EASE - EVERYDAY ACTIVITY SCIENCE AND ENGINEERING

Discovering and Exploiting the "Manifolds" of Human Problem-Solving for Robots

Michael Beetz Kerstin Schill Tanja Schultz John Bateman Gordon Cheng Hagen Langer

Overview

Research Area H

RA H: Role in EASE

- observe human activity and interpret activity descriptions
- represent collect recorded data as NEEMs
- interpret and abstract NEEMs into layered activity models
- hypothesize promising PEAMs

RA H: Objectives and Measures of Success

 Goal: understand how people perform vaguely formulated everyday manipulation tasks

• Objectives:

- Acquiring and managing multimodal, semantically annotated, high-volume data sets of humans performing vaguely formulated everyday manipulation tasks
- Learning descriptive and causal models of everyday manipulation activities

Measures of success:

- queries that can be answered based on the learned generalized descriptive and predictive models
- PEAMs

Starting points

Methodology applied in RA H

Subproject H01:

Acquiring activity models by situating people in virtual environments

H01 workbench for openEASE

Acquiring Activity Models by Situating People in Virtual Environments

Schill Zachmann Herrmann

pos

Research Questions

Q1: coordination & planning of senses and motor control in impossible situations Q2: simulation of virtual hand manipulation with virtual objects in virtual worlds

Goals and Methods

G1: data collection, interpretation, and representation G2: faithful virtual hand model for natural manipulation

Beyond State of the Art

BSOA1: understanding of adaptivity and strategies for dealing with ambiguous and uncertain information

BSOA2: manifolds and parratives of hand ma-

BSOA2: manifolds and narratives of hand manipulation
BSOA3: VR manipulation including hantic rep-

BSOA3: VR manipulation including haptic rendering

Integration in EASE

R1: data collection from VR manipulation

Subproject H02:

Mining and explicating instructions for everyday activities

Mining and Explicating Instructions for Everyday Activities

Bateman

Malaka

pos

Research Questions

Q1: how can we extract proto-narratives from text?

Q2: computation environment for harvesting for explicating proto-narratives

Q3: evaluation of harvested knowledge in the robotic agent domain

Goals and Methods

G: finding a fitting ensemble of NLP and human computation approaches to generate explicated representations of everyday activities out of textual instructions

Beyond State of the Art

BSOA1: extent to which relevant information is extracted from instructional texts BSOA2: handling of ambiguities and alternative explications through human computation

Integration in EASE

R: gathering basic proto-narratival information from nl descriptions and from human computation experiments

Subproject H03:

Natural activity statistics

13

H03 Approach

Schill

Research Questions

Q1: how can we identify the "manifolds" underlying human everyday activities, in particular with respect to the motor components?
Q2: how can we generate probabilistic models from a large collection of sensor recordings?
Q3: how can we apply statistical methods to the high-dimensional spatio-temporal activity patterns to build hierarchical representations?

Goals and Methods

G: integration of low-level (spatio-temporal trajectories) and high-level information (symbolic descriptions, plans) in a manifold learning approach

Beyond State of the Art

BSOA1: unsupervised learning of the complete hierarchical representation by variants of established learning paradigms (PCA,ICA,SFA) BSOA2: integrated and coherent description of complex motion sequences by low-dimensional manifolds

Integration in EASE

R: H3 is the central project for statistical analysis and data reduction of low-dimensional manifolds

Research Area H

16

Research Area P

RA P: Role in EASE

- provide foundations for the formalisation of and reasoning about everyday activities
- establish principles for the information representation and processing required
- provide ontologies, reasoners, and semantic specifications mediating NEEMs and PEAMs
- interfacing to hybrid reasoning in research area R

RA P: Role in EASE

- provide foundations for the formalisation of and reasoning about everyday activities
- establish principles for the information representation and processing required
- provide ontologies, reasoners, and semantic specifications mediating NEEMs and PEAMs
- interfacing to hybrid reasoning in research area R

Intuition & Ambition

From several quite distinct perspectives, strikingly similar approaches, requirements and solutions are being pursued: it is now time to leverage off this situation to achieve a **new level of performance**: EASE makes this possible.

RA P: Objectives and Measures of Success

 Goal: design, realize, and evaluate a new generation of logic-based knowledge representation and processing infrastructure enabling the mastery of everyday manipulation actions

• Objectives:

- Defining models, knowledge structures, and reasoners necessary for formalising everyday activities (for NEEMs)
- Flexibly capturing levels of qualitative abstraction for mediating between everyday behavior and formal specification using a spectrum of formal languages
- Optimising reasoning by exploiting PEAMs
- Formalizing plans for mastering everyday activities and investigating the properties of those plans and their preservation under plan revisions

RA P: Objectives and Measures of Success

 Goal: design, realize, and evaluate a new generation of logic-based knowledge representation and processing infrastructure enabling the mastery of everyday manipulation actions

• Objectives:

- Defining models, knowledge structures, and reasoners necessary for formalising everyday activities (for NEEMs)
- Flexibly capturing levels of qualitative abstraction for mediating between everyday behavior and formal specification using a spectrum of formal languages
- Optimising reasoning by exploiting PEAMs
- Formalizing plans for mastering everyday activities and investigating the properties of those plans and their preservation under plan revisions

Measures of success:

- growing repertoire of formalised queries relying directly on enhanced inferential capabilities
- demonstrated principles of knowledge representation, derived and validated for all knowledge areas required

Starting Points: Three ${\cal P}$ erspectives

- P-projects individually and with respect to the international state of the art
- P-projects in relation to one another and in relation to the EASE CRC as a whole
- The added value of performing the P-projects within the context of EASE: what is the difference?

Subproject P01:

Embodied semantics for the language of action and change

Premise and SoA:

 Language understanding demands abstract, qualitative, embodied simulation

- but this cannot be 'complete' simulation!
- existing approaches limited in scale, in embodied realization, and formalisation

Challenges:

• achieving combination of simulation and qualitative formal semantics for 'embodied semantics'

Subproject P01:

Embodied semantics for the language of action and change

Subproject P02:

Rightsizing ontologies

Premise and SoA:

- intelligent everyday behavior requires substantial knowledge (Cyc, etc.)
- existing technology for ontology reasoning unable to cater for the demands of reasoning in performing everyday activities adequately

Challenges:

 to bridge gap between expressive languages for KR and lightweight languages for efficient reasoning

Subproject P02:

Rightsizing ontologies

Approach and Methods:

- develop a rigorous and comprehensive theory of ontology approximation in DLs
- guided by the demands of agents executing everyday activities
- new results in knowledge compilation
- answering questions of conditions, completeness, implications, trade-offs, heterogeneity

Subproject P03:

Spatial reasoning in everyday activity

Premise and SoA:

 Human-level performance requires cognitively-motivated spatiotemporal formalisations and use of the environment

Challenges:

- achieving methods, algorithms and tools for computational representation and reasoning about qualitative space and motion
- direct action-based problem solving using computational models of strong spatial cognition

Subproject P03:

Spatial reasoning in everyday activity

Methods:

- Space and motion relations and patterns are first-class objects supporting direct integration with KR methods via qualitative reasoning approaches
- Human spatial knowledge formalized to exploit direct manipulation, capturing externalised, distribution cognition

Subproject P04:

Formalizations and properties of plans

Premise and SoA:

- substantial properties of plans can be formally specified and verified for behavior prior to execution
- existing approaches restricted by scale and flexibility of scenarios

Challenges:

- formalize and draw inferences about the guaranteed behavior of a plan
- create efficient reasoning tools for verifying formal properties of robot plans

Subproject P04:

Formalizations and properties of plans

Methods:

- offline/online/on-the-fly verification
- partial order reduction (POR)
- symbolic simulation
- improvements in error-handling and scaling
- annotation of CRAM plans with property specifications


```
(let ((k 0.5)
      (current-location-fluent (make-fluent))
      (goal-location mil)
      (arrived? (< (v-dist (value current-location-fluent)
                           goal-location)
                   distance-threshold)))
  (loop do (setf goal-location (generate-random-goal-location))
     (try-all
       (1000
          do (send-velocity-command
              (v* (v- goal-location
                       (value current-location-fluent)) k))
             (setf (value (current-location-fluent))
                   (current-robot-position)))
       (wait-for arrived?))
      (whenever arrived?
       (say "Hello, world!")))))
```


P-projects: interrelationships within P

- The P-projects can be seen collectively as solving a
 portfolio of formalisation challenges essential for gaining control of
 the central reasoning tasks involved in modeling and performing
 activities intelligently
- The projects constitute a logic-based and closely interacting network of research activities, thereby maximising synergies and added-value of re-use

P01 Instruction: "And better make sure everyone gets something to drink"

- context: at home, setting table for guests
- underspecified action: simulation semantics
- resolution of activities, unmentioned people, objects and actions
- glasses, drink, pouring liquids, movement to table, place settings

P01 Instruction: "And better make sure everyone gets something to drink"

- context: at home, setting table for guests
- underspecified action: simulation semantics
- resolution of activities, unmentioned people, objects and actions
- glasses, drink, pouring liquids, movement to table, place settings

P02 Background knowledge and ontology:

- household, dining room, table, plates, knives, forks
- drinks \Rightarrow activities: containers, glasses
- rightsized for effective reasoning

P01 Instruction: "And better make sure everyone gets something to drink"

- context: at home, setting table for guests
- underspecified action: simulation semantics
- resolution of activities, unmentioned people, objects and actions
- glasses, drink, pouring liquids, movement to table, place settings

P02 Background knowledge and ontology:

- household, dining room, table, plates, knives, forks
- drinks \Rightarrow activities: containers, glasses
- rightsized for effective reasoning

P03 Activities and movement:

- spatiotemporal reasoning and problem solution: getting the drinks to the table, getting the liquid in glasses, the robot to the table
- building on situated activities and bottom-up data
- producing simulations of solutions

P01 Instruction: "And better make sure everyone gets something to drink"

- context: at home, setting table for guests
- underspecified action: simulation semantics
- resolution of activities, unmentioned people, objects and actions
- glasses, drink, pouring liquids, movement to table, place settings

P02 Background knowledge and ontology:

- household, dining room, table, plates, knives, forks
- drinks \Rightarrow activities: containers, glasses
- rightsized for effective reasoning

P03 Activities and movement:

- spatiotemporal reasoning and problem solution: getting the drinks to the table, getting the liquid in glasses, the robot to the table
- building on situated activities and bottom-up data
- producing simulations of solutions

P04 Activities and plans: Verification

- take the glasses and drinks to the table and set them out
- plan verification: is the plan formally correct?
- passing on verified plans to robot
- potential on-the-fly hindrances and correction

P-Projects: interrelationships within EASE: overview

The best of three worlds...

- Direct empirical data (behavioral, perceptual, movement) from situated performance of everyday activities from the H-area
- Realistic grounding in explicit robotic models of activities and embodied perception in the R-area
- Formalisation of knowledge and reasoning at varying levels of qualitative abstraction: refining results from H and producing testable models for R

The 'EASE factor': what participation in EASE adds

- Each of the P-projects explores ground-breaking research tasks already internationally at the state-of-the-art or beyond
- Drawing on this foundation, embedding within the EASE scenario and framework provides an unprecedented opportunity for taking those research tasks to the next level: anchoring both in empirical data and in robotic embodiments
- This **multiple feedback loop** is precisely what has been missing in more isolated research directions hitherto
- Long-term perspectives opened up for sustained results advancing the forefront of international research in each of the areas addressed, to be documented in leading journals and conferences

Research Area R

RA R: Role in EASE

- Boosting information processing for robots by exploiting episodic memory systems
- Acquisition of commonsense and naive physics knowledge as a big data analytics problem
- Radically simplify hard perception tasks through background knowledge and NEEMs
- Construct robust perception systems by combining ensembles of limited algorithms
- Realistically and fast predict symbolic qualitative action effects to parametrize actions
- Autonomously learn simulation models from real-world NEEMs
- Generic robot plans that context-sensitively infer action parameters given desired effects
- Optimize generic robot plans through exploitation of regularities of everyday activity
- Episodic memories for challenging hand manipulation activities
- Rapidly learn from few examples using NEEMs and episode mirroring

RA R: Objectives and Measures of Success

Goal: investigate and construct the EASE control framework including perception, learning, and reasoning mechanisms

Objectives: realize the

- NEEM-based knowledge system
- perception-based and simulation-based reasoning
- plan-based control framework

Measures of success:

- benchmark queries to test the cognitive capabilities
- performance increase
- autonomy in adaptation of generic plans

Starting points - Embodying plan execution

Methodology applied in Area R

Subproject R01

NEEM-based embodied knowledge system

R01 Scientific Goals

- Development of an embodied knowledge acquisition, representation, and management framework.
 - artificial episodic memories indexed through symbolic narratives
 - declarative knowledge subsystems for everyday activity knowledge
 - experience analytics subsystem to extract commonsense and naive physics knowledge
- Investigation of a physically embodied query answering service for knowledge completion.

R01 Approach

Collecting NEEMs and Learning generalized knowledge from NEEMs

Subproject R02

Multi-cue perception based on background knowledge

R02 Scientific Goals

- 3D-object localization in, e.g. cupboards and dishwasher
- Extreme occlusion
- Utilize background knowledge and memory to foster recognition
- "PEAM of objects inside containers"

R02 Approach

- Comprehensive Bayesian model of relevant cues and phenomena – geometric depth, edges, color, reflections
- Inference Algorithm for this combination
- Integration with RoboSherlock (UIMA) framework

Subproject R03

Embodied simulation-enabled reasoning

R03 Scientific Goals

- Simulation-enabled reasoning engine for robots
- Integration of simulation-enabled reasoning into the perception-action loops of the robots
- Simulations for naive physics and commonsense reasoning
- Learning simulation models from NEEMs

R03 Approach

Develop a qualitative reasoning method that reasons about actions and their effects based on the mental simulation-based predictions.

Subproject R04

Specializing and optimizing generic robot plans

R04 Scientific Goals

- Use PEAMs to improve task performance of generic robot plans for particular task contexts
- Consider plans as executable and modifiable behavior specification subject to reasoning
 - Plans as subjects of learning: Analyse plans and NEEMs to detect flaws and opportunities
 - Plans as high-performance inference engines: Learn query-specific knowledge bases
 - Plans as interpreters of vague action descriptions: Specify actions using desired effects

R04 Approach

A generalized action plan for pouring

```
def-plan pour (\langle theme\rangle : (some stuff)
                 (source): (an object
                                 (type container)
                                  (contains (theme)))
                 (dest) : (a location))
     begin
        1. reach( (source))
        2. lift( (source)) (a location (above (dest)))
        3. tilt( (source))
           until (amount (some stuff (at \langle dest \rangle))
                     > (amount (theme))
     end
```


Subproject R05

Episodic memory for everyday manual activities

R05 Scientific Goals

- NEEM-based information processing and control models for manual manipulation actions
- link semantic and procedural knowledge representations via NEEMs in order to scale to large numbers of action patterns
- use of NEEMs and episode mirroring to accelerate learning novel hand manipulation skills from very few example episodes

R05 Approach

- Exploration informed by NEEMs
- NEEMs as link between semantic and procedural memories
- Exploitation of grasp synergies (PEAM)

Research Area R

Infrastructure Projects

Z Project Management F Technical Coordination (Lab/Experiments) MGK Integrated Research Training Group INF Information/Data Management

- coordinate the scientific work (Z)
- provide the necessary administrative infrastructure for EASE (Z)
- public relations, dissemination, and exploitation (Z)
- technical management of lab, robots, experimental equipment (F)
- integrated research training group (MGK)
- information and data management (INF)
- support general aims, e.g. scientific excellence, gender equality, international networking (all)

subproject Z

Project Management

- coordinate the scientific work
- provide the necessary administrative infrastructure for EASE
- public relations, dissemination, and exploitation

Recent dissemination activities

Subproject F

EASE central lab, robots, experimental equipment

- build three new robotic platforms and update current ones
- technical support for experiments
- software integration
- hold tutorials for the use of EASE software components

Subproject MGK

Integrated Research Training Group

- Acquiring scientific excellence in research areas related to EASE
- Acquiring soft skills, e.g. scientific writing, project management, oral
 presentation and teaching techniques, language skills, dissemination
 strategies for scientific results, etc.
- Opportunities for cooperative research with scientists from other disciplines
- International experience and networking with experts
- Reduction of graduation time to a maximum of 3-4 years

Subproject INF

Information and Data Management

- Store, manage, and maintain DBs and KBs
- Make them accessible outside of EASE
- Make results reproducible and encourage the community sharing research data
- Provide data in downloadable form and web service

