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Structures

Handling Structs
CL-USER> (defstruct player

id
(name "mysterious stranger" :type string)
(hp 10 :type integer)
(mp 0 :type integer)
and-so-on)

CL-USER> (defvar *player* (make-player :name "Turtle" :and-so-on '123))

*player*
#S(PLAYER :ID NIL :NAME "Turtle" :HP 10 :MP 0 :AND-SO-ON 123)
CL-USER> (player-name *)
"Turtle"
CL-USER> (defvar *player-copy* (copy-player *player*))

(setf (player-name *player-copy*) "Cat")

*player-copy*
#S(PLAYER :ID NIL :NAME "Cat" :HP 10 :MP 0 :AND-SO-ON SOME-DATA)
CL-USER> *player*
#S(PLAYER :ID NIL :NAME "Turtle" :HP 10 :MP 0 :AND-SO-ON 123)
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Hash Tables

Handling Hash Tables
CL-USER> (defvar *table* (make-hash-table :test 'equal))

*TABLE*
CL-USER> *table*
#<HASH-TABLE :TEST EQUAL :COUNT 0 {100A84AF03}>

CL-USER> (setf (gethash "MZH" *table*) "Bibliothekstrasse 3"
(gethash "TAB" *table*) "Am Fallturm 1")

"Am Fallturm 1"
CL-USER> (gethash "MZH" *table*)
"Bibliothekstrasse 3"
T
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Classes
Handling Classes
CL-USER> (defclass shape ()

((color :accessor get-shape-color
:initarg :set-color)

(center :accessor shape-center
:initarg :center
:initform '(0 . 0))))

#<STANDARD-CLASS SHAPE>
CL-USER> (defvar *red-shape* (make-instance 'shape :set-color 'red))

*RED-SHAPE*
CL-USER> (describe *red-shape*)
#<SHAPE {100536B6A3}>
[standard-object]

Slots with :INSTANCE allocation:
COLOR = RED
CENTER = (0 . 0)

CL-USER> (get-shape-color *red-shape*)
RED
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Classes [2]

Inheritance
CL-USER> (defclass circle (shape)

((radius :initarg :radius)))
#<STANDARD-CLASS CIRCLE>
CL-USER> (defvar *circle*

(make-instance 'circle :set-color 'green :radius 10))

*CIRCLE*
CL-USER> (describe *circle*)
#<CIRCLE {1005F61973}>
[standard-object]

Slots with :INSTANCE allocation:
COLOR = GREEN
CENTER = (0 . 0)
RADIUS = 10

CL-USER> (slot-value *circle* 'radius)
10
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Lisp class vs. Java class

Lisp classes have / support:
• attributes
• getter-setter methods
• multiple inheritance

Lisp classes don’t have:
• attribute access specifications (managed with package namespaces)
• methods
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Function Overloading: Generic Programming

Defining Generic Functions
CL-USER> (defgeneric area (x)

(:documentation "Calculates area of object of type SHAPE."))
CL-USER> (area 1)
; #<SIMPLE-ERROR "~@<There is no applicable method for ..."
CL-USER> (defmethod area (x)

(error "AREA is only applicable to SHAPE instances"))
CL-USER> (defmethod area ((obj shape))

(error "We need more information about OBJ to know its area"))
CL-USER> (defmethod area ((obj circle))

(* pi (expt (slot-value obj 'radius) 2)))
CL-USER> (area 1)
; #<SIMPLE-ERROR "AREA is only applicable to SHAPE instances">
CL-USER> (area *red-shape*)
; #<SIMPLE-ERROR "We need more information about OBJ to know its area"
CL-USER> (area *circle*)
314.1592653589793d0
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Function Overloading: Generic Programming [2]

Method combinations: :before, :after, :around
CL-USER> (defmethod area :before (obj)

(format t "Before area. "))
CL-USER> (area *circle*)
Before area.
314.1592653589793d0
CL-USER> (defmethod area :around ((obj shape))

(format t "Taking over shape area. "))
CL-USER> (area *red-shape*)
Taking over shape area.
CL-USER> (defmethod area :around ((obj shape))

(format t "Taking over shape area. ")
(call-next-method))

CL-USER> (area *red-shape*)
Taking over shape area. Before area. ; #<SIMPLE-ERROR "We need ..."
CL-USER> (defmethod area :around ((obj shape))

(round (call-next-method)))
CL-USER> (area *circle*)
Before area. 314
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Function Overloading: Generic Programming [3]

Custom :method-combination
CL-USER> (defgeneric awesome-function (x)

(:method-combination +))
#<STANDARD-GENERIC-FUNCTION AWESOME-FUNCTION (0)>
CL-USER> (defmethod awesome-function + ((x number))

x)
#<STANDARD-METHOD AWESOME-FUNCTION + (NUMBER) {1006E16443}>
CL-USER> (awesome-function 2)
2
CL-USER> (typep 2 'number)
T
CL-USER> (typep 2 'integer)
T
CL-USER> (defmethod awesome-function + ((x integer))

x)
#<STANDARD-METHOD AWESOME-FUNCTION + (INTEGER) {10072D6323}>
CL-USER> (awesome-function 2)
4
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OOP in Lisp
Summary

OOP:
• Everything is an object.
• Objects interact with each other.
• Methods “belong” to objects.

Functional programming:
• Everything is a function.
• Functions interact with each other.
• Objects “belong” to (generic) functions.

OOP principles in Lisp:
• inheritance (defclass)
• encapsulation (closures)
• subtyping polymorphism (defclass)
• parametric polymorphism (generic functions)
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Invoking Conditions

define-condition, error
CL-USER> (error "oops, something went wrong...")
; #<COMMON-LISP:SIMPLE-ERROR "oops, something went wrong...">.
CL-USER> (define-condition input-not-a-number (simple-error)

((actual-input :initarg :actual-input
:reader actual-input
:initform nil))

(:report (lambda (condition stream)
(format stream "~a is not a number!"

(actual-input condition)))))
INPUT-NOT-A-NUMBER
CL-USER> (let ((input (read)))

(if (numberp input)
input
(error (make-condition 'input-not-a-number

:actual-input input))))
asdf
; Evaluation aborted on #<COMMON-LISP-USER::INPUT-NOT-A-NUMBER>.
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Catching Conditions
handler-case
CL-USER> (defparameter *result* nil)

(let ((x (random 3)))
(setf *result* (/ 123 x))
(format t "new result is: ~a~%" *result*)
(setf *result* 0)
(format t "cleaned up: ~a~%" *result*))

; Evaluation aborted on #<DIVISION-BY-ZERO {1008D6E5B3}>.
CL-USER> (defparameter *result* nil)

(let ((x (random 3)))
(handler-case

(progn (setf *result* (/ 123 x))
(format t "new result is: ~a~%" *result*)
(setf *result* 0)
(format t "cleaned up: ~a~%" *result*))

(division-by-zero (error)
(format t "~a~%" error)))

(format t "Final result: ~a~%" *result*))
arithmetic error DIVISION-BY-ZERO signalled Final result: NIL.
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Catching Conditions [2]

unwind-protect
CL-USER> (defparameter *result* nil)

(let ((x (random 3)))
(handler-case

(unwind-protect
(progn

(setf *result* (/ 123 x))
(format t "new result is: ~a~%" *result*))

(setf *result* 0)
(format t "cleaned up: ~a~%" *result*))

(division-by-zero (error)
(format t "~a~%" error)))

(format t "final result: ~a~%" *result*))
cleaned up: 0
arithmetic error DIVISION-BY-ZERO signalled
final result: 0
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Links

• Cool article by Paul Graham on programming languages:
http://www.paulgraham.com/avg.html

• “Practical Common Lisp” failure handling chapter:
http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-and-restarts.html
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Organizational Info

• Assignment due: 08.11, Wednesday, 23:59 German time.
• Assignment points: 10 points.
• Next class: 09.11, 14:15.
• Lecturer: Gaya
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Q & A

Thanks for your attention!
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