
Acquiring Task Models for Imitation Learning

through Games with a Purpose

Lars Kunze∗, Andrei Haidu†, Michael Beetz‡

l.kunze@cs.bham.ac.uk, andrei.haidu@tum.de, beetz@cs.uni-bremen.de

Abstract— Teaching robots everyday tasks like making pan-
cakes by instructions requires interfaces that can be intuitively
operated by non-experts. By performing novel manipulation
tasks in a virtual environment using a data glove task-related
information of the demonstrated actions can directly be ac-
cessed and extracted from the simulator. We translate low-level
data structures of these simulations into meaningful first-order
representations whereby we are able to select data segments and
analyze them at an abstract level. Hence, the proposed system is
a powerful tool for acquiring examples of manipulation actions
and for analyzing them whereby robots can be informed how
to perform a task.

I. INTRODUCTION

Scaling the task repertoire of autonomous manipulation

robots towards open ended sets of human-scale manipula-

tion tasks requires novel ways of efficient programming. A

promising approach that enables robots to acquire skills for

everyday manipulation is imitation learning or learning by

demonstration [3], [6], [15]. Imitation learning analyzes the

performances of humans and estimates critical parameters.

The learned behavior thereby copies and imitates the move-

ments performed by humans. Work by Albrecht et al. [2]

uses methods from optimization theory to improve learned

models in a post-processing step. While these approaches

have proven successful to some degree they are limited

because they merely copy observed behavior (movements)

without understanding the interactions between objects, ef-

fects of actions, intentions behind behavior, and variations

of behavior caused by different contexts.

For example, in imitation learning it is difficult to acquire

a general and flexible routine for pouring pancake mix into

the pan. It is hard to learn how fast and how far to turn the

container and how high to hold it because the robot does not

know that the demonstrator tries to avoid spilling pancake

mix. Moreover, how the container is held depends on the

viscosity of the pancake mix and on the size of its opening.

Although some of the contextual information such as the

size of the opening is perceivable, other aspects such as the

viscosity of the mix are imperceivable by the robot.

Work by Chella et al. [7] addresses this challenge by

incorporating symbolic knowledge about actions and states

of objects into the learning process. Similarly, this work

acquires semantic descriptions of intermediate task states to

structure and improve learning through imitation.

∗Intelligent Robotics Lab, University of Birmingham, UK. †Technische
Universität München, Germany. ‡Institute for Artificial Intelligence and the
TZI (Center for Computing Technologies), University of Bremen, Germany.

Fig. 1. Learning task models from Games with a Purpose (GWAP).

In this paper we propose a crowdsourcing approach using

Games with a Purpose [1] to teach robots through imitation

learning. The advantages of using games include, firstly,

the ability to acquire a large number of teaching episodes

without a considerable effort. Secondly, as the games are

coupled with a physics simulator, physical effects and events

such as contacts can directly be observed and semantically

interpreted. Thirdly, the robot can actively learn by making

up some situations and feeding them into the game database.

Figure 1 shows the overall idea of the crowdsourcing ap-

proach. A user performs a manipulation task in an interactive

physics simulation. The computer game is started by placing

all ingredients and tools specified in the instructions on the

table. It then prints the individual instruction steps on the

screen and asks the player to perform them. The physics

simulator provides the information about object interactions,

cause-effect relationships for action effects, and forces. We

extended the simulator with specific physical processes such

as mixing, baking, etc. The data structures of the simulator,

that is, the dynamics of objects, are monitored and logged

throughout the game. Afterwards the logs are translated into

temporal first-order representations, called timelines. The set

of acquired timelines are turned into virtual knowledge base

from which the learning robot can query abstract information

about the game episode in a PROLOG-based language.

Eventually, comprehensive task models based on timelines

can provide valuable information for robots in imitation

learning. Using the query language the robot can answer

queries such as:

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 102

• What is the effect of an action?

• Which action lead to the desired outcome?

• Which action caused the current circumstances?

• Why should an action be performed?

• How should an action be parameterized to yield a

different effect?

The remainder of the paper is structured as follows. We

first consider the problem of making pancakes in Section II.

In Section III present the overall framework for the acquisi-

tion and representation of task knowledge from games. We

describe two realized games were users have to perform

a pouring task and evaluate the thereby acquired data in

Section IV. Finally, we present and discuss related work in

Section V before we conclude in Section VI.

II. MAKING A PANCAKE

In their daily routines personal robot assistants are sup-

posed to accomplish novel tasks for which they have not

been pre-programmed. In this work, we take the task of

making a pancake as our running example. Tenorth et al.

[16] demonstrated how robots can extend their task repertoire

by extracting natural language step-by-step descriptions from

the Web and translating them into well-defined executable

plans. In the work of Beetz et al. [5], we describe an

experiment where our robot Rosie actually performed the

task of making pancakes on the basis of such plans.

Natural language instructions are descriptive enough for

humans to understand a task. However, for robots such

instructions are highly underspecified. That is, within the

experiment many parameters of the plan were determined

and specified by programmers. But in principle, a robot has

to infer the appropriate parameters of these actions by other

means. By observing humans performing the task the robot

can estimate some of the missing parameters. For example,

the robot could estimate parameters like height and angle of

the container while the pouring action is performed. Also the

duration of this action could be estimated. Such information

could be extracted from instruction videos retrieved from the

Web or from a human tracking system [4]. Since our goal

is to acquire a deep understanding of the physical effects

of such manipulation actions, we propose to acquire such

task-related knowledge based on games played in a physics-

based simulator. When considering, for example, the pouring

action we would like to answer questions such as

• how much mix was spilled during the game?

• how much was poured onto the pancake maker?

• did it form a proper pancake?

• how much mix was left in the original container?

• how long did the user hold the container above a target?

• at what height? at what angle?

III. ACQUIRING TASK KNOWLEDGE THROUGH GAMES

After a brief overview of the overall framework, we

explain the virtual manipulation environment, the underlying

representations and reasoning mechanisms and finally we

illustrate all processing steps by an example.

knowledge base prolog

rigid-body simulation

augmented simulation

⋄ graph-based

models

⋄ fluid models

⋄ physical processes:

breaking, mixing

world state monitor

game user interface

⋄ data glove

⋄ razer hydra

action monitor logs

timelines

representation

reasoning

simulation

control

monitoring

Fig. 2. Framework of the virtual manipulation environment.

A. Overview

Figure 2 gives an overview of the framework for the

acquisition of task models. The framework consists of two

parts: a virtual manipulation environment1 and a knowledge

processing module for the extraction and analysis of data.

In the virtual environment objects can be manipulated

using a data glove and a 3D position sensor where the

sensor information is directly translated into a pose and

articulation of the simulated hand model. Since we have

complete knowledge about the simulated world state we are

able to extract different kinds of information of the task-

related objects. This information include, for example, an

object’s position, orientation, linear and angular velocities

as well as its bounding box. Also contacts between objects

are reported in each time step. In contrast to vision-based

systems we do not have to deal with occlusions and other

typical problems like the recognition of transparent objects.

The framework, that we have designed and implemented,

can be used as a tool for the acquisition of task-related

information by logging the internal states of the simulator.

The logged simulations are then translated into interval-based

first-order representations, called timelines, as described in

[13]. By formulating logical queries we can extract task-

related information from these timelines semantically. For

example, we can query the pose of the container while it was

hold by the hand. Then, methods form statistics and machine

learning can be applied on the selected data to analyze the

manipulation actions with respect to various aspects.

B. Virtual Manipulation Environment

The virtual environment is based on Gazebo2; a 3D multi-

robot simulator with rigid-body physics. In the environment a

user wearing a data glove controls a robot hand which allows

him to interact with objects. Figure 3 shows the hardware

equipment and a user controlling the virtual robot hand.

The virtual hand is a simulated version of the DLR-HIT

robot hand, described using the Unified Robot Description

Format (URDF), which is an XML format for representing a

robot model, and then loaded in the simulator. The hand

consists of four identical fingers, each having four joints

1http://ias.cs.tum.edu/˜kunzel/videos/virtual env.mp4
2http://gazebosim.org

103

Fig. 3. Virtual Manipulation Environment.

except the thumb which has an additional degree of freedom

for mimicking the human opposable thumb.

The data glove we use for detecting the positions of the

finger joints is the X-IST Dataglove. It is equipped with 15

bend sensors (three per finger, one for each joint).

For detecting the absolute position and orientation of the

hand, we use the Razer Hydra gaming controller. It has a base

station that emits a weak magnetic field, and with the help

of the sensors, that were initially integrated in the controllers

and afterwards attached to the data glove, we can have a true

six degree-of-freedom motion tracking.

The position of the virtual hand is controlled by calcu-

lating at each simulation time step (1000 hz) the required

linear/rotational velocities that need to be applied on it in

order to move to the desired position. Having the differ-

ence between the simulated position and the real one a

proportional-integral-derivative (PID) controller returns the

required velocities in order to have smooth hand movements.

For simplifying the controller, the gravity force acting on the

hand was disabled, which does not influences its behavior as

the inertial forces are still present. The fingers are controlled

in a similar manner.

C. Representation and Reasoning about Manipulation Tasks

Within the framework, monitors track the state evolution

of the simulator and log information whenever there is a

difference between two succeeding states. Hence, logged

simulations are a sequence of states over time. We basically

distinguish between two kinds of states, namely World states

and Contact states. World states comprise the position,

orientation, linear and angular velocities, as well as the

bounding box of an object at a certain point in time:

World state : 〈time, obj, pos, orient, lin vel, ang vel, bbox〉.

A contact state holds information about the number of

contacts (num) between two objects at a point in time.

Additionally, it includes the respective forces, torques, and

normals for each of these contact points:

Contact state : 〈time, o1, o2, num, force, torque, normal〉.

Data structures of the logged simulations are accessed

using a predicate, called SimulatorValue, as follows:

SimulatorValue(

Function
︷ ︸︸ ︷
position(o, pos),

Time point
︷︸︸︷
t ,

Timeline
︷︸︸︷
tl),

whereby different functions are available for accessing the

time-stamped information of the world and contact states.

By using the above predicate, logged simulations are

translated into interval-based first-order representation, called

timelines. We access and evaluate the timelines from PRO-

LOG by using predicates similar to those in the Event

Calculus [12]. The notation is based on two concepts, namely

fluents and events. Fluents are conditions that change over

time, e.g., a mug contains a pancake mix: contains(mug,mix).

Events (or actions) are temporal entities that have effects and

occur at specific points in time, e.g., consider the action of

pouring the mix from the mug onto the pancake maker: oc-

curs(pour(mug,pan)). Logical statements about both fluents

and events are expressed by using the predicate Holds(f,t,tl)

where f denotes a fluent or event, t simply denotes a point

in time, and tl a timeline. The following logical formulas

show how the fluent on is based on two other fluents, namely

contacts and above, which in turn are grounded in the data

structures of the simulator:

Holds(on(o1, o2), ti, tl) ⇔
Holds(contacts(o1, o2), ti, tl)∧
Holds(above(o1, o2), ti, tl)

Holds(contacts(o1, o2), ti, tl) ⇔
SimulatorValue(contacts(o1, o2), ti, tl)

Holds(above(o1, o2), ti, tl) ⇔
SimulatorValue(bbox(o1, bbox1), ti, tl)∧
SimulatorValue(bbox(o2, bbox2), ti, tl)∧
Above(bbox1, bbox2).

Using the predicates Holds tt(f,ti,tl) and Simulator-

Value tt(f,ti,tl)) where ti denotes time interval we can even

query for a complete interval throughout a fluent holds or an

event occurs.

The following simplified excerpt shows how a pouring

action can be defined using the above mentioned language

elements. The pour predicate is true if there is some mix

X inside the Mug at the beginning of the timeline and if

there is a subset of X , namely Y , inside the Pan at the end

of the timeline. Note that this predicate does not determine

when the action has happened and whether there has been

mix spilled onto the table.

occurs(pour(Mug,Pan)) :- hasType(Mix,liquid),

partOf(X,Mix), subsetOf(Y,X),

holds_tt(in(X,Mug),I1,TL),

holds_tt(in(Y,Pan),I2,TL),

begin(TL,Begin), end(TL,End),

starts(I1,[Begin,End]),

finishes(I2,[Begin,End]).

Similarly, we can formulate first-order queries to retrieve

the answers to questions as listed at the end of Section II.

D. An Example: Acquiring Knowledge of a Pouring Task

In this section we describe how task knowledge can be

acquired from execution traces of the virtual environment.

A user performed a task related to the making pancakes

scenario, namely pouring pancake mix onto a pancake maker.

Figure 4 illustrates how the task was performed in the virtual

manipulation environment.

104

Fig. 4. Virtual Manipulation Task: Pouring pancake mix onto a pancake
maker.

0.5

1

1.5

0.20.40.60.811.21.4
0.5

1

1.5

0.20.40.60.811.21.4

Fig. 5. Trajectories of the mug in Euclidean space when it was in contact
with the hand. Raw (left) and clustered (right) trajectories after aligning
them using dynamic time warping.

By translating the data structures of the simulator into

timelines we can use first-order logic to query task-related

data semantically. For example, we can ask for the poses of

the mug in a time interval where there was a contact between

mug and the robot hand as follows:

?- holds_tt(contacts(mug,hand),I,TL),

simulator_value_tt(position(mug,Ps),I,TL),

simulator_value_tt(orientation(mug,Os),I,TL).

where I denotes a time interval and the other variables

denote lists of their respective data types. Similarly, we can

get the last position of the mug in that interval for analyzing

where the user has placed the mug after the pouring.

In the experiments liquid was poured from different

heights which can be seen by clustering the trajectories

(Figure 5). We first applied dynamic time warping to align

the trajectories of different length in time and then we

clustered the trajectories as in [2].

Logical queries allow us to select data segments of the

logged simulations on an abstract level. For example, we can

select only data when the mug is above the pancake maker

or when it is tilted at an angle in a certain range.

IV. EXPERIMENTAL RESULTS

We set up two games within the virtual environment for

acquiring task knowledge. In both games the task is to pour

pancake mix onto a pancake maker. However, the conditions

and contexts in the games were varied. For each game we

first explain its initial conditions and the task the user has

to achieve, and second, we describe how we analyze and

evaluate the extracted data.

A. Pouring without spilling

1) Overview: Within the first game, the task of the user is

to pour pancake mix onto a pancake maker without spilling3.

The simulation is initialized with a pancake maker and a

mug on a table. The virtual robot hand of the user is floating

around in the environment. The user has to grasp the mug,

move it to a position over the pancake maker, tilt it so that the

mix flows out of it onto the pancake maker, and eventually

put it back onto the table. Since the user should not spill

anything, he/she has to be careful while performing the task.

To analyze the behavior of users with respect to the

viscosity of liquids we changed the fluidity of the pancake

mix within the game.

The model of the liquid has a controller attached that sets

a given damping factor to each of its particles. The damping

is realized by multiplying the current angular velocity of

each particle with one minus the damping factor value (1-8)

multiplied by 0.05 at every time step (1000 hz). Hence we

have a controllable level of viscosity for the liquid.

We used eight different levels of fluidity. For each level the

user has to perform ten trials, i.e, 80 trials in total. However,

the user does not know the level of fluidity in advance. So,

he/she has to experience it in the first round(s) of each game.

Our hypothesis is that a user would lower the position of

the mug while pouring if the fluidity of the mix is increased

in order to prevent the liquid to be spilled onto the table.

On average we would expect also an increased angle while

tilting the mug if the mix has a higher viscosity to increase

the flow velocity.

2) Results: In total, we analyzed 80 trials of eight dif-

ferent levels of fluidity with respect to various aspects. The

logged data of the individual trials is represented using the

timeline data structures which allows us to make queries

using a first-order language. For the analysis we basically

selected the data from the interval where the user hold the

mug above the pancake maker and tilted it by more than

30 degrees. The following query shows how the data was

selected

?- holds_tt(tilted-X(mug,pi/6),I1,TL),

holds_tt(above(mug,pancake_maker),I2,TL),

cooccur(I1,I2),

simulator_value_tt(data(mug,Data),I1,TL).

where I1 and I2 denote time intervals on a timeline TL,

and Data includes all information about the mug within

a given interval, e.g., its position, orientation, linear and

angular velocities, and contacts.

First of all, we evaluated whether the user spilled liquid

onto the table for the different levels of fluidity. Figure 6

show that liquid was spilled in almost all trials when the

fluidity was high. The number of trials in which the user

spilled something decreased when the viscosity increased.

Generally the acquired data indicates how the user became

acquainted with the task and optimized his behavior during

the ten trials across all damping factors. Both duration and

height decreased when the game advances to the next round.

3Video: https://ias.cs.tum.edu/˜kunzel/videos/exp1-viscosity.mp4

105

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Damping coefficients

N
u
m

b
e
r

o
f

tr
ia

ls
 w

it
h
 s

p
ill

e
d
 p

a
rt

ic
le

s

Fig. 6. Number of games with spilled particles for different damping
coefficients.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1 2 3 4 5 6 7 8
Damping coefficient

H
e
ig

h
t

o
f

c
o
n
ta

in
e
r

−2.6

−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

1 2 3 4 5 6 7 8
Damping coefficient

A
n
g
le

 o
f

c
o
n
ta

in
e
r

(r
a
d
ia

n
s
)

Fig. 7. Left: Height of container for different damping coefficients. Right:
Angle of container for different damping coefficients.

However, more interesting is how the observed behavior

changes for the different levels of viscosity. We analyzed

the pose of the mug in the interval when it was tilted above

the pancake maker. For each of the ten trials we calculated

the arithmetic mean of height and angle during that interval.

Figure 7 shows that both height and angle generally increase

if the viscosity increases. An exception can be seen for the

angle with the lowest damping value. Maybe this is due to

the fact that this was the first game played by the user.

We also calculated the Pearson product-moment correla-

tion coefficient for the height of the container and the level of

viscosity. The p-values indicate that the correlation between

the variables is significant (p-value of 0.0001). However, this

result should be verified by a larger user group.

B. Pouring the Right Amount

1) Overview: The task of the user in this game is to pour

a certain amount of pancake mix onto the pancake maker4.

Similar to the other game, the simulation is set up with a

pancake maker and a container containing some pancake

mix. The user should grasp the container with the robot hand,

pour a certain amount of its contents onto the pancake maker

and place it back onto the table.

Within the game we varied two conditions. First, the user

is presented either a mug or a bottle of pancake mix. The

opening of the latter is smaller, i.e., less liquid flows out of

the container while tilting it. Second, we varied the filling

level of the container. In total, we looked at four filling levels

of the respective containers. The amount of pancake mix the

user is asked to pour corresponds to the lowest filling level.

Figure 8 shows different types of containers and fill levels.

4Video: https://ias.cs.tum.edu/˜kunzel/videos/exp2-container-level.mp4

Fig. 8. Different types of containers and different filling levels.

12

14

16

18

20

22

24

26

28

20 40 60 80

mug bottle mug bottle mug bottle mug bottle

N
u

m
b

e
r

o
f

p
a

rt
ic

le
s

4

6

8

10

12

14

20 40 60 80

mug bottle mug bottle mug bottle mug bottle

D
u

ra
ti
o

n
 o

f
ti
lt
in

g
 t

h
e

 c
o

n
ta

in
e

r

Fig. 9. Left: Number of particles on pancake maker for different types of
containers and filling levels. Right: Duration of tilting the container during
the pouring action.

By performing the task in various contexts, i.e., with

different types of containers and filling levels, we want to

analyze whether the behavior of users is context dependent.

If our hypothesis is true, we should be able to extract

parameters like pouring angle, height and time that depend

on the task context. Overall the user performed 80 trials, 40

for each container and the different filling levels.

2) Results: Firstly, Figure 9 (left) shows that the user was

able pour an amount reasonable close to the target amount

of 20 particles onto the pancake maker with both containers

at all filling levels. Figure 9 (right) indicates that the user

generally poured longer when the container was a bottle.

This makes sense since the bottle has an opening that is

smaller than that of the mug.

Figure 10 (left) illustrates that the height for both con-

tainers decrease on average when the filling level increases.

Figure 10 (right) shows opposing results with respect to the

tilting angle for the different container types. The greater the

angle, the steeper the inclination of the container. We will

investigate this behavior by performing more trials and an

in-depth analysis of the data.

V. RELATED WORK

Physics-based simulators have successfully been used to

teach surgeons how to perform surgical procedures [14].

1.14

1.16

1.18

1.2

1.22

1.24

1.26

20 40 60 80

mug bottle mug bottle mug bottle mug bottle

H
e

ig
h

t
o

f
c
o

n
ta

in
e

r

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

20 40 60 80

mug bottle mug bottle mug bottle mug bottle

A
n

g
le

 o
f

c
o

n
ta

in
e

r
(r

a
d

ia
n

s
)

Fig. 10. Left: Height of container. Right: Angle of the tilted container in
the main pouring direction.

106

Within robotics, they have been deployed in the context of

planning [17] and navigation [8].

Games with a Purpose have been used to acquire common-

sense knowledge from Internet users [1]. However, most of

these games focus on image and natural language tasks.

Work by [4] describes an approach of markerless tracking

of human motions. In this work we used a data glove and a

Razer Hydra sensor to reliably control a virtual hand.

Work on imitation learning often focuses only on the

imitation ([11]) and/or optimization ([2]) of observed tra-

jectories. That is, information about the context, effects,

and the user’s intentions are neglected. Only recently, there

are approaches that started to consider effects of actions

in imitation learning [10]. Work by [9] uses zero-velocity

movements to provide more structured information about the

task. The present work extracts high-level information about

task states and its structure from logs of physical simulations.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented an approach for acquiring

knowledge about manipulation tasks through Games with a

Purpose. Within a game a user is instructed to perform a

manipulation action in a virtual environment. In the simu-

lated environment the user manipulates objects by controlling

a robot hand with a data glove. The data structures of

the simulator are monitored, logged, and translated into

timelines. Logical queries on timelines can be used to

answer questions such as “Which action lead to a desired

outcome?” As an example we presented a definition of a

pouring action (Section III-C). These query results are further

analyzed and interpreted using methods from statistics and

machine learning in order to generate informative models for

manipulation tasks.

In future work, we will explore how robots can learn

actively missing task knowledge. To this end, we will in-

vestigate how the initial configurations of games can be

automatically generated based on perceived situations.

The acquired task knowledge from games goes beyond

the information that is usually extracted in imitation learn-

ing. Whereby imitation learning often learns and optimizes

stereotypical trajectories we also consider information about

the task context as well as the relationship between objects

with respect to spatial and physical aspects during the task

execution. Thereby we build models that reflect, for example,

the situated context, physical phenomena, and intended goals.

Acquiring data from games has also the advantage that

large amounts of information can be obtained from multi-

ple users simultaneously. However, currently our system is

limited to a workplace given the equipment requirements.

As a downside of our approach, we would see the problem

that current state-of-the-art robot simulators are not as robust,

flexible and easy to use as one would desire. However, we

believe that issues regarding performance and usability will

be solved by the game and animation industry which heavily

employs physics engines in the game development.

Overall we believe that the proposed framework for ex-

tracting information from interactive simulations can be a

useful tool for the acquisition of task-related knowledge

in many areas of robotics research including monitoring,

planning, diagnosis, question answering, and learning.

Acknowledgments: This work has been supported by the

EU FP7 projects STRANDS (grant number 600623), Robo-

How (grant number 288533) and SAPHARI (grant number

287513).

REFERENCES

[1] L. v. Ahn. Games with a purpose. IEEE Computer, 39(6):92–94, June
2006.

[2] S. Albrecht, K. Ramirez-Amaro, F. Ruiz-Ugalde, D. Weikersdorfer,
M. Leibold, M. Ulbrich, and M. Beetz. Imitating human reaching mo-
tions using physically inspired optimization principles. In 11th IEEE-

RAS International Conference on Humanoid Robots, Bled, Slovenia,
October, 26–28 2011.

[3] P. Azad, T. Asfour, and R. Dillmann. Toward an Unified Repre-
sentation for Imitation of Human Motion on Humanoids. In IEEE

International Conference on Robotics and Automation (ICRA), 2007.
[4] M. Beetz, J. Bandouch, D. Jain, and M. Tenorth. Towards Automated

Models of Activities of Daily Life. In First International Symposium

on Quality of Life Technology – Intelligent Systems for Better Living,
Pittsburgh, Pennsylvania USA, 2009.

[5] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner,
D. Pangercic, T. Rühr, and M. Tenorth. Robotic Roommates Making
Pancakes. In 11th IEEE-RAS International Conference on Humanoid

Robots, Bled, Slovenia, October, 26–28 2011.
[6] A. Billard, Y. Epars, S. Calinon, G. Cheng, and S. Schaal. Discovering

optimal imitation strategies. Robotics and Autonomous Systems, 47(2-
3):69–77, 2004.

[7] A. Chella, H. Dindo, and I. Infantino. A cognitive framework for
imitation learning. Robotics and Autonomous Systems, 54(5):403–408,
2006.

[8] B. Frank, C. Stachniss, R. Schmedding, M. Teschner, and W. Bur-
gard. Real-world robot navigation amongst deformable obstacles.
In ICRA’09: Proc. of the 2009 IEEE int. conf. on Robotics and

Automation, 2009.
[9] R. Jkel, S. Schmidt-Rohr, M. Lsch, and R. Dillmann. Representation

and constrained planning of manipulation strategies in the context of
programming by demonstration. In IEEE International Conference on

Robotics and Automation (ICRA 10), 2010.
[10] S. M. Khansari-Zadeh, K. Kronander, and A. Billard. Learning to play

minigolf: A dynamical system-based approach. Advanced Robotics,
2012.

[11] J. Kober and J. Peters. Imitation and reinforcement learning —
practical algorithms for motor primitive learning in robotics. IEEE

Robotics and Automation Magazine, 17(2), pp. 55-62, 2010. Intelligent
Autonomous Systems.

[12] R. Kowalski and M. Sergot. A logic-based calculus of events. New

generation computing, 4(1):67–95, 1986.
[13] L. Kunze, M. E. Dolha, E. Guzman, and M. Beetz. Simulation-based

temporal projection of everyday robot object manipulation. In Yolum,
Tumer, Stone, and Sonenberg, editors, Proc. of the 10th Int. Conf. on

Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei,
Taiwan, May, 2–6 2011. IFAAMAS.

[14] A. Maciel, G. Sankaranarayanan, T. Halic, V. Arikatla, Z. Lu, and
S. De. Surgical model-view-controller simulation software framework
for local and collaborative applications. International Journal of

Computer Assisted Radiology and Surgery, 6(4):457–471, 2011.
[15] S. Schaal, A.-J. Ijspeert, and A. Billard. The neuroscience of social

interaction, chapter Computational approaches to motor learning by
imitation, pages 199–218. Oxford University Press, 2004.

[16] M. Tenorth, D. Nyga, and M. Beetz. Understanding and Executing
Instructions for Everyday Manipulation Tasks from the World Wide
Web. In IEEE International Conference on Robotics and Automation

(ICRA), pages 1486–1491, Anchorage, AK, USA, May 3–8 2010.
[17] S. Zickler and M. Veloso. Efficient physics-based planning: sampling

search via non-deterministic tactics and skills. In AAMAS ’09: Proc.

of The 8th Int. Conf. on Autonomous Agents and Multiagent Systems,
2009.

107

