
Artificial 
Intelligence

Robot Programming with Lisp
3. Object-Oriented Programming

and Failure Handling

Gayane Kazhoyan, Arthur Niedzwiecky

Institute for Artificial Intelligence
University of Bremen

2nd of November, 2017



Artificial 
Intelligence

Contents

Structures and Hash Tables

Common Lisp Object System (CLOS)

Generic Programming

Failure Handling

Organizational and Links

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
2



Artificial 
Intelligence

Structures

Handling Structs
CL-USER> (defstruct player

id
(name "mysterious stranger" :type string)
(hp 10 :type integer)
(mp 0 :type integer)
and-so-on)

CL-USER> (defvar *player* (make-player :name "Turtle" :and-so-on '123))

*player*
#S(PLAYER :ID NIL :NAME "Turtle" :HP 10 :MP 0 :AND-SO-ON 123)
CL-USER> (player-name *)
"Turtle"
CL-USER> (defvar *player-copy* (copy-player *player*))

(setf (player-name *player-copy*) "Cat")

*player-copy*
#S(PLAYER :ID NIL :NAME "Cat" :HP 10 :MP 0 :AND-SO-ON SOME-DATA)
CL-USER> *player*
#S(PLAYER :ID NIL :NAME "Turtle" :HP 10 :MP 0 :AND-SO-ON 123)

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
3



Artificial 
Intelligence

Hash Tables

Handling Hash Tables
CL-USER> (defvar *table* (make-hash-table :test 'equal))

*TABLE*
CL-USER> *table*
#<HASH-TABLE :TEST EQUAL :COUNT 0 {100A84AF03}>

CL-USER> (setf (gethash "MZH" *table*) "Bibliothekstrasse 3"
(gethash "TAB" *table*) "Am Fallturm 1")

"Am Fallturm 1"
CL-USER> (gethash "MZH" *table*)
"Bibliothekstrasse 3"
T

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
4



Artificial 
Intelligence

Contents

Structures and Hash Tables

Common Lisp Object System (CLOS)

Generic Programming

Failure Handling

Organizational and Links

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
5



Artificial 
Intelligence

Classes
Handling Classes
CL-USER> (defclass shape ()

((color :accessor get-shape-color
:initarg :set-color)

(center :accessor shape-center
:initarg :center
:initform '(0 . 0))))

#<STANDARD-CLASS SHAPE>
CL-USER> (defvar *red-shape* (make-instance 'shape :set-color 'red))

*RED-SHAPE*
CL-USER> (describe *red-shape*)
#<SHAPE {100536B6A3}>
[standard-object]

Slots with :INSTANCE allocation:
COLOR = RED
CENTER = (0 . 0)

CL-USER> (get-shape-color *red-shape*)
RED
Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
6



Artificial 
Intelligence

Classes [2]

Inheritance
CL-USER> (defclass circle (shape)

((radius :initarg :radius)))
#<STANDARD-CLASS CIRCLE>
CL-USER> (defvar *circle*

(make-instance 'circle :set-color 'green :radius 10))

*CIRCLE*
CL-USER> (describe *circle*)
#<CIRCLE {1005F61973}>
[standard-object]

Slots with :INSTANCE allocation:
COLOR = GREEN
CENTER = (0 . 0)
RADIUS = 10

CL-USER> (slot-value *circle* 'radius)
10

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
7



Artificial 
Intelligence

Lisp class vs. Java class

Lisp classes have / support:
• attributes
• getter-setter methods
• multiple inheritance

Lisp classes don’t have:
• attribute access specifications (managed with package namespaces)
• methods

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
8



Artificial 
Intelligence

Contents

Structures and Hash Tables

Common Lisp Object System (CLOS)

Generic Programming

Failure Handling

Organizational and Links

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
9



Artificial 
Intelligence

Function Overloading: Generic Programming

Defining Generic Functions
CL-USER> (defgeneric area (x)

(:documentation "Calculates area of object of type SHAPE."))
CL-USER> (area 1)
; #<SIMPLE-ERROR "~@<There is no applicable method for ..."
CL-USER> (defmethod area (x)

(error "AREA is only applicable to SHAPE instances"))
CL-USER> (defmethod area ((obj shape))

(error "We need more information about OBJ to know its area"))
CL-USER> (defmethod area ((obj circle))

(* pi (expt (slot-value obj 'radius) 2)))
CL-USER> (area 1)
; #<SIMPLE-ERROR "AREA is only applicable to SHAPE instances">
CL-USER> (area *red-shape*)
; #<SIMPLE-ERROR "We need more information about OBJ to know its area"
CL-USER> (area *circle*)
314.1592653589793d0

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
10



Artificial 
Intelligence

Function Overloading: Generic Programming [2]

Method combinations: :before, :after, :around
CL-USER> (defmethod area :before (obj)

(format t "Before area. "))
CL-USER> (area *circle*)
Before area.
314.1592653589793d0
CL-USER> (defmethod area :around ((obj shape))

(format t "Taking over shape area. "))
CL-USER> (area *red-shape*)
Taking over shape area.
CL-USER> (defmethod area :around ((obj shape))

(format t "Taking over shape area. ")
(call-next-method))

CL-USER> (area *red-shape*)
Taking over shape area. Before area. ; #<SIMPLE-ERROR "We need ..."
CL-USER> (defmethod area :around ((obj shape))

(round (call-next-method)))
CL-USER> (area *circle*)
Before area. 314
Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
11



Artificial 
Intelligence

Function Overloading: Generic Programming [3]

Custom :method-combination
CL-USER> (defgeneric awesome-function (x)

(:method-combination +))
#<STANDARD-GENERIC-FUNCTION AWESOME-FUNCTION (0)>
CL-USER> (defmethod awesome-function + ((x number))

x)
#<STANDARD-METHOD AWESOME-FUNCTION + (NUMBER) {1006E16443}>
CL-USER> (awesome-function 2)
2
CL-USER> (typep 2 'number)
T
CL-USER> (typep 2 'integer)
T
CL-USER> (defmethod awesome-function + ((x integer))

x)
#<STANDARD-METHOD AWESOME-FUNCTION + (INTEGER) {10072D6323}>
CL-USER> (awesome-function 2)
4

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
12



Artificial 
Intelligence

OOP in Lisp
Summary

OOP:
• Everything is an object.
• Objects interact with each other.
• Methods “belong” to objects.

Functional programming:
• Everything is a function.
• Functions interact with each other.
• Objects “belong” to (generic) functions.

OOP principles in Lisp:
• inheritance (defclass)
• encapsulation (closures)
• subtyping polymorphism (defclass)
• parametric polymorphism (generic functions)

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
13



Artificial 
Intelligence

Contents

Structures and Hash Tables

Common Lisp Object System (CLOS)

Generic Programming

Failure Handling

Organizational and Links

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
14



Artificial 
Intelligence

Invoking Conditions

define-condition, error
CL-USER> (error "oops, something went wrong...")
; #<COMMON-LISP:SIMPLE-ERROR "oops, something went wrong...">.
CL-USER> (define-condition input-not-a-number (simple-error)

((actual-input :initarg :actual-input
:reader actual-input
:initform nil))

(:report (lambda (condition stream)
(format stream "~a is not a number!"

(actual-input condition)))))
INPUT-NOT-A-NUMBER
CL-USER> (let ((input (read)))

(if (numberp input)
input
(error (make-condition 'input-not-a-number

:actual-input input))))
asdf
; Evaluation aborted on #<COMMON-LISP-USER::INPUT-NOT-A-NUMBER>.

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
15



Artificial 
Intelligence

Catching Conditions
handler-case
CL-USER> (defparameter *result* nil)

(let ((x (random 3)))
(setf *result* (/ 123 x))
(format t "new result is: ~a~%" *result*)
(setf *result* 0)
(format t "cleaned up: ~a~%" *result*))

; Evaluation aborted on #<DIVISION-BY-ZERO {1008D6E5B3}>.
CL-USER> (defparameter *result* nil)

(let ((x (random 3)))
(handler-case

(progn (setf *result* (/ 123 x))
(format t "new result is: ~a~%" *result*)
(setf *result* 0)
(format t "cleaned up: ~a~%" *result*))

(division-by-zero (error)
(format t "~a~%" error)))

(format t "Final result: ~a~%" *result*))
arithmetic error DIVISION-BY-ZERO signalled Final result: NIL.
Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
16



Artificial 
Intelligence

Catching Conditions [2]

unwind-protect
CL-USER> (defparameter *result* nil)

(let ((x (random 3)))
(handler-case

(unwind-protect
(progn

(setf *result* (/ 123 x))
(format t "new result is: ~a~%" *result*))

(setf *result* 0)
(format t "cleaned up: ~a~%" *result*))

(division-by-zero (error)
(format t "~a~%" error)))

(format t "final result: ~a~%" *result*))
cleaned up: 0
arithmetic error DIVISION-BY-ZERO signalled
final result: 0

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
17



Artificial 
Intelligence

Contents

Structures and Hash Tables

Common Lisp Object System (CLOS)

Generic Programming

Failure Handling

Organizational and Links

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
18



Artificial 
Intelligence

Links

• Cool article by Paul Graham on programming languages:
http://www.paulgraham.com/avg.html

• “Practical Common Lisp” failure handling chapter:
http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-and-restarts.html

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
19

http://www.paulgraham.com/avg.html
http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-and-restarts.html


Artificial 
Intelligence

Organizational Info

• Assignment due: 08.11, Wednesday, 23:59 German time.
• Assignment points: 10 points.
• Next class: 09.11, 14:15.
• Lecturer: Gaya

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
20



Artificial 
Intelligence

Q & A

Thanks for your attention!

Structures and Hash Tables CLOS Generic Programming Failure Handling Organizational and Links

Gayane Kazhoyan, Arthur Niedzwiecky

2nd of November, 2017

Robot Programming with Lisp
21


	Structures and Hash Tables
	Common Lisp Object System (CLOS)
	Generic Programming
	Failure Handling
	Organizational and Links

