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Abstract— This paper investigates the problem of acquir-
ing 3D semantic maps of indoor household environments,
in particular kitchens. The objects modeled in these maps
include cabinets, tables, drawers and shelves, and objects in
the environment that have particular relevance for a household
robotic assistant. Our mapping approach is based on point
cloud representations, and a set of sophisticated interpretation
methods operating on these representations. We outline the
steps of our mapping approach, explain the key techniques that
make it work and present their use for different applications.

I. INTRODUCTION

The usage of robots that aid us is becoming more and more
widespread, typically in the industry, but increasingly in pub-
lic and in some cases, home applications as well. Robots are
starting to be more flexible, being able to do almost anything
from building cars to riding roller-skates, but virtually all of
these complex actions have to be preprogrammed, as their
ability to recognize complex patterns is fairly limited.

The only way a robot can be truly autonomous is by its
capacity to learn ”on the road”, from its own experiences.
To accomplish this, it needs to understand what the ”road”
is, and what’s the best way to explore the information that
it provides. Simply put, it needs a semantic map. [1]

The purpose of the majority of maps acquired and used by
robots is to aid them in localization and navigation [2], thus
besides obstacles, they don’t represent objects relevant for
other tasks. There are a few exceptions, for example in the
cognitive mapping area [2], [3], [4]. Performing manipulation
requires much more details though: interesting objects need
to be differentiated from obstacles and knowledge is needed
about how those objects can be manipulated (for example to
open a cupboard the handle has to be found and pulled on a
trajectory that can be intuited from the placement and shape
of the handle).

A very good source of information, for both humans and
technical systems alike, is obtained from visual data, which
should be understood here in a broader sense, not only image
and color information, but also anything that gives hints
about the geometry of the environment and the position of
the objects in it. So, the tactile senses of plants, animals
and humans1 and their extensions2, or 2D laser scanners and
proximity sensors, etc. give visual data just like images from
the eye or camera sensors do.

The set of possible actions and prior knowledge on its
turn is also acquired naturally and most easily by visual

1like the Braille script used by blind people (devised by Louis Braille)
2like the white cane used to identify obstacles by the visually impaired

observation. Apart from the genetically encoded reflexes,
this is how evolved beings learn, and the machine learning
methods developed for computers enable them to try to
imitate this process.

This way a simple 3D image of the environment and of the
objects in it is transformed into a map filled with semantic
information.

The remainder of the paper is organized as follows. The
next section gives a brief overview of our system, followed
by a discussion on related work in Section III. In Section IV
we give an overview of the mapping algorithms. Section V
describes our methods for acquiring and interpreting point
cloud data. Section VI applies the presented methods to build
three dimensional Semantic Maps, and gives a short intro-
duction to their possible usage, and Section VII talks about
integrating the results in a knowledge-base. We conclude
with a short discussion and give our conclusions together
with a sketch of our future work.

II. SYSTEM OVERVIEW

A. Setup of the Problem

Our setup for this paper is the following one. We have a
mobile robot equipped with two arms with grippers acting in
a kitchen environment (see Figure 1). The task of the robot
is to explore the environment and build a comprehensive 3D
model of the environment that contains models of objects
that are relevant for the robot’s task as a household assistant.
These objects include cabinets, drawers, and table tops.

Fig. 1. A mobile B21 robot with two arms and laser scanning capabilities
shown in the real (left and midle) and simulated kitchen (right).

The primary sensing device used for map building consists
of two laser scanners mounted on the robot’s end effectors.



The robot has basic problem-specific manipulation skills: it
can open and close cabinets and drawers, it can reach into
cabinets, and make accurate and smooth sweeping motions
with its arms and hands to acquire accurate 3D point clouds.

Besides the sensors on board of the robot, the environment
is equipped with a sensor network of distributed and hetero-
geneous sensing units including fixed laser range sensors on
the walls, magnetic sensors that report whether doors are
open or closed, and RFID tag readers that report the RFID
tags within their sensor range, typically placed in a cabinet
or in places such as under the table [5].

In general the mapping problem is to infer the semantic
object map that best explains the data acquired during the
mapping process. The data is comprised of several parts
(i.e. snapshots, scans), which cover the environment that
is to be mapped. These partial views of the world have
to be assembled together to form a complete model in a
process called registration. In our work, we are interested
in registration in both time and space domains. We make
little assumptions about the overlap between two views, but
naturally we expect that a minimal overlap exists.

The resultant PCD (Point Cloud Data) world model is
considered the input of our functional mapping system.
Figure 2 presents the overall system architecture.

Fig. 2. Brief overview of the overall system architecture.

Since the topic of this paper focuses on mapping and map
usage, we will not address the modules outside its scope
(namely Outlier Removal, Feature Estimation, Registration,
and Resampling), as they have already been covered in our
previous work [1], [6], [7], [8].

B. Map Representation

The output of our system consists of a compact obstacle
representation of the environment. In addition, our algorithms
segment and represent areas of interest, such as cabinets and
drawers in their respective states, as well as other objects
with their respective furniture category. The system also
represents and labels tables and shelves explicitly. Separate

actions are taken towards the recognition of objects located
on planar surfaces [1], [9].

A map such as the one shown below can be created from
a single, partial scan, and updated whenever new scans are
registered and made available to the system.
<rdf:RDF>
<map:Cupboard rdf:ID="cupboard1">

<map:widthOfObject
rdf:datatype="#float">0.34</map:widthOfObject>

<map:depthOfObject
rdf:datatype="#float">0.86</map:depthOfObject>

<map:heightOfObject
rdf:datatype="#float">0.60</map:heightOfObject>

<map:center>
<map:Point3D rdf:ID="Point3D_2">
<map:yCoord

rdf:datatype="#float">2.983215</map:yCoord>
<map:zCoord

rdf:datatype="#float">2.15</map:zCoord>
<map:xCoord

rdf:datatype="#float">0.17</map:xCoord>
</map:Point3D>

</map:center>
<map:properPhysicalParts>
<map:UShapedHandle rdf:ID="handleCupboard1"/>

</map:properPhysicalParts>
<map:properPhysicalParts>
<map:Door rdf:ID="doorCupboard1">
<map:doorHingedTo rdf:resource="#cupboard1"/>

</map:Door>
</map:properPhysicalParts>
<map:properPhysicalParts>
<map:RfidReader rdf:ID="rfid1">

</map:properPhysicalParts>
<map:contains rdf:resource="#plate2"/>

</map:Cupboard>
</rdf:RDF>

C. Use Case

An example scenario which depicts the way our system
works is described below:

• the robot enters a new kitchen without knowing any-
thing about it

• if the kitchen is equipped with some sensing or com-
putational capabilities, the robot connects to its sensor
network and inquires whether the environment has a
model of itself [5]

• if the environment can provide a snapshot taken in a
previous mapping stage, the robot proceeds in actualiz-
ing it by creating a new snapshot and merging the two
together; if not, it simply creates a new map

• the map is created by fusing data from various sensors
using a few assumptions about the environment, and is
represented in a compact format

III. RELATED WORK

Several efforts in the past have been made regarding the
creation of environmental object maps out of 3D range
data. Since the creation of such maps is a highly complex
process and involves the combination of several algorithms,
we will try to address the most relevant publications for our
work below. Related work on particular dimensions will be
addressed in their respective technical sections.

An EM-based algorithm for learning 3D models of indoor
environments is presented in [10]. The maps are created
using mobile robots equipped with laser range finders, but



they do not include any semantic information. The work
in [11] uses a stereoscopic camera system and a knowledge
base in the form of a semantic net to form 3D models
of outdoor environments. Two parallel representations, one
spatial and one semantic, are proposed in [12] for an indoor
environment, but their approach needs further investigation.
An object based approach for cognitive maps is used to
recognize objects and classify rooms in different categories
in [13]. The work presented in [14] provides a method for
classifying different places in the environment into semantic
classes like doorways, kitchens, corridors, rooms using sim-
ple geometric features extracted from laser data and informa-
tion extracted from camera data. The semantic interpretation
in [15] takes into account generic architectural elements
(floor, ceiling, walls, doors) which are identified based on
the relationships between the features (parallel, orthogonal,
above, under, equal height). Finally, a decomposition of maps
into regions and gateways is presented in [16].

With few exceptions, in particular in the area of cognitive
mapping [13], [3], but also including [17], [4], maps do
not represent objects relevant for other robot tasks, besides
navigation. That is why none of the above mentioned repre-
sentations can be used in an aplication scenario such as ours,
where the household robotic assistant needs fine-grained
semantic information in order to manipulate objects in the
environment, and complete complex tasks.

We consider the development of functional mapping ac-
quisition routines that can reliably recognize objects such
as cupboards, drawers, etc, as an essential building block
for the realization of autonomous robots capable of building
semantic maps of their environments.

IV. OVERVIEW OF THE MAPPING ALGORITHMS

At a conceptual level, our mapping algorithms are orga-
nized as follows:

• Acquisition and interpretation of 3D scans representing
partial views of the environment model. (Section V)

• Based on the augmented point cloud model, gener-
ated in the previous processing step, using additional
assumptions about the structure of the environment,
semantic objects are extracted and their representation
is derived. In this step we propose object hypotheses
for individual cabinet doors, tables tops, shelves, and
recognize if the “cabinets” are appliances such as ovens,
dishwashers, etc. (Section VI)

• The spatial knowledge obtained from processing the
point cloud data can be combined with ontological
knowledge about its properties, uses and functions. The
combination of these two kinds of knowledge yields a
very rich semantic representation of the environment.
(Section VII)

The methods and techniques used in the steps of our
mapping algorithm are detailed in the subsequent sections.

V. POINT CLOUD DATA ACQUSITION AND GEOMETRIC
INTERPRETATION

Our algorithms assume all data as being represented by
point clouds. We acquire data from various sources, using
either real sensors (laser, stereo, time-of-flight cameras), 3D
simulators (Gazebo), or 3D CAD models (Google 3D Ware-
house) as explained below. We make little or no assumptions
about the underlying structure of the data, as our goal is to
extract information robustly from it for a larger variety of
problems.

The acquisition of point clouds from sensing physical
devices is performed through the usage of the Player project
[5], of which we are active developers.

No matter what assumptions one can make about a certain
type of environment, the solution found for that particular
case cannot be generalized properly, unless the same problem
has been solved for at least a dozen of scenarios with similar
environments. Obviously, this is not an easy thing to do,
especially for household environments, as the resources to
build apartments or find sites that could be used for research
tests are very limited. One of the solutions that we found
to tackle this problem is the usage of 3D simulation tools
such as Gazebo, which could allow us to get similar data
as we would get from a real site. To make the data more
realistic we add zero mean Gaussian noise to it with various
standard deviations (see Subsection VI-A). We also propose
the conversion and use of Google SketchUp models available
online as additional training data (see Figure 3), which
already proved useful for our application [1].

The resulted point clouds are then all processed in the
same manner. This assures that plenty of training examples
will be available for learning our environmental and object
models.

Fig. 3. Using CAD models as additional training data. From left to right:
(a) polygonal data set, (c) resampled point cloud model, (d) model with
added zero-mean Gaussian noise

The obtained point cloud data (PCD) contains noise and
measurement errors, which must be suppressed in order to
extract good information. Based on assumptions on features
and properties of objects and in combination with different
sensory data, semantics can be added, which can be used
for interpretation and decision making about future actions
or in the learning process. The number of points in a PCD
consist of 50,000-5,000,000 points for any partial view, thus
we need to assure that our algorithms can deal with large
amounts of data, and clearly, some optimizations are needed
in order to process them.

We apply the methods presented in [1], [6], [7], [8] for
estimating point correspondences, registering the scans into a
common model and to resample the points on the underlying



surfaces in order to reduce sensor noise and unnecesarry
point densities while filling small holes.

After segmenting the scene into regions, we look at the
regions with the smallest curvature and we approximate them
with planar surfaces (see [8]). After projecting the inliers on
the model plane, we triangulate them and compute the total
area of the region A =

∑T
1 Ai, where T is the total number

of resulted triangles on the surface, and Ai is the area of
triangle i. This information will be used later on together
with a set of assumptions to build the semantic map.

For finding out furniture fixtures, we look whether there
are any holes in the region, identify them using the boundary
point detection and then look in the original point cloud to
see whether we have points which are located at a distance
disti in between some predefined threshold dmin ≤ disti ≤
dmax. The fixtures’ position and type are used by the mobile
robot to open the cupboards, as presented in Subsection VI-
B.

Fig. 4. From raw point cloud data towards semantic maps.

The final result of the mapping procedure is presented in 4,
with the identified objects labeled on top of the point cloud.

VI. SEMANTIC MAPS

The first step towards semantic maps is comprised of
fusing the results presented in the previous section with
a given set of assumptions. We have already implemented
such a system [1] for detecting several object types, and
are extending its definitions towards higher-level features for
environment learning. The second step is to add information
about the status of a certain part of the environment, such as:
what type of objects does a cupboard currently contain, as
well as add the position and capabilities of the extra installed
sensors in the environment (where present) to the map. We
start by defining the higher level feature set, and then proceed
to an usage example of the map with our robot.

A. Model Learning

In a kitchen environment, the main parts identified in range
data are walls, furniture pieces and appliances. While these
objects are formed of large and smooth surfaces having char-
acteristics of regular geometric shapes, the features extracted
out of their point clouds representation is most of the times
inadequate for proper recognition of distinct entities.

The previously extracted geometric features are considered
low-level in our scenarios, as they lack the ability to general-
ize a given scene, especially because an indoor environment’s

appearance varies greatly. Therefore they are not suitable
for any kind of semantic interpretations. To overcome this,
we propose the use of higher-level features, which can be
built upon the geometric data by applying a few simple
assumptions. By using them in the classification process, the
results tend to improve a lot in comparison to the low-level
feature approach.

We define regions of interest in a given scene as subsets
of a point cloud for which we can extract some characteristic
information that might indicate something about their shapes
or colors. Therefore, we classify the point cloud into dynamic
objects (like mugs, silverware, boxes, etc.), regions for we
can extract geometric features (cupboards, handles, knobs,
etc) and we assume that everything else is either an obstacle
or noise.

Our goal is to extract those parts that add information that
could be useful in the classification and recognition stage.
With this in mind, we first segment the environment into
two major categories of areas: a) horizontal surfaces and
b) vertical surfaces. Horizontal surfaces will define places
such as tables, chairs, etc, while vertical surfaces might hint
the existence of cupboards, or other kitchen furniture. The
assumption is that both types must be comprised within some
geometrical limits, therefore we take only those parts with
an area between Amin and Amax based on common sense
knowledge, and start particularizing from that.

After obtaining several regions from the point cloud, we
analyze the relationships between them and the surfaces they
were collected from. These relationship indicate the existence
of knobs, handles, their number, dimension and position,
the area of the surfaces they lie on, etc. With this new
information, we create a higher level semantic feature map,
which will be used for training a classifier.

We are currently investigating ways of automatically cre-
ating and extracting such higher level feature maps out of
sensory data, but preliminary tests showed that classifiers
trained on synthetic data have an accuracy of about 95%.
These results are very preliminary and are not obtained from
real data yet, but they show that the techniques might scale
towards realistic varieties of kitchen environments. To make
sure that we obtain sufficiently diverse sets of training data,
we use kitchen models from furniture department stores and
specialized design companies3.

In order to use this data we have implemented software
tools for translating the CAD models into Gazebo compact
simulation models, so that we can simulate the aquisition by
laser sensor of point cloud data that is similar to the ones
coming from real sensors (see Figure 5).

B. Interacting with the Environment

We demonstrate the usage and importance of having a
detailed semantic map of the environment in an application
scenario using our mobile robot. Given a robot equipped
with manipulation capabilities in a household kitchen envi-
ronment, our goal is to learn what a cupboard is, where it is

3We acknowledge the support of Plantek and Segmüller department stores
for providing the three dimensional models.



Fig. 5. 3D kitchen models (top) and the triangulated point cloud data
obtained by a simulated scan (bottom) – the colors represent the distance
to the laser sensor (red is closest, blue is farthest).

located, and how to open it. Obviously, in order to interact
with the real world and perform such complex manipulation
tasks, the robot needs a detailed 3D description of the
environment, such as what type of cupboard and handle it
has to deal with. It can use the physical simulation of the
obtained map in Gazebo to verify it’s assumptions and to
test different manipulation strategies (see Figure 6).

Fig. 6. Functional object map automatically imported in the Gazebo 3D
simulator and the identified opening positions (top) and hinges (bottom).

To define the trajectory that would open a specific con-
tainer we make use of the located handle’s position to
identify the opening direction [8]. In our current hardware
setup, the mobile robot’s manipulators are not equipped
with force/torque sensors. Since there is no feedback from
them during an action, any closed-loop control technique is
rendered useless. Therefore, we are relying on a very precise
trajectory generator which controls the end-effector. To help
building this trajectory planner, we make use of the direct
and inverse kinematics equations of the arm (see Figure 7.

To achieve its goals, the robot can also employ the
additional sensors present in the environment as well.

The kitchen is instrumented with various sensing devices,
such as laser sensors, magnetic sensors in the cupboard

Fig. 7. Arm trajectories while opening a drawer (left) or cupboard (midle).

Fig. 8. The robot’s movement in the kitchen as seen by a laser sensor
installed in the environment; by assuming that the robot geometry is known
or that the robot is the only entity moving in the environment we can detect
the laser’s position on the wall, thus making it a valid sensor for the robot’s
usage in future.

doors, RFID readers in the cupboards, etc [5], [1]. A simple
laser sensor is enough for determining the relative position
of the robot and the sensor. By determining the position of
the laser in the environment and assigning an entry in the
semantic map, the robot will be able to use that sensor in the
future as part of its distributed sensing capabilities. In our
example we assume that the mobile robot is localized with
respect to the environment, and we try to detect the absolute
position in the room of the laser sensor. Since our mobile
robot is cylindrical in nature, we assume that looking for arcs
in the set of laser range measurements suffices [18]. During
the time the robot moves in the room the laser is queried
repeatedly and arcs are determined. By assuming either that
the robot is the only object moving in the scans, or that the
robot knows it’s own geometric structure, we can determine
that the feature which constantly changes it’s position is in
fact the robot (see Figure 8).

VII. INTEGRATING ONTOLOGICAL AND COMMON-SENSE
KNOWLEDGE

Classifying and localizing objects is just part of the way
towards rich semantic environment maps. The sole fact that
a set of points is classified as a “cupboard” does not give it a
semantic meaning as long as the system does not know what
a cupboard actually is, which properties it has and what the
robot can do with it. Examples of knowledge that is required
in addition to the pure spatial information are that cupboards
can contain food, tableware or silverware, have a hinged door
with a handle and make their interiors invisible when closed.

Our approach is to link the semantic map to a knowledge
base in description logics that contains much of the desired
facts: knowledge about the taxonomy of objects (cupboards
are containers and can therefore contain things), their phys-



ical parts (doors, hinges, handles etc.) as well as functional
knowledge about how and in which context are objects used.

We use the Cyc ontology and facts imported from the
Open Mind Indoor Common Sense project as the basis
for our robot’s knowledge base and extend it manually as
required, e.g. to adapt it more to the needs of a mobile robot.

Objects that are detected in the environment are repre-
sented as instances of the classes in our knowledge base
which allows for querying all relevant knowledge and per-
forming reasoning about objects which are grounded in
actual sensor data. This makes it possible to query for objects
that serve for a purpose, e.g. for storing cups (see Figure 9),
and get their spatial properties as the result. In the figure, all
objects identified as cupboards are returned since the query
asks for objects where cups are stored.

Fig. 9. The results obtained by querying the OWL-DL representation to
locate containers where cups can be stored.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a system for building semantic maps of
indoor household environments (i.e. kitchens). Given partial
views of the environment as point clouds, we have developed
and extended techniques for segmentation, that look promis-
ing for applications such as ours. The significance of this
work lies in the development, integration and improvements
of several techniques from different research fields such as
computer graphics, robotics, machine learning and scientific
computing, as well as in the results presented.

We are currently investing ways of adding more semantic
information to our maps, by making use of sensor networks
[5]. In this paper, we’ve already taken the first steps by
attempting to detect laser sensors potentially installed in the
environment, based on simple, yet realistic assumptions.

Further work has to be done in the area of object seg-
mentation and recognition. Using the features presented in
[1], [9] for object recognition to train a classifier gave good
preliminary results. We plan on extending these to deal
with partial occluded objects in natural scenes, as well as
generating CAD-like models from the data and then using
them against a priori learned models.
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[13] S. Vasudevan, S. Gächter, V. Nguyen, and R. Siegwart, “Cognitive
maps for mobile robots-an object based approach,” Robotics and
Autonomous Systems, vol. 55, no. 5, pp. 359–371, 2007.

[14] O. M. Mozos, A. Rottmann, R. Triebel, P. Jensfelt, and W. Burgard,
“Semantic Labeling of Places using Information Extracted from Laser
and Vision Sensor Data,” in In Proceedings of the IEEE/RSJ IROS
Workshop: From sensors to human spatial concepts, Beijing, China,
2006.

[15] A. Nuechter, H. Surmann, and J. Hertzberg, “Automatic Model Re-
finement for 3D Reconstruction with Mobile Robots,” 2003.
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