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Abstract. Unlike people, household robots cannot rely on commonsense knowl-
edge when accomplishing everyday tasks. We believe that this is one of the rea-
sons why they perform poorly in comparison to humans. By integrating extensive
collections of commonsense knowledge into mobile robot’s knowledge bases, the
work proposed in this paper enables robots to flexibly infer control decisions un-
der changing environmental conditions. We present a system that converts com-
monsense knowledge from the large Open Mind Indoor Common Sense database
from natural language into a Description Logic representation that allows for au-
tomated reasoning and for relating it to other sources of knowledge.

1 Introduction

Household robots are expected to accomplish an open-ended set of everyday tasks.
Hence, they need to understand under-specified commands given by humans and find
out on their own what to do, what to look out for, where to search for objects and so on.
Many of these decisions depend on the context at hand and are difficult to foresee when
writing the robot control program. In addition, the sheer number of possible situations
makes hard-coding them practically impossible. Human-like commonsense knowledge
would give robots the ability to infer the right decisions and become more flexible.
This raises the questions how to acquire the commonsense knowledge that humans
possess, how to represent it, and how to enable robots to make inferences based on that
knowledge.

The approach we propose in this paper is to use existing collections of common-
sense knowledge, such as the Open Mind Indoor Common Sense database (OMICS, [1]),
and convert them into first-order representations the robot can use. The OMICS project
collects commonsense knowledge described in natural language from Internet users.
This information is contributed by users by completing template sentences in web
forms. For example, a template sentence like “When a potted plant is dry, then the
becomes 2 is used for capturing information about causal relationships.
These fragments cover different areas, like the objects found in different rooms, the
correct action to take in a situation, or possible problems that can occur while perform-
ing a task. For most humans, such information appears trivial, and they can intuitively
answer such questions. For a robot, however, this gives valuable information that can




hardly be obtained otherwise. The information entered in the web forms is reviewed by
the OMICS project team, post-processed and stored in a relational database.

However, this information cannot directly be used by robots: It is written in col-
loquial English language, which makes it hard for a robot to interpret it (for example,
to find out that “turn on”, “switch on” and “start” actually mean the same thing), to
relate it to other sources of information like semantic environment maps, and to per-
form automated reasoning. Therefore, our system first transforms the statements into
a formal representation in Description Logic by resolving the meaning of words and
mapping them to ontological concepts. This allows to use well-established reasoning
techniques, and further enables the robot to integrate the commonsense knowledge into
its knowledge processing system [2].

The rest of the paper is structured as follows: We start with an overview of related
work (Section 2) and a description of the system architecture (Section 3), explain the
extraction and formalization of knowledge from OMICS (Section 4) and elaborate on
the integration into the robot’s knowledge base (Section 5). Section 6 gives examples of
how the robot uses the knowledge. Finally, Section 7 concludes this paper by discussing
some of the problems encountered and some remaining challenges for further research.

2 Related Work

Equipping computers (or robots) with common sense is not a new endeavor in Artificial
Intelligence: Early work has been done by McCarthy already in 1959 [3]. However,
the problem is still far from being solved. As Minsky [4] pointed out, computers re-
quire large amounts of commonsense knowledge in order to become concerned with
human affairs. Furthermore, he points to the problem that much of the commonsense
knowledge has never been described because its information always seemed so obvi-
ous. This problem is addressed within the knowledge capturing projects Open Mind
Common Sense [5] and Open Mind Indoor Common Sense [1] that acquire common-
sense knowledge from web users. Several approaches have been proposed to make use
of this information (ConceptNet [6], LifeNet [7], and [8]) for textual-information man-
agement, modeling of human activities, or robot task planning. Gupta and Pedro [9]
use Bayesian networks to infer the most likely response in a given situation based on
knowledge from OMICS. Pentney et al. [10] propose to use the knowledge, represented
in a probabilistic model, for tracking the state of the world on the basis of sensor data.
However, none of these approaches has tackled the problem of converting the knowl-
edge from natural language to well-defined ontological concepts, which is required for
automated reasoning.

3 System Overview

Figure 1 illustrates the process of extracting, formalizing, and reasoning about common-
sense knowledge from the OMICS project. First, the system applies natural language
processing techniques like part-of-speech tagging and syntax parsing to the knowledge.
Then, it resolves the word’s meanings to cognitive synonyms (synsets) in WordNet,
and exploit mappings between these synsets and concepts in OpenCyc, which already
exist for thousands of concepts. Based on OpenCyc’s concept definitions, it generates



a formal representation describing the OMICS database relations in Description Logic
which becomes part of the robot’s knowledge base and can be queried via a Prolog-
based interface.
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Fig. 1. Overview of the proposed system. Knowledge that is contributed by Internet users is trans-
formed from natural language into a logical representation and can be queried by the robot control
program.

4 Formalizing the Knowledge in OMICS

This section describes how the knowledge is converted from the sentences in natural
language in OMICS’s semi-structured database tables to meaningful first-order repre-
sentations.

4.1 Natural Language Processing

In our system, the knowledge is represented as object- or action-centered first-order
representations, which we need to extract from the OMICS database. For simple re-
lations, like locations(Object,Room), the database columns already provide this infor-
mation and describe objects, actions, or properties. More complex relations, however,
like problems(Task, Problem), are described by short natural language phrases. Figure 2
(left) lists some examples. These phrases need to be interpreted in order to extract in-
formation about objects, actions, and properties. First, each word is tagged with its
syntactic category, and phrases like a verb phrase (VP) or a noun phrase (NP) are iden-
tified using the Stanford Parser [11], a probabilistic context-free grammar parser. The
part-of-speech tags (PoS) describe the role (or syntactic category) an expression has in
a sentence. Figure 2 (right) shows the parse trees and the PoS annotations' of the words
in the command “load the dishwasher” and the related problem “dishwasher is full”.
Having assigned the PoS tags, the system knows if a word describes an object (usu-
ally a noun), an action (in commands normally verbs), or a property (an adjective). This

' DT - Determiner; NN - Noun, singular or mass; VB - Verb, base form; VBZ - Verb, 3rd person
singular present; JJ - Adjective



Task Problem

load the dishwasher  dishwasher is full //\ ‘ /\
A N N AD

load the dishwasher  cannot open dishwasher
unload the dishwasher dishes not dry
unload the dishwasher dishes are dirty

the dishwasher full

Fig. 2. Left: Examples of tasks and their respective problems taken from the OMICS database.
Right: Parse trees of the first task-problem tuple. The part-of-speech information is utilized for
extracting object-/action-centered information from the natural language descriptions.

information is used to further interpret the relations in the database. For instance, in
the relation problems(Task,Problem), a task is described by an action and an object,
whereas problem specifications consist of an object and a property. The relation can
thus be written as

Task Problem

problems( Objectl, Action, Object2, Property ).

and the first example in Figure 2 (left) becomes

load the dishwasher dishwasher is full

problems( dishwasher, load , dishwasher, full ).

In this form, the problems relation only comprises actions, objects, and properties and
can thus be represented in our knowledge processing system.

4.2 Word sense resolution

To make the extracted information usable for automated reasoning, the words need to
be transformed from (ambiguous) natural language to well-defined ontological con-
cepts. This transformation is done using the lexical database WordNet, in which words
are grouped into sets of cognitive synonyms (synsets). For thousands of these synsets,
there are mappings to the OpenCyc ontology, which are used to transform words to
ontological concepts.

During this mapping process, the system resolves ambiguities caused by different
words that mean the same thing. For example, the expressions “turn on” and “switch on”
are both mapped to concept TurningOnPoweredDevice. Table 1 shows some examples
of synonymous words that are mapped to the same concept. Such a mapping is very
important to make use of the full knowledge in OMICS: Without this resolution of
the words’ meanings, the system could not detect that e.g. statements about someone
mopping or wiping the floor can be combined. Since the knowledge was acquired by
many untrained users, the variation in words used is rather high, making the word sense
resolution even more important.

A second kind of ambiguity is caused by different meanings of a word: For exam-
ple, the word “dishwasher” can denote a household appliance or a person cleaning the
dishes. Technically, this means to select the right concept the word is to be mapped to.



Type OMICS  Synset-ID Cyc Name

turn on V01468130 TurningOnPoweredDevice
switchon V01468130 TurningOnPoweredDevice

Action clean V01490246 Cleaning
moy

V01352869 Cleaning
sanitize V01207357 Cleaning
steam clean V01207630 Cleaning
wipe up V01352869 Cleaning

on A01599324 DeviceRunning
turned on  A02066470 DeviceRunning

Propert
P diry A00394641 Dirty
unclean A00394641 Dirty

soiled A00394641 Dirty

Table 1. Mappings for different word types.

The system uses different sources of information for this task: The parsing and PoS tag-
ging determined the type of a word, so that the algorithm can determine if e.g. “clean”
is used as a verb (denoting an action) or as an adjective (describing a property).

If several meanings of a word fall within a single syntactic category, the ambiguities
are harder to resolve, for example for the word “dishwasher”. However, we know from
OMICS that the word denotes an object, and can use the Cyc ontology to select the
household appliance and discard the second meaning since a person is not an object.
In general, we constrain the resulting ontological concepts of objects and actions to be
subclasses of PartiallyTangible and ActionOnObject respectively. Furthermore, rooms
in the locations(Object,Room) relation need to be a subclass of RoomInAConstruction.

Finally, the following numbers should give the reader a basic idea about word sense
resolution. In total, the locations(Object,Room) table holds 416 distinct entries for ob-
jects that are typically found in a kitchen. From these, we could automatically map
247 object descriptions to 178 distinct ontological concepts. The 169 entries that could
not be resolved directly were not found in the WordNet search. At least 18 of these
unmapped entries could be mapped after truncating the ending ’s’, i.e. making plural
expressions singular. By looking at the remaining objects most of them are described
by two or more words, e.g. “milk bottle”, “tea pitcher” or “box of donuts”. For improv-
ing the performance of our system we will consider more sophisticated techniques like
stemming and compound processing.

5 Integration into the Robot’s Knowledge Base

For our robot to use the knowledge, we need to represent the relations inside KnowRob [2],
its knowledge processing system. KnowRob uses OWL-DL [12], a language based on
Description logic (DL) [13], to represent the robot’s knowledge. Concepts and rela-
tions in KnowRob are the same as in OpenCyc, so that the mappings determined in
the previous step can be used here. These concepts are now related according to re-
lations in OMICS and added to the knowledge base. For example, the simple relation
parts(dishwasher,motor) is transformed to

parts(dishwasher, motor)
= ((wordnetCyc(dishwasher, Dishwasher) A wordnetCyc(motor, Engine))
= properPhysicalParts(Dishwasher, Engine))
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Fig. 3. Left: Refrigerator located in the integrated semantic environment map. Right: Simplified
view on the ontology that was generated from the OMICS database.

where the words “dishwasher” and “motor” are mapped to the concepts Dishwasher
and Engine respectively. These concepts are related by the role properPhysicalParts. A
more complex example of a causal relationship is given by

causes(dishwasher, used, cup, clean)
= ((wordnetCyc(dishwasher, Dishwasher) A wordnetCyc(used, UsedArtifact) A
wordnetCyc(cup, DrinkingMug) A wordnetCyc(clean, Clean))
= causes-SitSit(
SituationIn Which(Dishwasher, UsedArtifact),
SituationIn Which( DrinkingMug, Clean)))

where the resulting concepts are related by the role causes-SitSit. Since roles in DL can
only represent relations that have an arity of exactly two, we represent object-property
tuples as sub-concepts of type Situation and object-action tuples as sub-concepts of type
ActionOnObject.

6 Applications

By integrating the OMICS knowledge into an ontology, we can perform reasoning about
similar objects and/or sub-classes of objects. Additionally, KnowRob provides methods
for accessing sensor data, for instance an semantic environment model and objects de-
tected by the robot’s vision system. These instances can be related to the class knowl-
edge obtained from OMICS for determining in which room one can typically find an
object, what are possible object states, or what are potential problems when applying a
certain action to an object.

The following scenario illustrates what kind of knowledge from the OMICS database
can be used by a household robot. We consider a situation where the robot is supposed
to serve a cold drink to a person. To accomplish the task the robot has to infer where in
its environment it can find a drink that is cold. Some of the relevant knowledge that is
described in the text and is referred in the example queries is depicted in Figure 3.

The first task of the robot is to resolve the meanings of “cold” and “drink”, which
are Cold and Drink respectively. Then it has to identify causes that have the effect of
a cold drink. In the robot’s knowledge base there exist no causal rule which explicitly



involves a situation of type Cold(Drink), but however, there exist a more general rule
that involves the concept Cold(FoodOrDrink). Since the robot knows from its ontology
that Drink is a specialization (or sub-class) of FoodOrDrink it can make use of more
general rule, which reads as follows:

DeviceOn(Refrigerator) = cquses Cold(FoodOrDrink).

From the above rule the robot infers that an instance of type Refrigerator with property
DeviceOn, can cause cold drinks, which is shown by the following query:

?- subClassOf ('Drink’, SuperCls),
situation(Sit), hasObj(Sit, SuperCls), hasProperty(Sit,’Cold’)
owl_restriction_on (Cause, restriction(causes,some (Sit))).

SuperCls = ’'FoodOrDrink’;
Sit = ’"Cold(FoodOrDrink)’,
Cause = ’'DeviceOn (Refrigerator)’.

Furthermore, the robot knows from OMICS’s (spatial-) relationships that things like
Egg-Foodstuff, Cucumber-Foodstuff, and Juice are typically contained (in-ContGeneric)
in a Refrigerator. Since Drink is a super-class of Juice, the robot deduces that it could
get an instance of type Juice from the fridge which, regarding the causal rule, should be
cold. From OMICS’ locations relation the robot knows that a Refrigerator is typically
found in a Kitchen. By accessing the semantic environment map through KnowRob, the
robot can precisely locate an instance of type Refrigerator. The result of the following
query is depicted in Figure 3 (left).

?- owl_individual_of (Fridge, 'Refrigerator’).
Fridge = fridgel.

However, in the case that the fridge has not been mapped yet, the robot can use
OMICS’s proximity relation and try to find the fridge by localizing objects near-by,
e.g. instances of type CookingRange or Freezer. Finally having located the fridge in
the kitchen, the robot can verify with its vision system whether there is some juice
inside. While getting the cold drink from the fridge the robot can watch out for potential
problems that are related to the Conveying(Drink) action, e.g. Empty(Refrigerator) or
OpenPortal(Refrigerator), which are retrieved by the query:

?- actionOnObject (Action,’Drink’),
owl_restriction_on (Action, restriction (problem, some (Problem))).

Action = ’'Conveying(Drink)’,

Problem = ’'Empty (Refrigerator)’ ;
Action = ’‘Conveying(Drink)’,

Problem = ’'OpenPortal (Refrigerator)’.

Although the overall reasoning process in this scenario does not work fully auto-
matically, the emerging sub-queries can be answered based on the knowledge retrieved
from OMICS. Furthermore, the scenario should point out the importance and omnipres-
ence of commonsense reasoning within everyday tasks.

7 Discussion and Conclusions

In this paper, we described how commonsense knowledge that is acquired from web
users and represented in natural language is transformed into first-order representations
which enable robots to reason about everyday tasks. We showed how we extract object-



and action-centered information from natural language phrases stored in the OMICS
database, map it to ontological concepts, integrate it in the knowledge processing sys-
tem KnowRob, and use it for answering task-relevant queries.

Though the processes described in this work are fully automated, some remaining
flaws are best resolved by manual revision: First, the mapping between OMICS and
OpenCyc is not complete, meaning that some words or expressions cannot be trans-
formed to ontological concepts. And second, our rather simple word sense disambigua-
tion strategies may fail to select the correct meaning, but this problem is beyond the
scope of this work. Regarding the knowledge provided by OMICS, it should be noted
that the information, as it was entered from ordinary Internet users, is first not complete,
second redundant, and third even sometimes contradictory. By the techniques presented
in this paper, we are able to resolve some ambiguities and to assemble all assertions for
a topic by linking the words to concepts — otherwise, the robot would see pieces of
information using different words as not related. However, completely resolving these
issues remains an open challenge.
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