
KNOWROB — Knowledge Processing for Autonomous Personal Robots

Moritz Tenorth and Michael Beetz
Intelligent Autonomous Systems, Technische Universität München

{tenorth, beetz}@cs.tum.edu

Abstract— Knowledge processing is an essential technique
for enabling autonomous robots to do the right thing to the
right object in the right way. Using knowledge processing
the robots can achieve more flexible and general behavior
and better performance. While knowledge representation and
reasoning has been a well-established research field in Artificial
Intelligence for several decades, little work has been done to
design and realize knowledge processing mechanisms for the
use in the context of robotic control.

In this paper, we report on KNOWROB, a knowledge pro-
cessing system particularly designed for autonomous personal
robots. KNOWROB is a first-order knowledge representation
based on description logics that provides specific mechanisms
and tools for action-centered representation, for the automated
acquisition of grounded concepts through observation and
experience, for reasoning about and managing uncertainty, and
for fast inference — knowledge processing features that are
particularly necessary for autonomous robot control.

I. INTRODUCTION

As the complexity of tasks to be accomplished by personal
robots is steadily increasing we cannot afford to explicitly
spell out every detail of every course of action in every
conceivable situation.

Consider, for example, a personal robot that is to set
the table. Obviously, we cannot specify all aspects of the
required actions explicitly: where to stand when reaching
for a cup, which hand to take, which grasp to use, etc —
and these aspects for every object and every context. Rather,
we have to specify general and flexible control routines that
automatically adjust their execution to the particular situation
at hand.

In order to code control routines in such general manners,
the robot has to be capable of inferring the detailed course
of action and the action parameterizations using the required
abstract and symbolic knowledge pieces. That is, knowledge
processing is a resource for doing the right thing to the right
object in the right way. To this end, robots must be equipped
with a comprehensive body of knowledge and dedicated
knowledge processing capabilities that allow for better state
estimation, context assessment, and better informed action
selection and parameterization.

To be applicable to autonomous robot control, knowledge
representation and processing should address the following
aspects, which are typically not sufficiently covered by AI
knowledge representation and processing mechanisms.
• Action-centered knowledge representation. Action-

related concepts like the places where certain manipula-
tions can be performed or the grasp of a bottle for filling

SetTable-1

PickingUpAnObj-3

objActedOn:Cup-2
doneBy:Florian-4
bodyPartsUsed:LeftHand-1

Reaching-14

objActedOn:Cup-2
doneBy:Florian-4
bodyPartsUsed:LeftHand-1

TakingSomething-14

objActedOn:Cup-2
doneBy:Florian-4
bodyPartsUsed:LeftHand-1

PuttingDown-14

objActedOn:Cup-2
doneBy:Florian-4
bodyPartsUsed:LeftHand-1

Releasing-14

... ...

PuttingDownAnObj-3

PuttingSomethingSomewhere-3 PuttingSomethingSomewhere-4

subEventssubEventssubEventssubEvents

subEvents

......

Moving-27

fromLocation: Place-17
toLocation: Place-4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Human pose vector
(51 DOF)

Motion Segmentation: CRF, GPDM

Fig. 1. Hierarchical action model: The continuous pose sequence (bottom)
is segmented into primitive movements (Reaching, etc) and combined with
additional information from the sensor network and the object recognition
system. The model is automatically constructed by matching definitions of
higher-level concepts against these observations, e.g. that picking something
up subsumes reaching towards and taking it.

a glass are central for a robot performing manipulation
tasks.

• Automated acquisition of grounded concepts through
observation and experience. Symbolic knowledge in the
robot’s knowledge base has to be grounded in data struc-
tures from the perception system and in parametriza-
tions of actions. The knowledge processing system
should thus work directly on the data structures used
for robot control such as 3D environment models, or log
data from plan execution, and should abstract the high-
dimensional data into compact symbolic representations
for efficient reasoning (Figure 1).

• Managing uncertainty. Uncertainty caused by sensor
noise, by limited observability, by hallucinated object
detections, by incomplete knowledge, and by unreliable
and inaccurate actions must be taken into account.

• Fast inference. The knowledge processing system of a
robot must provide answers quickly compared to the
execution times of manipulation tasks.

In this paper we describe key components and mechanisms
for a practical knowledge processing system specifically
designed for autonomous robots that are to perform everyday
manipulation tasks. The main contributions of this paper are:

• We describe a complete, practical knowledge process-
ing system that integrates encyclopedic knowledge, an
environment model, action-based reasoning, and human
observations and allows to access all this information in
a uniform, symbolic way.

• The system allows for symbolic queries of continuous
sensor data observed in a real-world environment.

• We introduce computable classes and properties for
creating instances from observed data and action models
as a powerful means for discovering a class structure
among action-related concepts.

In the remainder of this paper we proceed as follows. We
start with an overview over related work, explain the general
structure of the system and continue with chapters about
the knowledge representation, the inclusion of external data
using computable classes and properties, and the learning of
action models from data. We present the results we obtained
using the presented methods and finish with our conclusions.

II. RELATED WORK

Knowledge representation is a well-researched topic in AI,
and there exist huge knowledge bases covering encyclopedic
knowledge with large breadth and width, one of the most
prominent being Cyc [1]. Unfortunately, they are only of
limited use for autonomous robot control: As mentioned in
the introduction, robots have very specific demands which
are usually not met by these knowledge bases.

One of the main problems is that the abstract concepts
therein are not linked to the perception and actuation system
of the robot. This link between the abstract knowledge repre-
sentation and a particular control system of a robot is called
the (symbol) grounding problem [2]. There are few knowl-
edge representation systems tailored to robotics applications.
The Grounded Situation Models, described by Mavridis [3],
integrate continuous and stochastic data with categorical
information in a grounded fashion, but their “world” is just a
white table with coloured blocks on top. A formal knowledge
representation is missing, as is the complexity inherent in
real-world tasks. The knowledge representation of the PEIS
ecology project [4] focuses mainly on the representation of
objects and the perceptual anchoring, i.e. maintaining the link
between perceptual sensations and symbolic concepts, but
does not deal with action-related knowledge. The probably
most related system is the OMRKF framework by Hong
Suh et al. [5], which is also a Prolog-based knowledge
representation modeling objects and perceptual concepts as
well as actions and situations. Our system differs from
these systems in that it features a robot acting in a real
human environment, observing and reasoning about human
and robot activities, and combines these observations with
encyclopedic and common-sense knowledge. Our system
is based on state-of-the-art semantic web technology that
allows us to re-use existing sources of knowledge whenever
available.

III. KNOWLEDGE PROCESSING FRAMEWORK

We will explain the system using the an example of setting
a table, a typical mobile manipulation task for a household
robot.

Fig. 2. System structure; the block in the center is explained in more detail
in Figure 3. The data produced by the perception (robot log data, human
motion tracking and environment information) can be accessed from within
the knowledge base using computable predicates (displayed in green).

A. System Overview

Figure 2 shows the main modules of the system. Our
robot is acting in a sensor-equipped kitchen environment
[6] which includes laser range finders, cameras, magnetic
sensors for detecting if a cupboard is opened, and radio-
frequency identification (RFID) tag readers for identifying
objects. Further perception modules create 3D environment
maps, track human motions, and record log data of robot
actitivies (Section III-C). These data structures are linked to
the knowledge processing system using computable classes
and properties, which load the data and represent them as
instances in the knowledge base (Section III-D).

Our implementation is based on SWI Prolog and its
Semantic Web library which serves for loading and ac-
cessing ontologies represented in the Web Ontology Lan-
guage (OWL) using Prolog predicates like owl assert() or
owl query(). The knowledge base can either be queried
from within the robot control program, from the command
line or using a graphical user interface. An interface to
the YARP [7] middleware faciliates the integration into the
robot control program. The graphical user interface allows to
manually analyze the data, to send and to visualize queries;
all visualisations shown in this paper were created using this
tool.

In this paper, the term “autonomous system” does not
only refer to the mobile robot, but the integrated hardware-
software system which comprises mobile and fixed compo-
nents like a robot and a sensor network; “autonomous” is
used as “no human interaction during operation”.

B. Knowledge Representation

Figure 3 provides an overview of the represented types of
knowledge and the different modules of the system.

The knowledge is represented in description logics us-
ing OWL. In description logics, there are two main lev-
els of modeling: Classes, sometimes also referred to as
concepts, and instances. The class level contains abstract
terminological knowledge like the types of objects, events
and actions, organized in a taxonomic structure. Instances

Fig. 3. Overview diagram showing the relations between encyclopedic class knowledge (upper grey block), instances of these classes (bottom center),
computable classes and properties which load data into the system (bottom right), and action models which are learned from observations on demand
(bottom left). Computables create instances from data, action models learn classes from a set of instances.

represent concrete, physical objects or actually performed
actions. Properties link classes or instances. All relations are
formulated as (Subject, Property, Object) triples.

The encyclopedic knowledge, depicted in the upper grey
part, models classes of things in the environment and pro-
vides the general categories the robot describes his environ-
ment with. The overall structure and some of the concepts are
inspired by the Cyc ontology [1]. We selected those concepts
that are relevant for a mobile robot and added classes where
the level of detail was not sufficient.

A few instances are shown in the blue block in the bottom
center. In our system, they model either physical objects,
performed actions or observed events. These instances can
be created automatically from observations using computable
classes and properties which are depicted in the green block
in the bottom right and described in detail in Section III-D.

While computables serve for creating instances from ob-
servations, action models generate new classes from the
observed data (depicted in the red block in the bottom
left). Using embedded classifiers, the system searches for
groups of instances that share common properties and could
be put into the same subclass, thereby effectively creating
a subclass of the current concept. In this paper, we use
the example of learning subclasses of “ManipulationPlace”.
However, our approach is more general and can be used for
any kind of action-related concept, i.e. each class that can
be characterized by its role in actions. Action models are
described in Section III-E.

C. Data structures from the Perception System

Data created from the different perception modules are
the basis for many reasoning tasks. Information about fixed
objects in the environment is provided by a semantic environ-
ment map created from 3D laser scans. During the mapping
process, the point clouds created by the laser scanner are
segmented into single objects, which are then classified into
categories like “Cupboard” or “Dishwasher” as described in
[8]. These categories correspond to classes in the knowledge
base, the detected objects are thus represented as instances of

these classes, together with properties like their dimensions
or position.

Mobile objects are detected by the vision system [9] or a
set of radio-frequency ID (RFID) tag readers in the kitchen.
Therefore, the respective instances have a link to the vision
model which can be used to match it in the camera image,
or the ID of the tag attached to them. Binary sensors in
the sensor network [10] like magnetic switches in doors
and drawers directly produce events of a specified type like
“OpeningADrawer”.

Observations of human actions are obtained from a mark-
erless full-body pose tracking system that estimates human
motions in 51 degrees of freedom based on images from
fixed cameras [11]. Robot actions are recorded using hybrid
automata that are specified in the Robot Learning Language
(RoLL, [12]). These accepting automata allow for recording
detailed log files of performed tasks in an action-centric way,
including internal and external events and the robot’s belief
about the world.

Links from action concepts in the knowledge representa-
tion to plans in the planning system tell the robot how to
execute these actions. Properties of the action concept like
the object to be manipulated become parameters of the plan,
so that the robot handles a cup different from a plate.

D. Computable Classes and Properties

Interfacing the observation system and loading observa-
tions into the knowledge representation is one main purpose
of computables. As depicted by the green arrows in Figure 3,
computables create either instances or relations between
instances as specified in their target property.

By linking computables to the respective properties using
the target relation, we keep the representation of the knowl-
edge itself separate from technical issues like the automatic
creation of instances. Moreover, this setup allows to define
several computables for one property (e.g. one that reads
object information from a vision system and another one
that uses RFID tag readers).

The definition of a computable property specifies the
commands for reading the object or the subject in an OWL

triple:

owl asser t (computeObjX , type , SqlProper ty)
ow l asse r t (computeObjX , ta rge t , objX)
ow l asse r t (computeObjX , se lec tOb jec t ,

”SELECT objx FROM ob jec ts WHERE ac t i on = ’?SUBJECT ’ ”)
ow l asse r t (computeObjX , se lec tSub jec t ,

”SELECT ac t i on FROM ob jec ts WHERE objx = ’?OBJECT ’ ”)

For implementing computables, we modified the functions
for accessing the knowledge base so that they include com-
putables with a matching target into the reasoning process.
The result of computable properties is thereby equivalent to
instances that have been created manually in the knowledge
representation.

In addition to loading observations into the system, com-
putable properties can also be used for calculating new
relations from the existing knowledge. For example, spa-
tial relations between objects, like on, in or below, are
completely determined by the positions of these objects.
Storing both their positions and all possible relations would
cause much overhead, calculating the relations on demand
is much more elegant. For such applications, we are using
JythonComputables, which execute a Jython script instead
of sending an SQL query, but otherwise work like SqlCom-
putables.

E. Action Model Learning

Action models seek for a class structure among a set
of entities, for example all observed ManipulationPlaces,
by grouping those that are similar with respect to certain
properties. The goal is to discover subclasses like a “Put-
down-objects-place” or a “Pick-up-cups-place”. Technically,
this is done by learning a classifier on a set of observations,
the resulting rules then describe the different classes.

The specification of an action model (called the intensional
model) describes its general structure. It comprises a set of
observable features and the class whose subclasses are to be
found. This specification is independent of the environment
and just depends on the relation to be modeled.

An environment-specific instance of the intensional model,
an extensional model consisting of classifier rules, is learned
on demand based on the available data. The intensional
model is specified once by a human expert, all extensional
models are learned autonomously from this specification. In
the observed training data, both the observables and the class
values are known, the process can thus be regarded as a kind
of self-supervised learning.

The definition of an intensional action model is shown
in the following listing and comprises a specification of
the training set of actions (in this case all observed actions
of type ActionOnObject), the observable features and the
predictable class. The associated extensional model consists
of a set of classifier rules mapping from (a subset of) the
observables to the predictable class.

owl asser t (manipActions , onProperty , act ionType)
ow l asse r t (manipActions , hasValue , ’ Act ionOnObject ’)
ow l asse r t (manipActions , type , ’ R e s t r i c t i o n ’)

ow l asse r t (manipPosModel , type , ’ ActionModel ’)

Fig. 4. Observed positions of manipulation actions (left), the positions
clustered into places (center), and the result that has been learned as the
”place for picking up pieces of tableware” (right). The pictures are visualized
results of queries to the knowledge processing system.

owl asser t (manipPosModel , f o rAc t i on , manipActions)

ow l asse r t (manipPosModel , observable , act ionType)
ow l asse r t (manipPosModel , observable , ob jec tC lass)
ow l asse r t (manipPosModel , observable , objX)
ow l asse r t (manipPosModel , observable , objY)
ow l asse r t (manipPosModel , observable , objZ)

ow l asse r t (manipPosModel , p red i c tab le , robotPlace)

When learning an extensional model, the first reasoning
step is to load the training data into the knowledge processing
system, usually via computable properties (Figure 4 left).
Afterwards, the data are abstracted using data mining tech-
niques; in particular, the position are aggregated to clusters
with respect to the Euclidean distance. The resulting clusters
are depicted as ellipses in Figure 4 (center) and each cluster
is given a name: P1 (green cluster), P2 (black cluster),...
Clusters of positions are abstractly represented as places.

actionType objectClass objX objY objZ robotPlace
PickingUpAnObject DinnerPlate 0.48 1.77 0.91 P1
PickingUpAnObject TableKnife 0.32 2.04 0.90 P2
PickingUpAnObject DinnerPlate 0.18 1.78 0.92 P1

PuttingDownAnObject DinnerPlate 2.90 1.99 0.73 P3
PuttingDownAnObject TableKnife 3.07 2.12 0.71 P3
PuttingDownAnObject DinnerPlate 3.21 1.51 0.72 P4

TABLE I
EXCERPT OF DATA OBSERVED WHILE THE ROBOT SET A TABLE.

The system then reads the data of the observable properties
in the training set (Table I) and uses decision tree learning to
extract rules which map from the actions performed and the
types and positions of objects to the place where the robot
was standing. In this small example, the rules are:

actionType = PickingUpAnObject ∧ objectClass = DinnerP late

−→ P1 (prob : 1.00)

actionType = PickingUpAnObject ∧ objectClass = TableKnife

−→ P2 (prob : 1.00)

actionType = PuttingDownAnObject ∧ objX < 3.15

−→ P3 (prob : 1.00)

actionType = PuttingDownAnObject ∧ objX >= 3.15

−→ P4 (prob : 1.00)

The decision tree learning algorithm further outputs a
confidence value which describes the amount of training
examples that support a given rule.This value can be useful
in real settings where the classification is usually not as
perfect as in this little example. While this value yields the
confidence in a single inference step, the description logics-
based framework does not further propagate this uncertainty.
We are currently investigating the use of probabilistic logical
models like Markov Logic Networks, but due to their limited

scalability, we will probably use them only for certain
inference tasks that require full uncertainty propagation.

As can be seen from the rules above, the pick-up places
are mainly determined by the object manipulated; objects of
different kinds are stored at different places in a kitchen.
The put-down places, in contrast, can best be distinguished
based on the seating location, while the types of manipulated
objects provide no clear separation in this case. These rules
are equivalent to concept definitions in description logics and
thus extend the class hierarchy:

PickP lateP lace v actionType.P ickingUpAnObject

u objectClass.DinnerP late

In the remainder of the paper, we will use a shorter
notation for action models that just includes the sets of
observable and predictable properties:

act ionmodel (
observables (act ionType , objectClass , objX , objY , objZ)
p red i c t ab l es (robotPlace , r o b o t O r i e n t a t i o n))

IV. RESULTS

Measuring the performance of a knowledge processing
system is difficult since many of its advantages, like greater
flexibility or generality, are hard to capture in numbers. In
our opinion, the two most important aspects are the variety
of queries that become possible having such a system, and
the speed at which the answers are generated.

A. Realtime Performance

We measured the time for different queries on a standard
dual-core laptop running Debian Linux. The queries on the
environment model presented in the next sections all take less
than 10ms. Since much of the knowledge is directly avail-
able, not much inference is needed and the system achieves
database-like performance. Learning an action model is more
complex, as the training data has to be loaded from the
database, the classifier has to be built and applied to the
observation at hand. For the above example of learning
manipulation places, the whole process needed 1,472,382
inference steps in Prolog and took 1.01s for a dataset of 140
observed manipulation actions. Since the model is cached
afterwards, subsequent queries only need 17,565 inferences
and 0.04s. The high performance is achieved by using
direct computation instead of complex inferences whenever
possible, by caching results, and by modeling in a way that
supports the most common inferences.

B. Locating Objects based on their Function

When a robot is looking for objects, it usually needs them
for a task it is about to perform. By combining the enviro-
ment map with encyclopedic and common sense knowledge,
the robot can query for objects by their functionality. The
required knowledge about actions an object can be used for
is partly already available from Cyc, partly imported from the
OpenMind Indoor Common Sense (OMICS) database [13].
OMICS contains, amongst other things, detailed information
about possible uses of objects that we imported into the
knowledge base.

Fig. 5. Results of queries for objects that can be used for cooking food
(left), for parts of the oven that cause a Boiling event (center) and for
objects that contain drinking vessels (right), visualized by the graphical
user interface of the knowledge processing system.

The left picture in Figure 5 is the result of a query for an
object the robot can use for CookingFood:

o w l r e s t r i c t i o n o n (’ CookingFood ’ , usesDevice , some(?T)) ,
owl query (?S, type , ?T) .

The encyclopedic knowledge base returns the concept
Oven as binding for the variable ?T and the semantic map
locates an oven as displayed in the image. In order to operate
the oven, the robot has to know which part to manipulate to
cause a heating process. The query is shown below, its result
is visualized in the center image in Figure 5.

owl query (?OVEN, properPhysicalPartTypes , ?KNOB) ,
owl query (?OVEN, type , ’Oven ’) ,
owl query (?KNOB, causes - Underspeci f ied , ?HEATING) ,
owl query (?HEATING, postEvents , ?BOILING) ,
owl query (?BOILING , type , ’ B o i l i n g ’) .

The robot can also query the current state of objects, like
cupboards that currently contain cups. The positions of cups
are provided by RFID tag readers inside the cupboards.

owl query (?O, in - ContGeneric , ?S) ,
owl query (?O, type , ?T) ,
owl query (?T , subClassOf , ’ Dr ink ingVesse l ’) .

C. Reasoning about Actions

In Figure 1 we already introduced the hierarchical action
model. The raw input sequence of human pose vectors is first
segmented using Conditional Random Fields, which shall
not be described further in this paper. The resulting motion
segments are the basis for more complex actions, which are
generated autonomously by matching action specifications
against the track of observed motions.

Using the model, the system can perform inference on
higher levels of abstraction, e.g. for selecting all actions
with a certain purpose or all actions performed on the same
kind of object. The results are all linked to the low-level
datastructures describing the human poses while performing
these actions. For instance, a query for all poses during
a table setting episode is shown below and visualized in
Figure 6 (left).

owl query (?A, type , ’ SetTable ’) ,
pos tureForAct ion (?A, ?Posture)

By combining the queries with other information, like the
objects involved, it is possible to select in a more fine-grained
way, for instance the motion for taking a plate out of the
cupboard (Figure 6 right).

owl query (?A, type , ’ TakingSomething ’) ,
owl query (?A, objectActedOn , ?O) ,
owl query (?O, type , ’ D innerPla te ’) ,
pos tureForAct ion (?A, ?Posture)

Fig. 6. Human pose sequences for setting a table (left) and taking a plate
out of the cupboard (right).

D. Completing Underspecified Instructions

Instructions given by humans rarely contain enough in-
formation to be executed directly, but rather require a large
amount of common-sense knowledge to be understood by
a robot. Examples of missing pieces of information are the
exact position and orientation of the knife in a command
like “put the knife left of the plate” or the fact that “in
front of the chair” in a table-setting context actually means
“in front of the chair and on the table”. Much of this
information can be inferred by combining action models with
the environment map. The correct orientation of objects can
be learned depending on the object type and the position in
the environment, for example on a table or inside a cutlery
tray:

act ionmodel (
observables (objectClass , objX , objY , objZ)
p red i c t ab l es (o r i e n t a t i o n))

The fact that items are to be placed on top of the table can
be inferred using the concept of supporting entities: When
the robot knows that each object has to rest on another entity,
it can query the environment model and learn a relation
between the region, the upper object and the most probable
supporting entity:

act ionmodel (
observables (objectClass , objX , objY)
p red i c t ab l es (s u p p o r t i n g E n t i t y))

Being able to understand and generate qualitative descrip-
tions like “on the table” or “inside a cupboard” is crucial
when interacting with humans. For resolving them to metric
values, the system uses computable Jython properties that
implement spatial heuristics. Relations like on or inside are
calculated based on the positions and dimensions of the
objects they relate. For instance, if the outer coordinates of
the inner object are completely contained by the outer object,
the inside relation holds.

V. CONCLUSIONS

In this paper, we present a practical knowledge processing
system for mobile robots and sensor-equipped environments.
It combines formal, encyclopedic knowledge with observa-
tions from several perception modules (a 3D environment
map, human pose tracking, object recognition, and a rich
sensor network) and directly works on the data structures
produced by these perception modules.

We introduce the concept of computable classes and prop-
erties which serve for loading observations into the system

and thus provide the link between the continuous sensor data
and the symbolic concepts.

The action models described in this paper are learned
based on abstract specifications and allow for discovering
a class structure in observed data. They effectively extend
the class taxonomy with learned, action-related concepts. We
demonstrate this approach with learning specializations of
ManipulationPlace.

In contrast to many toy-world knowledge representations,
this system works on real observations of household tasks
performed by humans or robots in a real environment.

Most of the requirements we introduced in the beginning
are met by the system: The knowledge is organized in an
action-centric way so that the robot can easily access the
concepts it needs for its tasks. It is grounded in the perception
and action system, and the knowledge grows and adapts
as more observations are made. Since action models are
learned on demand when needed, they automatically adapt
to changes in the world. Inference tasks are performed very
fast compared to the time usually required for manipulation.

VI. ACKNOWLEDGMENTS

This work is supported in part within the DFG excellence
initiative research cluster Cognition for Technical Systems –
CoTeSys, see also www.cotesys.org.

REFERENCES

[1] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira, “An intro-
duction to the syntax and content of Cyc,” AAAI Spring Symposium
on Formalizing and Compiling Background Knowledge and Its Ap-
plications to Knowledge Representation and Question Answering, pp.
44–49, 2006.

[2] S. Harnad, “The symbol grounding problem.” Physica D, vol. 42, pp.
335–346, 1990.

[3] N. Mavridis and D. Roy, “Grounded Situation Models for Robots:
Where words and percepts meet,” in IROS, 2006, pp. 4690–4697.

[4] A. Saffiotti et al., “The PEIS-Ecology project: Vision and results,” in
IROS, 2008, pp. 2329–2335.

[5] I. H. Suh et al., “Ontology-based Multi-Layered Robot Knowledge
Framework (OMRKF) for Robot Intelligence,” in IROS, 2007, pp.
429–436.

[6] M. Beetz et al., “The Assistive Kitchen — A Demonstration Scenario
for Cognitive Technical Systems,” in RO-MAN, 2008.

[7] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
2008.

[8] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,
“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems Journal (Special Issue
on Semantic Knowledge), 2008.

[9] U. Klank, M. Z. Zia, and M. Beetz, “3D Model Selection from an
Internet Database for Robotic Vision,” in International Conference on
Robotics and Automation (ICRA), 2009.

[10] R. B. Rusu, B. Gerkey, and M. Beetz, “Robots in the kitchen: Ex-
ploiting ubiquitous sensing and actuation,” Robotics and Autonomous
Systems Journal (Special Issue on Network Robot Systems), 2008.

[11] J. Bandouch, F. Engstler, and M. Beetz, “Accurate human motion
capture using an ergonomics-based anthropometric human model,” in
Fifth International Conference on Articulated Motion and Deformable
Objects (AMDO), 2008.

[12] A. Kirsch, “Integration of programming and learning in a control
language for autonomous robots performing everyday activities,”
Ph.D. dissertation, Technische Universität München, 2008. [Online].
Available: http://mediatum2.ub.tum.de/node?id=625553

[13] R. Gupta and M. J. Kochenderfer, “Common sense data acquisition
for indoor mobile robots,” in National Conference on Artificial Intel-
ligence (AAAI-04, 2004, pp. 605–610.

