confidential data of any
shipment is only sent to agents with appropriate access rights,
e. g., truck agents receive only information about assigned
shipments.

To reduce the computational effort after the initial al-
locations are computed, shipments at the same pickup or
delivery location constitute an order. The orders’ properties
are defined by the shipments and an order contains either
pickup or delivery requests. The truck agents start a detailed
planning process (see Section III-B) with respect to their
individual properties, capacities, time window, and premium
service constraints. Agents representing dynamically incoming
orders during operation start directly a contract-net protocol
[22] negotiation with the truck agents without sending cluster
requests. Thus, each shipment sends a call for proposal
message to available trucks. Trucks compute proposals by
determining their additional costs for serving the order. In
transport logistics the costs of an order are commonly based on
the additional distance that has to be driven by the vehicle. To
compute the distance, the agent has to start a decision making
process described in Section III-B. In order to schedule new
orders also while transporting other shipments, the truck has
to consider its current capacity constraints and position. For
example, picked up shipments reduce the capacities and the
position of the vehicle affects the determination of shortest
ways and tours. Consequently, we link the planning and
decision making processes of the agents directly with their
execution behaviors and consider all relevant observed changes
of the environment as well as the internal state of the agent
within the decision making and tour planning.

The computed costs are sent back to the shipment agent
which chooses the transport provider with least costs. If it is
not possible to satisfy the shipments’ requirements, a refuse
message is send by the truck agent. To transport a premium
service instead of conventional orders or another premium
service by driving a shorter distance, already accepted orders
may not be included in the new plan. If these orders have not

been boarded the truck agent sends also refuse messages to the
agents that act on behalf of the corresponding orders. After-
wards, the order agent negotiates with other transport service
providers again. Potentially, this results in a series of com-
putation and communication intensive negotiations between
agents to achieve small improvements. To weaken this effect
(especially if several shipments are processed consecutively
within a short time window and the global allocation changes
significantly) the agent waits for a certain period of time before
it starts the negotiation procedure.

New plans may effect the executing actions of the trucks.
Therefore, the truck agent checks during driving, if the next
stop has changed and if necessary he adapts the tour. In
real processes as well as in the simulation the handling
processes (boarding and deboarding of shipments) must not
be interrupted. This requirement is satisfied by not adopting
plans that manipulates the running handling processes.

B. Agent Decision Making

Within the negotiation, truck agents have to compute pro-
posals and decide which service request has to be satisfied.
These costs are based on the additional distance that has to be
driven by the vehicle. To compute the distance, the agents must
solve a generalization of the NP-Hard Traveling Salesman
Problem (TSP) [23] that is a single vehicle variant of the VRP
defined in Section II.

To implement an efficient decision making process and
consider pickup and deliveries simultaneously, we adapted the
optimal depth-first branch-and-bound TSP solver described in
[20] that solves TSPs containing only pickup orders. Moreover,
we ensure that the algorithm terminates when a fixed number
of expansions is exceeded. As a result, we have an anytime
algorithm that finds better solutions the more time it keeps
running. It returns a valid solution if it is interrupted. If no
further improvement is possible, the optimal solution is found.

The pseudo-code implementation is shown in Algorithm 1.
At the beginning of the search, the procedure is invoked
with the start node and with the upper bound U set to some
reasonable estimate (it could have been obtained using some
heuristics; the lower it is, the more can be pruned of the
search tree, but in case no upper bound is known, it is safe
to set it to a maximum value). The tour and the number of
expansions are maintained globally. Another global variable
best keeps track of the current best solution path. If a tour
with lower costs is found this tour is saved as the best found
result. The cost function has to consider also the priorities
of premium services and conventional orders. It is obvious
that an increasing depth leads to a rising number of included
orders. If all orders are included (d = n−1), the current costs
are saved as upper bound and further pruning rules can be
applied to accelerate the search. If the algorithm terminates
before the maximum number of expansions is reached, the
optimal solution with the maximum number of shipments and
the shortest path is returned.



Constraint-TSP-DFBnB(n, depot,X)
Initialize upper bound U
maxExp← X
exp← tour← best← ∅
call DFS(n, depot, 0, U)
return bestPath

DFS(n, u, g, U)
d← depth(u)
tourd ← u
if (cost(best) < cost(tour))

best← tour
if (d = n− 1)

if (g + cu,depot < U )
best← tour
U ← g + cu,depot

else
{v0, . . . , vn} ← nextcities(u)
for each j in {1, . . . , n}

exp++
if (Constraint(vj) ∧ maxExp ≥ exp)

if (g + h(vj) < U )
call DFS(n, vj , g + cu,vj , U)

Algorithm 1: DFBnB Algorithm for the Constraint TSP.

At each node the visited cities, the current time, premium
service information, and the current capacity of the tour are
saved as bit-vector. All bit-vector operations (setting, clearing
of bits, check for subsumption) run in O(1). This enables
constraint checks in O(1) because each check is done by bit-
vector comparison, e.g., in pure pickup or delivery problems
checking the capacity is done by comparing the sum of all
transported shipments to the maximum capacity of the truck.
This holds not for the mixture of both problems. Capacities are
varying. Delivered shipments release capacities for picking up
more freight. Therefore, two more variables for the capacity of
all deliveries and the maximum capacity have to be maintained
at each node.

Theorem 1: Checking the capacity constraints of the truck
with simultaneous pickup and deliveries is done in constant
time and space.

Proof: Saving at each node the maximum capacity χT

that the truck has reached on the tour, the current capacity χC

of the truck, and let ω denote the weight of the order at stop
s, on each node χT is updated with

χT =

{
max (χC , χT + ω), if s is a delivery stop
max (χC , χT ), otherwise. (12)

If τ denote the maximum capacity of the truck, the capacity
constraints for adding a new order are satisfied by checking

τ ≥ χT . (13)

Consequently, all operations can be implemented by a single
bit-vector comparison. No backtracking is necessary to avoid

an overcharge of trucks on predecessor nodes by adding new
delivery stops to the tour.

Table I gives an example which enables constraint checks
in constant time and space. In this example, we assume that
the maximum capacity of the truck is 4 and the weight of
each shipment is 1. To avoid backtracking, we save χC and
χT at each node. If the truck picks up a shipment, the current
capacity is increasing. Adding a delivery stop in the plan does
not effect the current capacity because loading the shipment
was not considered up to this point. Nevertheless the truck
has to load the shipment at the depot before starting the tour.
Therefore, χT is increasing. Consequently, it is not possible
to add a delivery stop in depth 5 although other pickup stops
are included afterwards.

Serving pickup and deliveries simultaneously does not effect
the optimality of the decision making process, if the algorithm
is not interrupted by exceeding a maximum number of expan-
sions.

Theorem 2: Setting the number of allowed expansions to
∞ the solver is optimal for admissible lower bounds, the
above pruning rules, and the objective functions specified in
Equation 10, 11, and 2.

Proof: If no pruning was taking place, every possible
solution would be generated, so that the optimal solution
would eventually be found. Pruning rules that satisfy capacity
and time window constraints, cut off infeasible branches from
the search tree so that the solution will be optimal. In addition,
the search tree is only pruned by the upper bound U, if the
maximum depth is reached and all cities are still visited (this
satisfies Equation 10 and 11). If the tree is pruned by finding
a better lower bound, as for admissible weight functions
exploring the subtree cannot lead to better solutions than the
one stored with U.

IV. AGENT-BASED SIMULATION

Changing logistic processes often requires hardware invest-
ments, negotiations and communication with involved persons,
and implies risks for the company, e.g., the benefit could be
lower than expected. Applying multiagent-based simulation
(MABS) to procure well-founded assessments of the impact
of potential changes is an accurate cost and time reducing
method before the deployment of multiagent systems.

PlaSMA [8] (see: http://plasma.informatik.uni-bremen.de/)
is an agent-based event driven simulation platform that has

TABLE I
AN EXAMPLE FOR CHECKING THE CAPACITY CONSTRAINTS OF A TRUCK

IN THE TREE STRUCTURE.

depth χC χT is pickup stop plan is valid (Equation 13)
0 0 0 - -
1 1 1 yes true
2 2 2 yes true
3 2 3 no true
4 2 4 no true
5 2 5 no false
5 3 4 yes true
6 4 4 yes true



Fig. 2. The PlaSMA simulation platform.

been designed for modeling, simulation, evaluation, and op-
timization of planning and control processes in logistics. It
extends the FIPA-compliant Java Agent DEvelopment Frame-
work (JADE) [24] for agent communication and coordination
and provides discrete time simulation that ensures correct syn-
chronization while satisfying time model adequacy, causality,
and reproducibility.

In order to simulate industrial and transport processes
reliably, it enables the simulation of real-world infrastructures
and supports their import from OpenStreetMap. The transport
infrastructure within the simulation environment is modeled
as directed graph. Nodes represent traffic junctions or logistic
sources and sinks, while edges represent different types of
ways, e.g., roads, motorways, trails, and waterways. They have
additional parameters that determine the maximum allowed
velocity and the distance of an edge. Therefore the simulation
system enables fine-grained modeling of road sections whose
maximum allowed velocity is changing.

Particularly, on real infrastructures shortest-path searches
are cost-intensive operations. Therefore, we developed a effi-
cient implementation of Dijkstra’s shortest-path algorithm [25]
based on radix-heaps [26] for computing a distance matrix as
input for TSP solver.

Moreover, PlaSMA is capable of linking process data of
cooperating companies and partners, e.g., customer orders or
service requests, directly into the simulation platform to induce
plausible, pertinent, and precise results that permit conclusions
and analyses of real logistic processes with low costs. Batch-
runs, process visualization, as well as automated measure-
ments of individually defined performance indicators allow
fast and significant process evaluations.

V. EVALUATION

To verify system performance and show its applicability,
we simulated real-world scenarios based on orders provided
by our industrial partner as well as on transport infrastructures
imported from OpenStreetMap databases. Next, we focus on
the performance of the decision making process. While the
performance of the optimal solver is provided by [20], we
look at the impact of interrupting the solver if a fixed number
of expansions is exceeded.

A. Experimental Setup

In our investigation we integrated the road network of
Northern Germany. The whole modeled transport infrastruc-
ture contains 156, 722 nodes and 365, 609 edges. It includes
all relevant highways, motorways, and inner city roads of the
OpenStreetMap database. In order to prevent deadlocks caused
by inaccurate data, nodes that cannot be reached from or to
the depot of the transport service provider are removed.

The dispatched orders are provided by our industrial partner.
We started a reverse geocoding process to map the address
information to coordinates and determined the nearest neigh-
bor node in the map, to link the addresses with graph nodes.
The real weight, premium service constraints, latest delivery
times, as well as the incoming dates of deliveries are attached
with the order. Since exact incoming dates with timestamps
of pickup orders are not available, only the date is considered
during evaluation. Thus, we modeled the dynamics by setting
the incoming date of every 10th pickup order to a random
time of the day during operation. In real transport processes,
vehicles with interchangeable units are sent to stops that have
to be visited on a daily basis by fixed schedules. Consequently,
we did not consider these orders. In each experiment 7, 575
orders are distributed within a whole week.

We simulated a heterogeneous fleet of vehicles with varying
capacities of 7.5 tons, 12.5 tons as well as trucks with swap
bodies that have a maximum capacity of 32 tons. In addition,
we assume shift-work between 5 am and 19 pm and set
the maximum velocity of trucks to 120 km/h. Note that the
maximum possible velocity is reduced by the corresponding
speed limit of the road sectors. The handling and waiting
periods at incoming goods departments is set to 10 minutes
for each order. Table II depicts the vehicles and its capacities
modeled within the experiments. Therefore, we investigate the
strategy to raise the number of small-sized trucks, to increase
the transport volume.

The reproducibility of results with the same input data is
guaranteed by the simulation platform (see Section IV).

B. Results

Figure 3 depicts the amount of transported delivery and
pickup orders as well as the number of service requests that
cannot be satisfied.

It shows that the agent system is capable for its application
in groupage traffic. Dynamically incoming orders, the hetero-
geneous fleet, as well as individual properties of shipments
are considered within the dispatching processes. Pickup and
delivery orders are combined in valid tours without exceeding
the maximum capacity of any truck.

TABLE II
THE AMOUNT AND CAPACITIES OF MODELED VEHICLES WITHIN THE

EXPERIMENTS.

# Trucks 7.5 tons 12.5 tons 32 tons
80 30 20 30
60 10 20 30
40 0 10 30
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It is obvious, that the number of transported shipments is
increasing with the amount of available trucks. Nevertheless,
the significant reduction of available trucks has only small
effects on the efficiency of the whole system. This is caused
by our strategy to remove small-sized trucks at first.

Moreover, the results shown in Figure 4 pinpoint that the
agent system considers all premium services with higher
priorities than conventional orders. While the percentage of
transported orders is reduced by nearly 10% if the number of
available trucks is decreased, the amount of not transported
premium services remains constant.

If all trucks have left the depot, new incoming delivery
requests cannot be accommodated on this day (assuming that
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Fig. 5. Expansions of each TSP within the agent’s decision making process
in correlation with transported shipments in scenarios with 40, 60, and 80
trucks.

each truck is driving a single tour per day). Consequently, even
if enough trucks are available about 259 service requests are
not processed in the whole week.

By delegating the decision making process to decentralized
entities the overall VRP is split into smaller TSPs that can be
solved efficiently by each agent with Algorithm 1. Figure 5
shows the maximum number of expansions of Algorithm 1
and the impact to successfully transported shipments. The
TSP solver already finds adequate solutions after expanding
300.000 nodes. It should be noted, that expanding more nodes
in each TSP is negligible for the solution quality of the overall
VRP. As a result, the applied pruning rules reduce the problem
space significantly, if we evaluate the solver with real world
orders.

All simulation runs are computed within a few hours on
a laptop computer (equipped with an Intel Quad-Core i7
processor). Consequently, it satisfies the runtime requirements
for application in real planning and control processes.

VI. CONCLUSION AND OUTLOOK

To face the high complexity in groupage traffic as well as
the dynamics of consecutively incoming orders, we provided
a reactive and proactive multiagent system for the planning
and control processes of a forwarding agency. Agents link the
planning and scheduling processes directly with the actions
of represented vehicles and shipments. Therefore, internal
changes as well as changes of the environment can be con-
sidered during runtime and induce a reactive behavior. We
focused on the planning and decision making processes of
the agents and developed an efficient TSP solver that is
crucial for negotiation with service customer agents. The
TSP solver is designed to meet the special requirements in
groupage traffic. It supports the combination of pickup and
delivery tours without exceeding the maximum capacity of the
vehicles and considers time windows, handling times as well
as request priorities. Applying bitvector operations enables
constraint checks in O(1) time and space. Moreover, the solver
maximizes the number of transported premium services as
well as the processing amount of conventional orders. To
evaluate the dispatching system, we modeled several scenarios



within the PlaSMA simulation platform with real world orders
provided by our industrial partner.

The results reveal that applying the agent system is adequate
in dynamic scenarios with daily varying amounts of orders,
unknown requests, and heterogeneous properties. Moreover, it
showed that the anytime behavior of the TSP algorithm accel-
erates the search without significant impact to the solutions’
quality. Both carriers and dispatchers profit directly from tour
and routing proposals.

In addition, the integration of historical and anticipated
orders into the simulation platform can be used by for-
warding agencies for the evaluation of different transport
strategies, e.g., the effects of engaging more trucks can be
investigated.

Further research will focus on the integration of traffic
simulation within our simulation framework as well as on
modeling and simulation of unexpected events like delays
on incoming goods departments. This enables evaluations in
environments with even higher dynamics.

To increase the efficiency of forwarding agencies and reduce
the amount of orders that have to be transported by cost
intensive external operators, also profit sharing methods for
freight carriers may be considered (e.g., [27]).

Future investigations will include as well considering differ-
ent optimization criteria like the reduction of CO2 emissions.
Longer tours can be CO2-efficient given that a smaller load
requires less fuel consumption.
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