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Abstract— In this paper, we discuss how networked robot
architectures can facilitate the development, deployment, man-
agement and adaptation of distributed robotic applications. Our
aim is to modularize applications by factoring out environment-
, task-, domain-, and robot-specific knowledge components and
representing them explicitly in a formal knowledge base that
is shared between the robots and service applications. Robot
control decisions can then be formulated in terms of inference
tasks that are evaluated based on this knowledge during task
execution. The explicit and modular knowledge representation
allows human operators with different areas of expertise to
adapt the respective parts of the knowledge independently. We
implemented this concept by integrating knowledge representa-
tion methods of the ROBOEARTH project with the distributed
task execution capabilities of the Ubiquitous Network Robot
Platform.

I. INTRODUCTION

With “Cloud Computing” becoming more and more pop-
ular, there has been increasing interest in applying simi-
lar concepts to robotics: Performing complex computations
or storing large-scale knowledge bases can often be done
more efficiently on dedicated server hardware, requiring
less computing power, less memory and therefore also less
battery capacity on the robot itself. Applications of these
concepts to robotics are commonly referred to as “cloud
robotics” [1]. There have been several efforts to move parts
of the robot control program into the cloud, each focusing
on different aspects like storing and sharing knowledge,
off-loading complex computations, coordinating distributed
robot teams, or remotely operating partly autonomous robots.

Kamei et al. [2] introduce the Ubiquitous Networked
Robot Platform (UNR-PF) as a framework for distributed
task coordination and control. The UNR-PF abstracts away
from the robot’s concrete hardware and offers a generic
interface that can be used by application developers to
create hardware-independent robotic services. A developer
can request components that fulfill a given specification,
and the UNR-PF will then assign suitable devices that can
be controlled remotely. The UNR-PF supports a hierarchy
of local and global platforms that allow to remotely start,
supervise and coordinate tasks that are jointly performed
by a set of components on different physical robots. Taken
together, the hardware abstraction and the networked control
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Fig. 1. The modular structure of the proposed system allows different
groups of operators to focus on their area of expertise: Robot program-
mers implement the basic functionality, application developers combine
these modules to provide useful services, while shop operators provide
environment-specific information needed to execute the applications.

architecture facilitate the creation of re-usable distributed
applications that can run on very different robot platforms.

While such applications are hardware-independent and
reusable, they do not easily adapt to novel situations. Since
the control programs are compiled code, all control decisions,
the complete task structure and all interactions with objects
and the environment need to be included into the program.
As a result, all required information needs to be known
and all decisions need to be taken at compilation time. It
will be difficult to foresee all circumstances the robot will
face during operation, so the control program has to actively
tackle this open-world challenge and be designed in a way
that additional knowledge can be acquired and used for
accomplishing the robot’s tasks.

In this paper, we investigate how a knowledge-enabled and
cloud-based approach can help to make the robot control
program more flexible and adaptable (Figure 1). We use
ROBOEARTH, a cloud-based knowledge base designed for
the exchange of knowledge between robots, to encode the
task structure, environment information, object descriptions
and general common-sense knowledge as a formal knowl-
edge base. Using this knowledge base, the system can
flexibly infer control decisions based on the most up-to-
date information the robot has at that time. For example, the
decision where to search for objects in an environment is
formulated as query to the knowledge base that is evaluated
based on the information available at the time the information
is needed. Instead of programming in detail what to do in
which situation, the application developer specifies which in-
formation is required in terms of a query, and the knowledge
base will then use all the knowledge and inference methods



that are available to compute answers to it.
Other than a compiled program, knowledge is composable

and can be represented in a modular fashion. This facilitates
the independent update of different parts of the knowledge
base (like task specifications and environment maps) by
experts in the respective fields (Figure 1). Since the central
knowledge base is in the Cloud, these experts can remotely
edit its content and deploy the updates to a large number
of robots in different locations. In an open world, robots
will eventually face the problem of missing information that
would be required to accomplish a task. Using the cloud-
based system, they can ask human operators to provide the
missing pieces of information.

In our experiments, we applied the developed methods to
robots that interact with customers in a convenience store
(Figure 6) to answer questions about product locations or
ingredients and to recommend alternatives if a product is not
available. This scenario illustrates how actual robot systems
can benefit from the aspects described above. Efficiently
managing a large number of such robots in different loca-
tions requires generic robot-independent applications (e.g.
for product recommendation) that, however, need to be
parameterized with the spatial arrangement of products in
the market and knowledge about the product types and their
properties (e.g. their prices and ingredients). Parts of the
required knowledge can be shared among robots of the same
type (motions and hardware interaction), that operate at one
location (environment map) or in stores of the same brand
(product catalog and properties), respectively.

The main contributions of this paper are (1) the
knowledge-enabled and cloud-based distributed robot control
framework, (2) techniques for integrating human operators
with different expertise as knowledge sources, and (3) the
application of the methods to robots interacting with cus-
tomers in a convenience store. In the following sections, we
start with an overview of related work on cloud robotics,
and then present the architecture of our system and its main
components. We then describe our experimental setup and
the capabilities exhibited by the knowledge-enabled system
and finish with a discussion of our approach.

II. RELATED WORK

Multiple systems have been proposed that address different
aspects of the Cloud Robotics vision: Some of them focus
on remote sensor data processing [3] or on implementing
computationally expensive algorithms in the cloud [4]. The
“PR2 Remote Lab” investigates robot teleoperation and
remote control via the Internet using a Web browser [5].
The Ubiquitous Network Robot Platform (UNR-PF) deals
with distributed task execution and supervision [6] on mul-
tiple robots and sensorized devices at different locations.
The ROBOEARTH project develops a web-based knowledge
base through which robots can share information they have
obtained [7]. Other attempts try to make existing web-
and cloud-based resources available to robots. While robot-
specific applications will first need to be established and
filled with content, many applications originally developed

Fig. 2. Structure of the proposed system. Other than common task-specific
robot applications, the generic execution engine can be parameterized with
knowledge-based task descriptions. Control decisions are defined in terms
of queries to the knowledge base that are answered based on the robot’s
background knowledge and belief state. A human operator can be contacted
to provide missing information.

for humans do already provide information that can be
useful for robots [8]. Examples are cloud-based object
recognition systems like Google Goggles [9], on-line image
and object model repositories like the 3D Warehouse [10],
and product information from shopping websites as well
as task instructions and cooking recipes [11]. A recent
survey by Goldberg gives a good overview of cloud robotics
approaches [12]. So far, all of these systems have focused
on single aspects like distributed task execution, cloud-based
information exchange, and shared-autonomy tele-operation.
In this paper, we show how their combination can enable
novel functionality.

III. SYSTEM OVERVIEW

The system presented in this paper combines the dis-
tributed task execution methods of the UNR-PF with the
knowledge-sharing techniques of ROBOEARTH. Figure 2
gives an overview of its main components. The UNR-PF
is used as communication middle-ware and abstraction layer
between the hardware components and robot applications.
A special execution engine can interpret task specification
shared via ROBOEARTH and execute them on the platform,
acting as a generic robot application that can be parameter-
ized with different task descriptions. The execution interacts
with the system’s knowledge base to resolve abstract speci-
fications in the task descriptions to concrete parameters that
are needed for executing the actions. A graphical interface
for a human operator facilitates the inspection, modification
and creation of knowledge.

A. The Ubiquitous Network Robot Platform (UNR-PF)

The UNR-PF acts as an interface layer between hardware-
and software components on the one side and robotic service
applications on the other side. The components implement
well-defined interfaces (e.g. for a PersonIdentification or a
Reaction) and offer this functionality to the platform via the
component API. Applications compose useful functionality
out of these basic building blocks. Since all dependencies



are defined in terms of the abstract interfaces, robot appli-
cations are agnostic of how the functionality is provided or
which components provide it. The MovingPlatform interface,
for example, could be implemented using a wheeled or a
legged platform, both providing the functionality of moving
the robot. Before executing a command, an application
requests components that have the required properties from
the platform and, if suitable ones are available, interacts
with them via the service API. The UNR-PF draws upon
different standardized platforms and representations: The
component interface of the UNR-PF is based on the RoIS
standard [13]. Spatial information is encoded following the
Robotic Localization Service (RLS) standard [14] and the
CityGML language [15]. The UNR-PF is publicly available
as open-source software1.

B. The ROBOEARTH knowledge base
ROBOEARTH aims at building a “World Wide Web for

Robots”, a web-based Wikipedia-like platform for sharing
knowledge about actions, objects, and environments between
robots (Figure 3). All pieces of information stored in the
knowledge base are annotated with their requirements in
terms of robot capabilities which are checked when down-
loading them. Using these requirement specifications, a robot
can determine whether it will be able to use this information
as it is or if additional information is needed. The client-side
reasoning system is built using the KNOWROB knowledge
processing system [16] which is used for storing knowledge,
drawing inferences, and offering a query interface to the
execution engine.

Fig. 3. Overview of the ROBOEARTH system for exchanging information
about robot actions, object models and environment maps between robots.
The KNOWROB knowledge base is an important part of the system.

The knowledge stored in the ROBOEARTH system is
described in a formal language [17] that is implemented as an
extension of the Web Ontology Language (OWL, [18]). The
ROBOEARTH ontology defines the concepts and properties
that are available for representing knowledge. It is derived
from the KNOWROB ontology [19] which, by itself, is partly
derived from the OpenCyc ontology [20] that became a
quasi-standard in robot knowledge representation. By re-
using these existing ontologies, we ensure compatibility
with parallel developments in this research area and can
incorporate results of other projects more easily.

1http://www.irc.atr.jp/std/UNR-Platform.html

C. Knowledge-enabled task execution

Task descriptions in the ROBOEARTH language are not
directly executable but, similar to cooking recipes, describe
which actions need to be performed in which order and with
which arguments. In order to execute them on the robot, they
need to be interpreted by an execution engine that translates
them into calls to the respective robot components and that
supervises how the task is performed. Action recipes are
composed of action classes, for example LocalizingAPerson,
which are linked to the corresponding components in the
UNR-PF. Before execution, the recipes are loaded and the
system checks if all required components are available, then
generates a state machine from the task description in the
recipe, and starts the execution by calling the respective
UNR-PF components as specified in the recipe. During this
project, we have represented all components that have so
far been implemented in the UNR-PF in the ROBOEARTH
language as an extension of the action ontology. The UNR-
PF is more focused on human-robot interaction, which had
not been modeled in sufficient detail in ROBOEARTH, so the
ontology has been extended with these kinds of actions.

Each action is transformed into one state in the state
machine that first requests and binds all required components
using the UNR-PF, then calls the respective commands,
and finally returns their results. Depending on the results,
the execution transitions to the next regular state or to a
specified error state. Perceptual components, e.g. for person
localization or identification, are interfaced using “perception
actions” that wait for events generated by the components.
The recipe can specify when these actions are to return, for
example once the first event message has been received, or
the first n messages, or after a specified condition evaluates
to true (e.g. once a specific person has been recognized).
These conditions are described using OWL restrictions that
are evaluated on the robot’s knowledge base to check whether
the condition is fulfilled.

To account for the heterogeneous nature of actions and
their respective requirements in terms of information inter-
change with other actions, we developed a flexible infor-
mation passing scheme using the local knowledge base. All
information gained by executing an action is represented in
the local knowledge base using the ROBOEARTH language,
including the results of sensing actions, the outcome of
manipulation actions, and information about which actions
have been performed with which parameters. This approach
closely links the knowledge-based task instructions to the
robot’s belief state and allows robotss to reason about and to
integrate different sources of information like the instruc-
tions, the object ontology, and the semantic environment
map. It also facilitates the exchange of information via the
ROBOEARTH platform since all information in the system is
already explicitly represented in this language.

D. Interactive knowledge editor interface

We combine the execution engine with a graphical user
interface that allows human operators to extend and correct
the robot’s knowledge base, to add new objects to a map



Fig. 4. Top: Semantic map visualization and editor. Bottom: Editor for
defining the task structure and interactive execution interface.

or new actions to a task, and to start and supervise the
task execution on a remote robot. The UNR-PF thereby
serves as distributed platform for the run-time coordination
between the operator, the task-level controller, and the differ-
ent (robot) components that perform the task. ROBOEARTH
complements this by providing the robot and the human
operator with a shared knowledge base about the task to
be executed and the environment the robot(s) operate(s) in.

The two main components of the user interface are visual-
izations and editors for semantic environment maps [21] and
for robot task specifications [17]. Both editors can either
load specifications from the robot’s local knowledge base
or import them from ROBOEARTH. The map editor can
visualize and edit environment maps that describe the spatial
arrangement of objects around the robot (Figure 4 top). In
these maps, each object is described as an instance of an
object class at a specified 6D-pose in space. This instance
inherits all properties specified for its object class, and can be
further annotated with additional properties. Using the editor,
objects can be added to, deleted from and moved around in
the map. The task editor can be used to create, visualize
and edit task descriptions by adding or removing actions,
changing their properties, and specifying transitions between
actions. The user can specify in detail how the task shall
react in nominal and error cases using conditions for action
transitions (indicated by the differently colored arrows in
Figure 4 (bottom)). Green arrows indicate a transition in case
of successful execution, dark red ones are in case of an error,
light and dark blue transitions are chosen depending on the

outcome of a decision node, etc. During task execution, the
action editor doubles as supervision interface: The currently
executed action is highlighted, action parameters can be
inspected, and the task execution can be started and aborted.

E. Integration of human operators as knowledge sources

A robot can call a human operator during task execution
and ask for information that it found to be missing. The
communication is performed using the UNR-PF by adding
the human operator interface as a component that can be
commanded to acquire information. If the robot application
(which is supervising the task execution) notices a problem,
it executes the command for asking the operator for help.
The human can then download the relevant information from
the ROBOEARTH knowledge base, investigate the problem,
update the information, upload it to ROBOEARTH again, and
notify the application that the information is available.

The ability to ask for help raises the questions when to
ask and what to ask for. We consider two main cases in
which interaction with an operator seems necessary: when
a query for information unexpectedly gave no results (e.g.
when a question asked by a customer cannot be answered)
or when an action failed or produced inappropriate behavior.
The former case can be handled in the context of an ongoing
task by transitioning to an “interaction state” that sends a
support query to the operator, blocks until an answer has
been received, and returns to the same action to try again.
This interaction scheme is indicated in the right part of
Figure 5. The latter is a more exceptional case that often
requires modifications of the task definition itself. It may be
detected by errors thrown by the UNR-PF, by checking if
the outcome of an action is as expected (e.g. a customer that
does not move away even if the robot considers a dialog to be
complete), or if customers or the shopkeeper complain about
the robot’s behavior. In these cases, the task specification
needs to be updated and the task needs to be restarted.

IV. EXPERIMENTS

We implemented the experimental scenario of robots in-
teracting with customers in a convenience store. With respect
to this scenario, we build upon prior work on establishing
a ubiquitous-sensing infrastructure in a convenience store
and using this infrastructure for guiding customers [22]
and for recommending products [23]. The mock-up store is
equipped with a ubiquitous sensing infrastructure, including
laser scanners for tracking customers and RFID tag readers
for detecting if objects have been picked up [24], as well
as several interactive robots (Figure 6). With this scenario,
we explore how semantic representations can yield greater
flexibility in customer interaction, and how the proposed
distributed infrastructure helps to create, deploy and maintain
robot applications. A video showing the editor interfaces for
semantic maps and action recipes as well as the execution
of the task on the robot can be found online2 as well as the

2http://vimeo.com/70096817



Fig. 5. Example task specification for recommending a product. The
call-out boxes indicate where the proposed system contributes to the task
execution.

OWL files with the class definitions for UNR actions and
the action recipe for this experiment3.

Figure 5 shows the definition of a recommendation task
in the knowledge base and explains in which parts the
contributions of this work come into play. The robot first
greets the customer and asks if help is required. It then
decides whether the customer asked for the location of a
product (light blue arrow) and, if so, tries to compute its
location based on the semantic environment map and explain
how to get there. If no answer can be found, the question is
forwarded to a human operator that updates the knowledge
base with the required information. The accompanying video
explains in more detail how knowledge can be edited and
how the remote task execution and supervision interface can
be used to control the robots.

A. Knowledge-based customer dialog

The robot can use its semantic and spatial knowledge
about products in the environment to answer questions posed
by customers. Questions can either be asked using a speech
recognition system or (for development purposes) using a
chat-based interface; both are implemented as SpeechRecog-
nition component on the UNR-PF. Variations of the follow-
ing questions can currently be understood:

• Where can I find A [that (does|does not) contain B]?
This question type combines spatial information about
the locations of products in the environment (from the
semantic map) with semantic information about their
ingredients (from the product ontology).

• How much is A? This question type reads the price
property of a product class from the ontology. If the
query asks for the price of a generic class (e.g. “How
much is green tea?”), it reads the prices of all subclasses
and returns the price range.

• Is A x ? This question type asks for product properties
x, for example if A is edible, drinkable, perishable or
vegetarian.

B. Spatial knowledge for guiding customers

A semantic map [21] contains instances of products and
the locations where they can be found in the environment.

3http://knowrob.org/ontologies

When asked for the location of a product, the robot reads
the location from the semantic map, computes the position
relative to itself and points towards the objects in addition to
the spoken answer. The map can be coupled with sensors in
the environment, for example RFID tag readers, that update
the information in the map and provide the robot with an up-
to-date view of which products are still available. A graphical
editor enables operators without robotics expertise to update
the environment model if the shop layout has changed.

C. Semantic representations for product recommendation

Using semantic information like an ontology of products
and their properties [8], a robot can flexibly answer ques-
tions about these products. The hierarchical structure of the
ontology provides the robot with information which products
belong to a category like Food or Stationery. Based on
the represented product properties, it can answer questions
about ingredients the customer may be allergic against. By
computing which products are close in the ontology, it can
find semantically similar alternatives if a product is not
available any more [25].

D. Human operator as fall-back knowledge source

While the robots operate autonomously most of the time,
there may be situations in which they cannot answer a
customer’s question. In this case, they can forward the
question to a human operator that can update the robot’s
knowledge, for example by adding or removing products in
the map or by changing their properties. The human and the
robot share the same environment model that is distributed
via the ROBOEARTH platform; when the human updates the
map in ROBOEARTH, it is directly available to the robot
as well. The required interaction with the human is included
into the task specification as a special action that is triggered
if a question cannot be answered.

E. Remote adaptation and deployment of task specifications

In some cases, the task specification itself needs to be
updated, for instance to change the robot’s recommendation
behavior or to fix flaws in the task definition. This adaptation
can be done in a centralized fashion since the tasks the
robots perform are themselves described in the knowledge
base and shared via ROBOEARTH. The operator can adapt the
specifications remotely using a graphical editor interface and
upload the updated version to the ROBOEARTH knowledge
base, thereby making it available to all robots in the system.

V. DISCUSSION AND CONCLUSIONS

In this paper, we discussed how a system for knowledge-
enabled distributed task execution can be built on top of
existing, common platforms in order to increase modularity,
flexibility, and adaptability of robot applications. By conse-
quently separating generic functionality from environment-,
domain- or task-specific knowledge, we intend to achieve a
high degree of reusability as well as improved adaptability to
novel situations. Different kinds of knowledge are explicitly
represented and can be edited independently by the respective



Fig. 6. Recommendation robots in the convenience store experiment setup.

domain experts. Control decisions are formulated as infer-
ence tasks that are evaluated on the robot’s knowledge during
execution.

Our approach involves abstraction along multiple dimen-
sions: Abstraction from the robot hardware and the execution
context is achieved by the components, services, and remote
execution capabilities of the UNR-PF. Abstraction from the
environment is obtained by encapsulating all environment-
related knowledge in a semantic map that combines spatial
and semantic information about objects. Abstraction from
the executed tasks is done by a generic execution engine
that can perform arbitrary tasks defined as combinations
of basic functionality building blocks. Abstraction from
the application domain can be achieved by parameterizing
generic functionality with an abstract domain ontology. We
expect this abstraction to increase re-usability of components
in different tasks and environments since individual parts of
the knowledge base can be exchanged independently. The
same task description for serving a drink, for example, should
work in different hospital rooms, kitchens or offices as long
as an appropriate environment model is available.

VI. ACKNOWLEDGMENTS
This work was supported in part by the Ministry of Internal Affairs and Com-

munications, Japan, by the EU FP7 projects RoboEarth (grant number 248942) and
RoboHow (grant number 288533), as well as by Global COE Program ”Center
of Human-Friendly Robotics Based on Cognitive Neuroscience” of the Ministry of
Education, Culture, Sports, Science and Technology, Japan. The authors would like
to thank Chandraprakash Sharma and Jonas Furrer for their help with using the UNR
Platform.

REFERENCES

[1] E. Guizzo, “Robots with their heads in the clouds,” Spectrum, IEEE,
vol. 48, no. 3, pp. 16–18, 2011.

[2] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud networked
robotics,” IEEE Network Magazine, vol. 26, no. 3, pp. 28 –34, May-
June 2012.

[3] R. Arumugam, V. Enti, L. Bingbing, W. Xiaojun, K. Baskaran,
F. Kong, A. Kumar, K. Meng, and G. Kit, “DAvinCi: A cloud comput-
ing framework for service robots,” in IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2010, pp. 3084–3089.

[4] D. Hunziker, M. Gajamohan, M. Waibel, and R. DAndrea, “Rapyuta:
The roboearth cloud engine,” in IEEE International Conference on
Robotics and Automation (ICRA), 2013.

[5] B. Pitzer, S. Osentoski, G. Jay, C. Crick, and O. Jenkins, “Pr2 remote
lab: An environment for remote development and experimentation,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2012, pp. 3200–3205.

[6] J. Furrer, K. Kamei, C. Sharma, T. Miyashita, and N. Hagita, “Unr-
pf: An open-source platform for cloud networked robotic services,” in
System Integration (SII), 2012 IEEE/SICE International Symposium
on, dec. 2012, pp. 945 –950.

[7] M. Waibel, M. Beetz, R. D’Andrea, R. Janssen, M. Tenorth, J. Civera,
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