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Abstract— In this system paper we report on our experience
while working with a top-down guided 3D CAD model-based
vision algorithm, being executed by an autonomous robot
on objects (tableware and cutlery) in an Assistive Household
environment. Top-down guidance is shaped upon how-to in-
structions which are parsed and extracted from the wikihow.com
webpage - one of the world’s largest resource of natural
language task descriptions. Therein we selected a How to set
a table entry and thus constructed this paper upon conversely
interpreting the table setting for a meal. The robot’s knowledge
base is represented in Description Logics (DL) using the Web
Ontology Language, and the inferences are obtained by virtue
of SWI-Prolog queries. The whole proposed system is controlled
by a modern, leading-edge Reactive Plan Language (RPL)
which is the basic planning feature in the Assistive Household.

I. INTRODUCTION

WHY Consider a household robot jointly setting the table
with a human. To be helpful, the robot must be capable of
looking at the table and inferring which items are missing,
which items are not in the reach of the person who probably
wants to use them, which items are misplaced, etc.

We believe that advanced scene perception mechanisms
are essential for future personal robot applications. In this
paper we investigate the realization of such a mechanism that
is able to reason about and disambiguate percepts, i.e. images
and video-streams. Our proposed system combines active
vision with a formal knowledge base for advanced scene
perception. The active vision component infers a task de-
scription, a region of interest (from the spatial configuration)
and a set of relevant object categories based on instructions
imported from the web (e.g. wikihow.com, see Listing 1).
Place the PLACEMAT in front of the chair.
Place the NAPKIN just left of the center of the placemat.
Place the PLATE(ceramic, paper or plastic, Ceramic preferred)
in the center so that it just covers the right side of
the napkin.

Place the FORK on the side of the napkin.
Place the KNIFE to the right so that the blade faces the
plate.
Place the SPOON right next to the knife.
Place the CUP to the top right corner of the placemat.

Listing 1. Instructions from http://www.wikihow.com/Set-a-Table, set of
objects in capital, spatial relations in bold

The perceived camera image is then interpreted to detect
the objects of interest and to localize them. The objects and
their obtained locations are asserted to a factual knowledge
base. Logical assertions in the form of rules (obtained
from the transformed instructions from the web) then check
properties of the scene such as “is fork on the side of the
napkin”.

0The research reported in this paper is partly funded by the German
cluster of excellence COTESYS (Cognition for Technical Systems).

(a) Correct Result, green Mug (b) Hallucinated red Mug, cor-
rectly discarded by the proposed
system

(c) Hallucinated red Knife, falsely
accepted by the proposed system

(d) Falsely detected green Plate,
discarded by the proposed system

Fig. 1. Possible situations upon search returns

For object detection, we use a highly prolific state-of-
the-art 3D CAD model-based vision algorithm [1] which
demands certain properties of the environment to be con-
trolled and known (like the object’s distance from the camera,
possible orientations), and therefore cannot be successfully
used without knowledge about the spatial configuration of
the scene.

Fig. 1 denotes the possible situations, followed by a
performed search:

The vision algorithm only detected the object correctly in
case a). In case b), the red colored mug was hallucinated,
but correctly discarded by the proposed system, knowing
it can not stand in the air or be tilted this way. However,
in c) the red colored knife was hallucinated and accepted
due to the edge-like texture of the plate’s boundary yielding
a physically possible pose. Finally, in d) the plate was
detected 0.2m below the table surface, which is a physically
impossible pose.

These cases shall serve as motivation to perform the top-
down guided visual search, in our case using a combination
of common-sense knowledge and naive physics reasoning.
In the remainder of the paper we demonstrate that by
influencing the vision algorithm with only this information,
while leaving other algorithm’s parameters intact, the search
results indeed improve substantially.

HOW After correctly parsing the natural-language web
instructions (Listing 1), the proposed system converts them



Fig. 2. Situation Graph Tree for Table Setting Scene

into a Situational Graph Tree [2] (SGT, see Fig. 2), which
describes 3D objects of interest and their spatial relations as
predicates in first-order logics.

These predicates are grounded in the perception data
and used for top-down guidance when detecting objects, as
depicted in Fig. 3. The search is performed using a 3D CAD
model-based vision algorithm.

The algorithm requires the extreme poses of a sought
object in the table coordinate system as a parameter. We
dub this the Cartesian Search Space (CSS = mean pose
plus search extent) restriction. From that, we generate two
types of restrictions by means of a Modified Unscented
Transformation (MUT) [3]. One is setting the algorithm’s
spherical search space parameters (3D restriction) and the
other extracting an appropriate region of interest (ROI) from
the search image (2D restriction, denoted with a blue contour
in every image in this paper).

The central control unit is written in the Reactive Plan
Language (RPL, [4]) and processes the SGT, infers objects
to be found on the table, triggers the search and reasons upon
objects’ spatial relations. RPL can, in the current implemen-
tation, instruct the vision algorithm to perform two kinds of
searches: one using a semi-restricted CSS (in the following:
table search space) and second using a closely-restricted
search space (in the following: object search space).

All matches are evaluated against both the hypothesis that
they shall rest on top of another object (represented by the
on Physical relation), and the spatial relations described in
the SGT. All matches of the vision algorithm which do not lie
on the table surface or do not conform to the spatial relations
described in the SGT (e.g. that a fork is to be placed on the
“side” of the napkin) are deemed erroneous by the proposed
system.

Finally, we perform an evaluation whether the complete
table setting task was executed correctly, i.e. whether all
required objects are present and conform to the WWW
instruction. Based on the result, one could reason about the
number of persons taking part in the meal, fetch missing
objects, and also learn spatial properties like a usual distance
for the “on the side of the napkin” relation.

Our Contribution We propose a novel, first-time achieved
approach by connecting a high-level RPL control system
(which encapsulates common sense knowledge processing
and representation) and low-level visual sensing. We are able
to model an every day situation scene as a first-order DL
problem by retrieving and converting natural-language task
instructions from the WWW.

In a proof-of-concept manner we manifest our approach
by detecting a realistic table setting scenario by making use
of a 3D CAD model-based detection algorithm which we
support such that a substantial amount of falsely detected
objects gets filtered out. Our approach is by no means limited

Table,Chair

Placemat

Plate Mug Napkin

Fork

Knife

Spoon

Fig. 3. Temporal hierarchy of sought objects (green), objects coded red
are not part of the search

to the indicated scenario only, in the work of [5] it has
already been shown that a multitude of other instructions
(e.g. “How to make Toast”) can be retrieved from the natural-
language instructions as well. Given a wealth of existing
perception algorithms, from which some can fetch object
information from internet databases, e.g. [6], we are therefore
confident that the detection of even more complex and
spatially correlated scenes will become feasible through an
extension of herein presented work.

The remainder of the paper is structured as follows. In
Sec. II, similar approaches and inspiration for our work are
presented. The overall architecture of the proposed system
is presented in Sec. III; a more detailed description of our
methods can be found in Sec. IV and Sec. V. Results of
the extensive tests are showcased in Sec. VI, discussed in
Sec. VI-C and final remarks and future work are conveyed
in Sec. VII.

II. RELATED WORK

We divide our literature overview into 2 parts, one regard-
ing related systems making use of common sense knowledge
models, and the other one regarding vision-driven object
detection algorithms.

In recent years, a growing interest in artificial cognitive
systems has brought about increased efforts to extend the
capabilities of computer vision systems towards higher-level
interpretations. They mostly consider optical flows in image
sequences and represent the trajectories in another feature
space (e.g. multivariate observation vector) [7], [8], [9], [10].

Arens and Ottlik [2] have been one of the first to demon-
strate with concrete experiments in the street traffic domain
that high-level hypotheses about intended vehicle behavior
could in fact be used to influence the tracking unit and
thus improve tracking under occlusion. They also present
a concept of the so-called SGT which we partially adopt
in our work. Neumann and Möller [11] present a concept
of aggregates composed of multiple parts and constrained
primarily by temporal and spatial relations. It is shown that
these can be used to represent high-level concepts such as ob-
ject configurations, occurrences, events and episodes. Their
scene interpretation is modelled as a stepwise process which
exploits taxonomical and compositional relations between
aggregate concepts, while incorporating visual evidence and
contextual information. The aggregates are represented in a
ALCF(D) Description Logic related to the one presented in
this paper. However, we point out that it amounts to manual
modelling of the expected scene beforehand as opposed to
ours that does it automatically. Further, Hotz et. al. [12]



Fig. 4. Overall System Architecture

argue that the generic high-level conceptual units introduced
by Neumann can generate feedback in a generic manner.
Demonstrations are carried out using SCENIC, a system
capable of part-whole reasoning, i.e. establishing an aggre-
gate instantiation based on evidence for any of the aggregate
parts. It allows to generate strong expectations about further
evidence for parts of this aggregate and to feed back these
expectations to lower levels. While existing approaches to
high-level interpretation differ in many aspects, they share
the commonality that prior knowledge about spatial and
temporal relations between several objects has to be brought
to bear. Baiget et al. [13] however were the first in trying
to automatize the geometrical construction of a scene by
learning it from tracking humans. Learning is done by means
of FMTHL (Fuzzy Metric Temporal Horn Logic) which also
generates conceptual predicates from the state vector.

In the overall picture, we aim at the detect-approach-grasp
system which allows for smooth integration into the Assis-
tive Household. Inspired by that when selecting the object
detection algorithm, we set for 3 criteria: the algorithm is to
detect objects in 3D, use texture and/or shape information,
and is to feature generic characteristics (e.g. arbitrary type of
object). There are several proposed methods [14], [15], [16]
allowing for that; however, they all require several views of
the object to determine its pose, as opposed to the 3D CAD
model-based algorithm of our choice that infers poses from
a single image [1].

III. SYSTEM ARCHITECTURE

The architecture on display in Fig. 4 presents a large
and software-wise very complex integrated approach towards
context-rich scene detection in human environments like an
Assistive Household [17]. The proposed system consists of
3 main functional units, each performing on a different
architectural level: A high-level RPL controller (grey), the
YARP middleware (peripheral connections) [18], and end-
processing modules (enumerated 1 through 4).

The latter perform the following tasks:
1) Finding the kitchen table,
2) Parsing and converting the natural-language task in-

structions (“How to set a table”) into a parsable tree
of logic assertions,

3) Transforming the logical assertions into the SGT, and
4) Object localization and interpretation of results.

Detailed descriptions of the modules 2), 3), 4) are provided
in the following two sections and denote our major contri-
butions.

IV. TRANSFORMING HOW-TOS INTO SGTS

A. Translating Natural Language Instructions
This module, depicted in Block 2 in Fig. 4, transforms

natural-language task instructions as the one in Listing 1
into a set of logical assertions. These assertions represent
the sequence of actions with the respective objects, actions,
pre- and postconditions, temporal constraints, quantifiers and
prepositional relations.

Originally proposed by Tenorth et al. [5], the procedure
will only be briefly recapped here. After the syntactical
structure of the sentences is determined by a probabilistic
context-free grammar (PCFG) parser, the words’ senses are
resolved using the WordNet lexical database and the Cyc
ontology [19]. The content of our robot’s knowledge base is
derived from Cyc, representing objects in the environment
as instances of the respective Cyc classes. Technically, the
knowledge is stored as Classes, also referred to as concepts,
and Instances in Description Logics using the Web Ontology
Language (OWL).

The class level contains abstract terminological knowl-
edge like the types of objects, events and actions (e.g.
KitchenTable), organized in a taxonomic structure. Instances
represent concrete physical objects (e.g. kitchentable1) or
actually performed actions. Properties, also called Roles, link
instances. All relations are formulated as (Subject, Property,
Object) rdf triples.

An example outcome of the transformation procedure,
a conveniently parsable list of instructions, is available
for display at http://www9.cs.tum.edu/people/
pangercic/files/web.txt.

B. Generating the Situation Graph Tree
The compound logical assertions obtained in Sec. IV-A

are next transformed into code appropriate for use within
the RPL program (Fig. 4, Block 3). A detailed description
of the knowledge processing system can be found in [20].

http://www9.cs.tum.edu/people/pangercic/files/web.txt
http://www9.cs.tum.edu/people/pangercic/files/web.txt


Given that our proposed system is to answer questions
like “Which objects are missing and what are their spatial
relations to the found ones?”, we decided to convert the
logical representation into the SGT as proposed in [2] (see
Fig. 2).

For the sake of clarity, let us first introduce the terminology
used in the formal instruction representation:

• methodForAction - root predicate listing all actions in a
How-to

• actionSequence - predicate specifying a sequence of
actions

• objectActedOn - link between an action and the main
object it is performed on

• purposeOf-Generic - predicate representing postcondi-
tions of an action

• PuttingSomethingSomewhere - action denoting “taking
something to”

• [in, to, on, next]-Underspecified[*] - rather general
prepositional relations

• parts-Underspecified - predicate associated with the
preposition “of”

The logic-based representation of an action sequence, like
the tablesetting task, looks like the following:

( me thodForAc t ion
( Set−a−Tab le k i t c h e n t a b l e 1 )
( a c t i o n S e q u e n c e

( T h e L i s t # $ p u t t i n g s o m e t h i n g s o m e w h e r e 1
. . .
. . .
# $pu t t i ngsome th ingsomewhereN ) ) )

To build an SGT, we start with the methodForAction predi-
cate that is the root of the formal task specification. In the
case of “Set-a-Table”, the action sequence mainly consists
of instances of the PuttingSomethingSomewhere class. Each
of these actions is required to pass a completeness test that
check for instance if the object to be manipulated and the
target location are given.

To exemplify, let us find a relation for an object of type
Fork-SilverwarePiece: The objectActedOn relation specifies
which object the action put1 of type PuttingSomething-
Somewhere is to be executed on. PurposeOf-Generic is
used to describe post-conditions; in this case, the outcome
of put1 shall be that the object fork-silverwarepiece1 is
related to Side by the on-UnderspecifiedSurface relation. The
English word “on” was mapped to the very general on-
UnderspecifiedSurface relation during the translation step;
now, the “on the side” expression has to be resolved properly.

Since Side is no physical object that the system can
detect in the scene, the resolution process continues with the
parts-Underspecified predicate. This very general relation is
statically mapped to the English word “of” and, in this case,
points to the object Napkin. The result is thus that an object
of type Fork-SilverwarePiece is to be put on a Side of a
Napkin. The result of this procedure is the SGT in Fig. 2.

For checking if the spatial relations described in the
how-to hold in the situation at hand, we use computable
predicates [20]. These predicates are computed on demand
during the reasoning process and allow, one the one hand,
to easily load external data into the knowledge base, and, on
the other hand, to calculate spatial relations based on object
locations.

The side property, which holds if the object is on one side
of the subject, is one example of such a computable property.
If the relation holds can be checked with the following query:

?− o w l q u e r y ( ’ s i d e ’ , fo rk1 , ?A)
A = ’ napkin1 ’

Internally, this query is translated to a call to a function
that compares the observed object coordinates and, using a
heuristic, determines if they are next to each other.

V. TOP-DOWN GUIDED OBJECT SEARCH AND
INTERPRETATION

When sorting out all required pre-processing, we com-
mence the actual search for objects as denoted in Block 4 in
Fig. 4.

The RPL controller extracts the set of objects and com-
putable predicates from the SGT, converts predicates into
CSSes and sends them to the Vision Middleman (VM). The
VM processes the respective CSS and sends it to a larger
framework called COP, which generates 2D and 3D search
spaces to be used with the 3D vision algorithm.

In our case, we apply two CSSes: table search space and
object search space. They are both intuitively limited and
processed using MUT as indicated in Sec. I. The object
search space limitations are determined based on the spatial
configuration from the natural-language instruction. Search
space extents are generated according to sizes of the sought-
after objects, and mean poses are set heuristically. It is on
our future research agenda to amend the latter by learning
the spatial relations from observations of humans and thus
preserve the generic character of this approach.

After COP has completed the search for objects, the
estimated object poses are returned to RPL, which updates
their poses in the knowledge base by calling the entityLoca-
tion(Pose) routine.

Finally, the correctness of the result of the table setting
task is tested with the following first-order predicate calculus:

[frontside(Chair, ?Placemat) → (1)
on Physical(Table, ?Objects)

∧ center(Placemat, ?Plate) ∧ corner(Placemat, ?Mug)

∧ {leftside(Placemat, Napkin) → side(Napkin, ?Fork)}
∧ {rightside(Placemat, ?Knife) → next(Knife, Spoon)}]

→ isValidTableSetting

The table setting is therefore deemed to be correct if all
operands (computable predicates) return a value true.

In this work, we employ only the 3D CAD based detection
algorithm. The objects Placemat and Napkin cannot be
detected using this algorithm, therefore their poses are hard
encoded into the world model and the predicates “frontside”
and “leftside” in the SGT thus always return true.

The outcome of the calculus from Eq. 1 can lead to the
following results. All cases are visualized in Fig. 1.
• True Positive (TP): correct that the object corresponds

to the how-to manual and on Physical.
• True Negative (TN): correct that the object does not

correspond to the how-to manual and on Physical.
• False Positive (FP): incorrect that the object corresponds

to the how-to manual and on Physical.
• False Negative (FN): incorrect that the object does not

correspond to the how-to manual and on Physical.



VI. EMPIRICAL EVALUATION

In order to evaluate our approach we apply our proposed
system to a set of ten different realistic images1 of a table
setting in the Assistive Household. The images comprise 10
different views of the robot onto the table surface, where
tableware and cutlery for 1 person meal are correctly placed.
The aim of the test was to validate the correctness of the
setting through an interactive two-steps procedure (once for
table search space and once for object search space).

The table coordinate system (CS) was determined by
means of an artificially inserted calibration plate on one
corner of the table. The z axis of the coordinate system
is pointing upwards, the x and y axes are aligned with
the table’s shorter and longer edge respectively. We are
aware of the crudeness of this choice for the general case
of the Assistive Household, however to prove the concept
we needed to exclude all additional sources of errors that
influence to the final localization result yielded by the vision
algorithm.

A. Objects Detection Using Table Search Space, 1st run
Fig. 5 shows results of the query to find a maximum of

five respective instances of objects from Fig. 3 in every of
previously mentioned ten images. It is evident that the search
is over-dimensioned and, due to the nature of the search
algorithm, also incorrect in number of returned matches and
their localization.

Table I, row 1 presents this quantitatively. In three images
we correctly found only one object, while we never detected
all five objects. In overall, 22 TP, 165 TN, 0 FP and 19 FN
results were obtained (50 TPs were expected), which shows
that a great deal of hallucinated objects were successfully
rejected. However, due to the textually rich table surface,
too few actual objects were found with high enough score.

#ofObjectsFound One Two Three Four Five
#ofImages - 1st run 3 3 3 1 0
#ofImages - 2nd run 0 1 1 5 3

TABLE I
NR. OF OBJECTS FOUND IN NR. OF IMAGES

B. Objects Detection Using Common Sense Knowledge Ob-
ject Search Space, 2nd run

In the second run, we perform another search with the
search space limited to near vicinities of the expected
poses of sought-after objects (object search space). Fig. 6
denotes this situation. By not allowing the algorithm to take
viewpoints which, due to background texture, would yield
hallucinated matches with better scores than the real objects,
we obtain more TPs and better localization rates. On the
other hand, however, we obtain some matches in the direct
vicinity of the true match which consequently leads to FPs.
In overall, the search yielded 40 TPs, 42 TNs, 4 FPs and
10 FNs. Table I, row 2 shows a substantial improvement in
terms of overall performance. In five images we were able
to successfully detect four out of five objects, and in three
images even the full set (all five objects) was detected.

1The data set is available for public use:
http://www9.in.tum.de/people/pangercic/images/scene.tar

(a) Plate, in center query

(b) Fork, on the side query (c) Knife, in the rightside query

(d) Spoon, next to query (e) Mug, in the corner query

Fig. 5. Best results of querying for objects in table surface search
space. The search space is overdimensioned and yields ample of erroneous
matches.

(a) Plate, in center query

(b) Fork, on the side query (c) Knife, in the rightside query

(d) Spoon, next to query (e) Mug, in the corner query

Fig. 6. Best result of querying for objects in search space adjacent to the
expected poses of objects. The amount of erroneous matches (coded red in
Fig. 5) dropped substantially.



Fig. 7. Improvement of Object Detection by Further Restriction of Search
Space, red - number of objects found in table search space, green - number
of objects found in object search space

C. Recapitulation on Object Detection
By automating the search space restriction process we

are able to use the 3D CAD based algorithm on-the-fly.
We only set a subset of its parameters beforehand once,
whereas the essentials (the spherical search space restriction)
are automatically adapted upon changes in the image scene.

Since the used 3D CAD algorithm is oriented towards
industrial applications, where conditions of the environment
can be controlled, we had to tackle numerous challenges
while adapting its use to our situation. While tableware is
relatively unproblematic, detecting silverware is a challenge
partly because of its smaller size. At usual distances of
[1m, 2m], tableware is salient in the image, while silver-
ware’s shape is captured poorly. Therefore, we must exclude
sources of hallucinated matches (by setting the ROI) on one
end and reason upon validity of detection results (using the
on Physical relation) on the other. The table search space is
still too large to solve that problem. Using common sense
knowledge obtained from the WWW, we are able to restrict
the search space even further and thus boost the detection
algorithm’s success rate, especially for silverware objects.
Detection of the latter proves to otherwise be of inadmissibly
low quality. Another problem regarding silverware, which
our proposed system does not tackle, is its reflective surface
which yields erroneous results under sub-optimal lighting
conditions. For that, our future agenda includes using CCD
cameras in combination with other sensors. The chart in
Fig. 7 shows the improvement of the object detection rates
after a further restriction of the Cartesian search space. For
all objects but Mugs, which were always detected in both
cases, detection improved substaintally, in overall by 82%.
The calculation times improved as well.

VII. FUTURE LOOK

The immediate task on our research agenda is related to
learning of spatial relations. It is envisioned to filter out
false matches only by the on Physical relation and cluster
the remaining ones. In an iterative loop, the mean poses of
these clusters will be validated against the predicates from
Fig. 2, and the matches will be re-clustered. By that we will
free the proposed system of stark hypotheses for objects’
expected poses. Further, as already indicated in the work of
[21], data fusion between a CCD camera, a time-of-flight
camera and a laser scanner will be exploited in order to

overcome peculiar characteristics of particular objects (e.g.
shiny silverware). REFERENCES
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