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Abstract. Teaching robots everyday tasks like making pancakes by in-
structions requires interfaces that can be intuitively operated by non-
experts. By performing manipulation tasks in a virtual environment us-
ing a data glove task-related information of the demonstrated actions
can directly be accessed and extracted from the simulator. We translate
low-level data structures of these simulations into meaningful first-order
representations, called timelines, whereby we are able to select data seg-
ments and analyze them at an abstract level. Hence, the proposed system
is a powerful tool for acquiring examples of manipulation actions and for
analyzing them whereby robots can be informed how to perform a task.

1 Introduction

In their daily routines personal robot assistants are supposed to accomplish
novel tasks for which they have not been pre-programmed in advance. In [6],
it is demonstrated how robots can extend their task repertoire by extracting
natural language step-by-step descriptions from the Web and translating them
into well-defined executable plans. For example, the instructions for making a
pancake read as follows: 1) pour the pancake mix into a pan, 2) flip the pancake
using a spatula, 3) place the pancake onto a plate.

Fig. 1. Rosie preparing a pancake.

These instructions are descriptive enough
for humans to understand the task. However,
for robots these instructions are highly under-
specified. That is, a robot has to infer the ap-
propriate parameters of these actions by other
means. By observing humans performing the
task the robot can estimate some of the miss-
ing parameters. For example, the robot could
estimate parameters like height and angle of
the container while the pouring action is per-
formed. Also the duration of this action could
be estimated. Such information could be ex-
tracted from instruction videos retrieved from
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the Web or from a human tracking system [2]. Since our goal is to acquire a deep
understanding of the physical effects of such manipulation actions, we propose a
virtual manipulation environment based on a physics-based simulation. Objects
within this virtual environment can be manipulated using a data glove and a 3D
position sensor where the sensor information is directly translated into a pose
and articulation of the simulated hand model. Since we have complete knowl-
edge about the simulated world state we are able to extract different kinds of
information of the task-related objects. These information include, for exam-
ple, an object’s position, orientation, linear and angular velocities as well as its
bounding box. Also contacts between objects are reported in each time step. In
contrast to vision-based systems we do not have to deal with occlusions and other
typical problems like the recognition of transparent objects. The virtual manip-
ulation framework, that we have designed and implemented, can be used as a
tool for the acquisition of task-related information by logging the internal states
of the simulator. The logged simulations are then translated into interval-based
first-order representations, called timelines, as described in [5]. By formulating
logical queries we can extract task-related information from these timelines se-
mantically. For example, we can ask for the series of poses of the container while
it was held in the hand. Then, further methods can be applied on the trajectory
data to analyze the manipulation action with respect to various aspects.

2 Virtual Manipulation Environment

The virtual environment is based on Gazebo3, a 3D multi-robot simulator with
rigid-body physics. In the environment a user wearing a data glove controls
a robotic hand which allows him/her to interact with various objects. Figure 2
show the hardware equipment, a user controlling the robot and a screenshot from
the virtual environment. The virtual robotic hand (DLR/HIT) has four fingers
with four joints, except the thumb which has an extra degree of freedom for easier
manipulation. The hand is controlled with the help of a proportional-integral
(PI) force controller acting on the wrist. For easier control the gravity acting
on the hand is disabled. The data glove we use (X-IST Dataglove) is equipped
with 15 bend sensors (three per finger, one for each joint). To get the pose of the

3 http://gazebosim.org

Fig. 2. Virtual Manipulation Environment.
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hand within six degrees of freedom we use Razer Hydra, a game controller using
a weak magnetic field to detect its absolute position and orientation. The sensor
was disassembled from the game controller and attached to the data glove.

3 Preliminary Experimental Results

A user performed two tasks related to the pancake scenario: pouring some mix
onto a pancake maker and flipping a pancake. We have monitored and logged
the data structures of the simulator and translated them to first-order represen-
tations (timelines). Figure 3 illustrates steps from both tasks.

Fig. 3. Virtual Manipulation Tasks: Pouring liquids and flipping a pancake.

By translating the data structures of the simulator into timelines we can use
first-order logic to query task-related data semantically. We access the timelines
by using predicates similar to those in the Event Calculus [3]. The notation is
based on two concepts, namely fluents and events. Fluents are conditions that
change over time, e.g., a mug contains a pancake mix: contains(mug,mix). Events
(or actions) are temporal entities that have effects and occur at specific points in
time, e.g., consider the action of pouring the mix from the mug onto the pancake
maker: occurs(pour(mix,mug,pancake maker)). Logical statements about both
fluents and events are expressed by using the predicate: Holds(f,t,tl) where f
denotes a fluent or event, t simply denotes a point in time, and tl a timeline.
Using the predicate Holds tt we can query for a time interval throughout the
fluent holds. For example, we can ask for pose, velocities, and bounding box
of the mug in a time interval where there was a contact between mug and the
robotic hand as follows:

?- holds_tt(contacts(mug,hand),I,TL), simulator_values(position(mug,Ps),I,TL),
simulator_values(orientation(mug,Os),I,TL),
simulator_values(linear_velocities(mug,LVs),I,TL),
simulator_values(angular_velocities(mug,AVs),I,TL),
simulator_values(bboxes(mug,BBs),I,TL).
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where I denotes a time interval, TL a timeline, and the other variables denote
lists of their respective data types. Similarly, we can get the last pose of the mug
in that interval, e.g., to analyze where the user has placed it after the pouring.

In the experiments liquid was poured from different heights which can be
seen by clustering the trajectories (Figure 4). First, we applied dynamic time
warping to align the trajectories and then we clustered the trajectories as in [1].
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Fig. 4. Trajectories of the mug when it was in contact with the hand. Raw (left) and
clustered (right) trajectories after aligning them using dynamic time warping.

Logical queries allow us to select data segments of the logged simulations on
an abstract level. For example, we can select only data when the mug is over the
pancake maker or when it is tilted at an angle in a certain range.

4 Conclusions and Future Work

In this paper we have presented a system for acquiring data of manipulation
actions by controlling a robotic hand in a virtual environment using a data
glove. By translating the data to timelines we are able to analyze and interpret
the performed actions at a semantic level. In future work, we will deliberately
tweak the underlying physics of the simulation to produce behaviors that deal
with various physical phenomena such as the viscosity of liquids. We will also
apply the found parameter values as seeds in our envisioning system for robots
[4]. In the long run, we would like to integrate a vision-based tracking system
using a physics-based simulation to acquire examples of manipulation actions
more naturally.
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