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Abstract— For robots to work outside of laboratory settings,
their plans should be applicable to a variety of environments,
objects, task contexts and hardware platforms. This requires
general-purpose methods that are, at this moment, not suffi-
ciently performant for real-world applications. We propose an
approach to specialize such general plans through running them
for specific tasks and thereby learning appropriate specializa-
tions from experience. We present a system architecture, which
collects data during plan execution for making up supervised
learning problems and utilizes the models for specializing the
plans in a closed loop. We demonstrate our approach by letting
a PR2 robot specialize its general fetch and place plan, whereby
learned results are automatically installed into the plan. We
show that the specialized plan performs better than the original
plan in a statistically significant sense.

I. INTRODUCTION

There is a fundamental trade-off between the specificity
and generality of robot plans. Specific plans are tailored for
specific tasks, specific robots, specific objects, and specific
environments. They can, therefore, make strong assumptions.
For example, a robot that is supposed to set a breakfast table
can assume that a bowl object should always be grasped from
its top side, as grasping from the front or sideways would
result in the object not fitting into the hand. This routine –
always grasp from the top – is very simple, fast and robust
but it only works for this particular context of task, object
and environment. The disadvantage of this approach is, that
the specific routines are difficult to transfer to other contexts.

The other extreme is to write the plans such that they are
very general. To do this, the plans have to include general
statements such as “pick up an object”, where the object
could be any object in any context. The advantage of this
approach is that the plans are easily transferable because
of their generality but they require very general subroutines
such as fetching any object in any context for any purpose.
Often these general methods are not sufficiently performant
for real-world applications.

In this paper we propose a more promising approach to
competently deal with the trade-off between generality and
specificity, namely, plan executives that are able to specialize
general plans through running them for specific tasks and
thereby learning appropriate specializations.

To this end, we frame the robot control problem for
performing manipuation tasks in a specific way: we consider
it to be the problem of inferring action parameterizations
that imply successful execution of underdetermined tasks.
For example, in the context of setting a table, relevant action
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Fig. 1. While the agent performs a general plan, such as picking up a cup,
the inference tasks, such as “where to stand to reach the cup”, are solved
with general methods (red area on the left). To improve the success rate,
the plan is specialized based on robot experiences: e.g., successful standing
locations are modeled as a probability distribution (heatmap on the right).

parameters that decide if the outcome of the task is successful
would be the inferred locations of the required objects,
grasping orientation and grasping points for each object,
appropriate object placing locations and corresponding robot
base locations. Thus, specializing plans in this setting means
learning the distributions of inference tasks that are implied
by the specific problem domain.

To automate this process, we design the general plans such
that the inference tasks therein are represented explicitly,
transparently and in a machine-understandable way. We also
equip the plans with an experience recording mechanism that
does not only record the low-level execution data but also
the semantic steps of plan execution and their relations. The
combination of both allows for autonomous learning and plan
specialization (see Figure 1).

The contributions of the paper are, thus, as follows:

• we show that we can design general plans such that they
can self-specialize based on experience of a specific
task;

• we propose a system architecture, which collects data
during plan execution for making up supervised learning
problems and utilizes the models for specializing the
plans in a closed loop.

We demonstrate the potential power of our approach on
a general fetch and deliver plan that is to be applied to the
specific task of table setting in a specific environment and
with specific objects. We let the robot learn and specialize
three different inference tasks. The robot automatically in-



stalls the learned results into the plan. We show that the
resulting specialized plan is better than the original general
plan in a statistically significant sense. We also discuss and
show that the learned information is general enough such that
it can be expected to transfer to other tasks and environments.

II. APPROACH AND ARCHITECTURE

There are many ways to solve the inference tasks for
parameterizing mobile manipulation actions. For example, in
the context of setting a table for coffee, inferring the likely
location of a milk object in the environment can be done
by: (1) brute-force search – look on every surface and in
every container in the environment, (2) expert system – the
expert defined refrigerator to be the likely location of milk,
(3) logical reasoning – milk is perishable, so look inside
the container for perishable objects, (4) imitation learning –
humans always look in fridges when they are searching for
milk, (5) learning based on experience – I usually find milk
in the fridge. The brute-force solver is the simplest: as long
as the domain of each action parameter is known, one can
simply iterate over the full domain until a valid solution is
found. This approach can be extremely time consuming and
requires discretization of continuous domains, on the other
hand, it always finds a valid solution if one exists. The other
advantage of this approach is that it gives the robotic agent
space for exploration.

We apply the brute-force solver in our general plans.
However, in order to make this approach sufficiently perfor-
mant for real-world applications, we rely heavily on domain
discretization and heuristics. For example, to infer how to
position the robot’s base such that it can reach the to be
grasped object, we restrict the domain of all positions on the
floor to only those that are at robot’s arm’s length away
from the object. This reduces the search space, however,
the specifics implied by the problem domain are not being
considered. For example, when grasping a bowl from the
top, the robot should stand as close as possible to it,
however, when grasping a cup from the front, standing too
close is counterproductive. In this paper, we apply statistical
approaches in order to specialize the plan through learning
the specifics implied by the task context.

Figure 2 shows the architecture of the system that im-
plements the approach presented in this paper. The Plan
Executive contains General Plans that require inference tasks
to be executed. We formulate the inference tasks as questions
that are answered by the Question Answering (QA) Sys-
tem. Previously, the queries were answered using the brute-
force solver with the Heuristics Collection. In this paper,
we implemented a Model Generator that generates learned
models stored in the Statistical Model Collection, such that
the QA system is able to select relevant models to answer the
inference tasks. To be able to generate the models, the Plan
Executive contains an Episodic Memory Logger, which is
a mechanism for recording robot experiences that does not
only log low-level data streams but also the semantically
annotated steps of the plan and their relations [1]. The
experiences are stored in the Episodic Memory Database,
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Fig. 2. The architecture of the proposed methodology to transform a general
plan into a specialized plan.

from which the Feature Extractor module extracts features
for making up supervised learning problems, which are then
used by the Model Generator.

First, the robot executes mobile manipulation tasks using
the heuristics-based inference engine. Once a significant
amount of data is collected, the models are generated. Next,
the robot executes its tasks again, now using model-based
inference and collects more data. The new data is used to
update the existing models, which closes the loop. Thus, by
generating the statistical models, we are transforming the
general plan into a specialized plan which adapts to the
objects and environment in which the agent is performing.

In the following subsections we will go into details of each
of the components of our system architecture.

A. General Plans

Plans in our system consist, in a nutshell, from a set
of commands to perform actions, executed sequentially or
concurrently. The actions are described in an abstract and
incomplete way in the format of entity descriptions [2], e.g.,
an action for transporting an object from A to B is:
( an a c t i o n

( t y p e t r a n s p o r t i n g )
( o b j e c t ( an o b j e c t ( t y p e bowl ) ) )
( t o ( a l o c a t i o n

( on ( an o b j e c t
( t y p e s u r f a c e )
( name b r e a k f a s t - t a b l e ) ) ) ) ) )

The plans implementing higher-level actions contain calls
to perform lower-level actions, such that a plan hierarchy is
created. For example, the transporting action is implemented
by performing three lower-level actions in a sequence:
( d e f - p l a n t r a n s p o r t i n g ( ? o b j e c t ? t a r g e t - l o c a t i o n )

( l e t ∗ ( ( ? p e r c e i v e d - o b j
( pe r fo rm ( an a c t i o n

( t y p e s e a r c h i n g )
( o b j e c t ? o b j e c t ) ) ) )

( ? f e t c h e d - o b j e c t
( pe r fo rm ( an a c t i o n

( t y p e f e t c h i n g )
( o b j e c t ? p e r c e i v e d - o b j ) ) ) ) )

( pe r fo rm ( an a c t i o n
( t y p e d e l i v e r i n g )
( o b j e c t ? f e t c h e d - o b j e c t )
( l o c a t i o n ? t a r g e t - l o c a t i o n ) ) ) ) )



In action descriptions, ?x stands for a variable, which gets
substituted by its value at runtime, and x is an atomic term.

Note that the action descriptions are very abstract: the
transporting plan does not tell the robot with which arm to
fetch the object, which trajectories to use, where to position
the base during manipulation etc. and it does not even say
where to search for the object. The missing information is
inferred by the plan during execution by issuing queries to
the knowledge base. In Figure 3, the three subactions of the
transporting plan are shown, along with the parameters of
each action that are inferred by asking the QA system.
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Fig. 3. Subactions of a transporting action infer parameters missing from
the plan specification by querying the QA system

Which missing parameters have to be inferred with which
queries is defined by the plan designer, such that each action
has a number of queries associated with it. Such associations
are defined with the Prolog rule action grounding. E.g., for
the searching action the predicate is implemented as follows:

1 a c t i o n g r o u n d i n g ( Act ion ,
2 [ s e a r c h i n g , Objec t , Loc , RobotLoc ] ) : -
3 p r o p e r t y ( Act ion , [ type , s e a r c h i n g ] ) ,
4 p r o p e r t y ( Act ion , [ o b j e c t , O b j e c t ] ) ,
5 o b j e c t l i k e l y l o c a t i o n ( Objec t , Loc ) ,
6 RobotLoc = [ a , l o c a t i o n ,
7 [ v i s i b l e - f o r , r o b o t ] ,
8 [ l o c a t i o n , Loc ] ] .

The code snippet reads as following: for any action de-
scription Action (line 1), which has a property [type,
searching] (line 3) and a property [object, Object] (line
4), the search location Loc is inferred through the query
object likely location (line 5) and the location for the robot
to stand to perceive the object is defined as [a, location,
[visible-for, robot], [location, Loc]] (line 6 – 8). These three
parameters – Object, Loc and RobotLoc – are then passed to
the searching plan (line 2).

The queries that are defined in the plan for inferring
missing action parameters of a transporting action and its
subactions shown on Figure 3 are listed in Table I. The
queries that we consider in this paper are location grounding
for reachable locations and grasp pose. The other queries are
inferred with the solvers 1 – 4 mentioned above (see Section
II).

object likely location(Object, LikelyLocation),
location grounding(Location, Pose)
arm to use(Arm)
grasp pose(ObjectType, GraspPose)
gripper opening(ObjectType, Distance)
grasping force(ObjectType, Force)
picking trajectory(ObjectType, Arm, GraspPose, ObjectPose, Traj)
placing location(PlacingAction, Location)
placing trajectory(ObjectType, Arm, GraspPose, PlacingPose, Traj)

TABLE I
QUERIES FOR INFERRING MISSING ACTION PARAMETERS.

B. Episodic Memory Logger

The Episodic Memory Logger is integrated into the plan
executive, which allows the logger full access to the plan
execution state. Consequently, all data which is processed
and generated by the plan execution can be logged and
evaluated. As our general plans are the same for real robot
execution and execution in a fast simulation environment, the
data structures generated from both sources are identical.

C. Episodic Memory Database

To support any possible future learning problem and to be
able to reuse old execution logs, our episodic memories con-
tain all the data generated by the agent during an experiment.
Our episodic memory format [1] is divided into two parts:
symbolic and subsymbolic. The symbolic data is written in
Web Ontology Language (OWL). This data includes the
plan’s complete action hierarchy, its parameters and success
status, all questions asked by the agent to the QA system
and the corresponding answers and the agent’s complete
world state. The subsymbolic data currently contains the
robot’s joint state information and the images which are
captured by the robot during the experiment. Even though the
subsymbolic data is unstructured, it is linked to the symbolic
data through timestamp annotations and is, therefore, easily
accessible. By accessible we mean that the subsymbolic data
can be queried via RDF query languages.

Episodic memories allow the Feature Extractor module
to extract implicit features, which are required to create the
statistical models but are not included in the input parameters
of the reasoning task. For instance, the grasp pose query,
which calculates the grasping orientation and the grasping
point (from which side to approach the object and where to
grasp) only contains ObjectType as an input parameter. The
brute-force solver does not need any additional information,
as it returns all the known grasping poses for the particular
object type. However, utilizing context knowledge, we can
say that if the robot is standing very close to the object, it is
better to grasp from the top or sideways, and if the object is
very far away, only the front grasp would be reachable. This
missing information has to be extracted from other parts of
the episodic memory. In our case, object’s pose relative to
the robot can be calculated based on the log of robot’s world
state at the time point when the grasping action started. Thus,
episodic memories allow us to generate data for current and
future learning problems without the requirement to modify
the logger or the data representation itself.



D. Feature Extractor

Having the episodic memories, it is possible to extract the
required features to generate distributions for plan specializa-
tion. In this paper we tackle multiple inference tasks. One
of the tasks is the grasping pose inference. To determine
a successful grasping pose, the Feature Extractor extracts
through RDF queries all the successful grasping actions for
the given object from the episodic memories, as well as the
corresponding robot base poses during the grasping actions.
The query results can be afterwards processed into the model
designer’s desired data structures. Currently, defining the
required statistical models for the inference tasks, identifying
the required features and writing the RDF queries has to be
done manually. In Section VII we discuss possibilities to
automate this process.

E. Statistical Model Generator

This module contains templates for defined learning prob-
lems. Based on the features provided by the Feature Extrac-
tor, the Model Generator decides if it has to generate a new
model or update an existing model from the Statistical Model
Collection. For instance, when inferring the grasping pose for
a particular object, the Model Generator extracts an existing
model from the collection if one exists for this object and
updates it with new data. Otherwise, if the object has not
been encountered before, it takes the defined template and
trains a new model. The models designed for our general
fetch and deliver plan are discussed in detail in Section IV.

F. Statistical Model Collection

This module stores all the models which were trained with
the episodic memories. Currently, each model is represented
as a binary file, which is loaded at runtime when the QA
System needs it to answer a question.

G. Heuristics Collection

In our current architecture design some heuristics-based
inference methods are still present. We use them to generate
data with a good coverage of the action parameter domain
for learning new statistical models. Additionally, as only 3
inference tasks of a general fetch and place plan are currently
covered by the statistical models, heuristics-based methods
take care of the remaining 8 inference tasks. Considering that
the model definition, feature extraction and training have to
be performed manually, generating statistical models for all
the inference tasks is considered future work and outside of
the scope of this paper.

H. QA System

Based on the received question, the QA System first
estimates if it can provide an answer based on learned models
or if it has to use heuristics. If a specialized solution exists,
the QA system selects, based on the features given in the
query and inferred from the episodic memory of the current
execution run, the required statistical model. The selection
process is based on the same criteria that the model generator

uses to decide whether to update an existing model or create
a new one.

A special feature of the QA-System is that it can calculate
answers for inference questions even before they have been
asked. For instance, in our scenario, when the agent starts
to perform a fetching action, the QA system gets notified by
listening to the episodic memory log of the current execution
run, and already starts to infer the solutions for inference
tasks of the placing action, which will be asked shortly.

III. PROBABILITY DISTRIBUTIONS FOR FETCH AND
DELIVER TASKS

In this section we define the probability distributions,
which enable the specialization of general plans. We present
probability distributions for inferring object grasping poses
and robot base locations for the fetching and delivering
actions.

A. Fetch

In this paper, we defined that the following parameters
influence the probability of a fetching action being success-
ful: the positioning of robot’s base relative to the object, the
pose of the robot’s gripper w.r.t. the object, robot’s arm used
for grasping, and different parameters of the object, such as
weight, size, material, which we encode in one parameter
called object type.

The pose of the object w.r.t. the robot is defined by its
position and orientation. The orientation is a three degrees
of freedom (DOF) parameter with continuous values. To
simplify the model of success probability of fetching actions,
we restrict the domain of the object orientation, by making
the assumption that all the objects, which the robot is
manipulating, are supported by a plane. Thus, our model
ignores objects that are, e.g., magnetically attached to walls
or hanging on a hook. Objects supported by a plane are
constrained in two DOF by the plane, and the third DOF is
left unconstrained, such that the object can be freely rotated
around its upward looking axis. Therefore, we represent the
orientation of the object by its supporting face, which is the
side of the object that touches the supporting plane, and the
robot facing face, which is the face that is oriented towards
the robot.

The position of robot’s base is also constrained: we assume
that the agent cannot grasp an object from any point in the
world but only from positions that are of robot’s arm’s length
away from the object. The orientation of the robot base is
calculated such that the robot is oriented to always directly
face the object.

We call the pose of the robot gripper w.r.t. the object
grasping pose. It is comprised of the position of the gripper,
i.e. the point at which the gripper touches the object, which
we call grasping point, and gripper’s orientation – grasping
orientation. Each object from robot’s manipulation domain
has a set of predefined grasping points. These are defined
through kinesthetic teaching or by a domain expert. Six
grasping orientations are defined for any object: top, bottom,
right, left, front and back grasps. The inference task of



determining which grasping orientation to use is based in our
system, as most other inference task solvers, on the brute-
force approach: the robot tries out random grasp orientations
until one works.

Thus, we defined the probability distribution for determin-
ing successful grasping poses and robot base locations in the
context of a fetching action as follows:

argmax
GO,RFF

P (S,GO,RFF | RP,OT, SF,ARM)∑RP
rp argmax

GO,RFF
P (S,GO,RFF | rp,OT, SF,ARM)

where RP is the space of all possible robot positions where
the robot can still reach the object. We want to determine
the max probability of success S, given the robot base
position relative to the object RP , grasping orientation GO
represented as a discrete variable, object type OT , arm
ARM and the object orientation represented as two discrete
random variables – supporting face (SF ) and robot facing
face (RFF ) – which take the same values as GO.

The general idea of that probability distribution is that the
agent can sample robot base locations for fetching from it.
When the agent reached the selected location, its world state
is updated and by asking in the next plan step for a grasping
pose, the QA system accesses the world state and sends the
grasping orientation as answer, which is associated with the
sampled location. An additional feature of the probability
distribution is that we can incorporate environment infor-
mation during task execution: we can define that the areas
where the robot cannot stand because of collisions with the
environment have a probability of zero.

B. Deliver
To be able to deliver an object at a selected location, the

agent has to know how to position itself and how to place
the gripper with the object attached. We are interpreting
a delivering action as an inverse fetching action, since the
placing trajectory is equal to a picking up trajectory. Thus,
we represent the probability of success of a delivering action
similarly to the fetching action:

P (S | GO,RFF,RP,OT, SF,ARM)∑RP
rp P (S | RFF,GO, rp,OT, SF,ARM)

In the delivering action, the agent already has the object in
the hand, so we consider the grasping orientation as given.

IV. STATISTICAL MODELS FOR FETCH AND DELIVER
TASKS

To identify which statistical models are required to be able
to model the probability distributions presented above, we
factorize the distribution as follows:

argmax
GO,RFF

P (S,GO,RFF | RP,OT, SF,ARM) =

P (S | GO,RFF,RP,OT, SF,ARM)∗
argmax

GO
P (GO | RFF,RP,OT, SF,ARM)∗

argmax
RFF

P (RFF | RP,OT, SF,ARM)

This representation shows that we need to create statistical
models for inferring the robot facing face, the grasping
orientation and, afterwards, have a classifier, which uses the
previous results as evidence to calculate the probability that
the action will be labeled successful.

A. Robot Facing Face

To calculate the corresponding supporting face SF and
the robot facing face RFF of the object based on its pose
relative to the robot rTo, we project the x and z axes of
robot’s coordinate frame (oxr and ozr correspondingly) onto
the positive and negative x, y and z axes of the object’s
coordinate frame and take the axis that has the maximum
projected value. Here, oxr and ozr are extracted from the
orientation of the object’s pose:

(rTo)
−1 = oTr =

[
oRr

otr
0 0 0 1

]
=[

oxr
oyr

ozr
otr

0 0 0 1

]
The resulting vectors are encoded into faces as shown on
Figure 4.
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Fig. 4. Encoding of object orientation into discrete “faces”

Given the information of the robot base position, object
type and on which surface it stands, we can determine with
probability of 1, which object face is facing the robot.

B. Grasping Orientation

To create the probability distribution for the grasping
orientation, we decided to use FUZZY-MLNs [3]. Markov
logic network (MLN) [4] combines first-order logic with
a probabilistic graphical model. A MLN is a set of pairs
(Fi, wi), where Fi is a first-order logic formula and wi

is a real number. Given a finite set of constants C =
{c1, . . . , c|C|}, it defines a Markov network ML,C as follows:

1) For each possible grounding of each predicate appear-
ing in L, ML,C contains one binary node.
If the ground atom is true, the value of the node is 1.
Otherwise it is 0.

2) For each possible grounding of each formula Fi in L,
ML,C contains one feature. If the ground formula is
true, the value of this feature is 1, otherwise it is 0.
The weight of the feature is the wi attached to Fi in
L.



A MLN can be seen as a template to create a Markov
network, the probability distribution of which is defined as

P (X = x) =
1

Z
exp

(
k∑

i=1

wini(x)

)
where ni(x) is the number of true groundings of Fi in x,
wi is a weight associated to the formula Fi and Z is a
normalization factor over all possible worlds.

FUZZY-MLN is an extensions of MLN, which uses the
fuzzy logic calculus for the evaluation of the formulas. Its
distribution is defined as

P (X = x) =
1

Z
exp

 |G|∑
i=1

wiπx(gi)


where |G| is the number of groundings, πi(x) evaluates the
grounded formula applying the fuzzy logic calculus and wi

is the weight associated to the grounded formula gi.
With the fuzzy calculus, we can utilize taxonomic knowl-

edge, which allows the agent to cope with unseen objects
(e.g., a spoon) by relating them to previous seen objects
(e.g., a fork). The objects, which the agent is interacting
with, are represented as concepts from WordNet[5], where,
e.g., spoon and fork are sub-concepts of the cutlery concept.
We are calculating the similarity between concepts with the
path similarity1, and by using the FUZZY-MLN we are able
to represent this similarity as evidence in our distribution. In
any system that is to be used in a real household, the ability
to cope with unseen objects is crucial.

An additional advantage of MLNs is that they are white
box models and allow us to understand the learned distribu-
tions (see V-B for a more detailed discussion).

A large disadvantage of MLNs is that they do not scale
well on large datasets. To cope with this problem we decided
to apply a multilayer MLN approach for inferring the
grasping orientation. The general idea of the approach is
that we have one single FUZZY-MLN for each seen object.
These are represented in the second layer of our architecture.
In the first layer we have a FUZZY-MLN, which, given the
object to fetch, infers which MLN from the second layer
will infer the most probable successful grasping orientation.

C. Probability of Successful Fetching

The idea of the probability distribution from Section III is
that a sample should represent the probability of success for
a fetching action, given the provided evidence. Our approach
is inspired by[6], where authors bootstrapped SVMs to create
a probability distribution for the success rate of standing
locations for pick and place tasks. To calculate the success
probability, we created a binary classifier, which labels if the
fetching action will be successful or not given the evidence
such as grasping pose, object type and robot base position.
Inspired by our solution for calculating grasping orientation,
we decided to create one classifier for each combination

1http://search.cpan.org/dist/WordNet-Similarity/
lib/WordNet/Similarity/path.pm (accessed: 2019-01-31)

of the evidence, excluding the robot position. In theory, it
means that we would have to deal with 1296 (OT ×GO ×
RFF × SF × ARM ) classifiers, if we would train on 3
objects. However, since, e.g., the spoon’s only physically
stable supporting faces are bottom and top, the number of
classifiers is significantly lower. During our evaluation, 1296
was reduced to 116 binary classifiers that we generated in
total. If the QA system is asked for a robot base position for
a fetching action, it picks the model based on the evidence
and then the selected model uses the robot position as the
feature to determine the success rate for the given position.
We decided to use generative models (Guassian naive Bayes)
due to the small dataset sizes, which is used to train each
model individually [7].

V. EXPERIMENTAL EVALUATION

One of the advantages of our approach is that one does
not need a specifically designed script to generate the data
for the training set. The robot can simply execute its usual
tasks and collect the data while doing so. Due to general
inference methods not being quite optimal, the number of
negative samples is quite high. Nevertheless, all the samples
– both positive and negative ones – are collected for learning
purposes. The aim of this paper was to optimize the process
of sampling in order to decrease the amount of negative
samples and, therefore, failures. In order not to overfit our
training dataset to the evaluation dataset, the pick and place
tasks the robot performed varied in object type, object
starting and goal poses, and robot poses for fetching and
delivering. In the following, we explain how the training set
was generated and how we evaluated the system.

A. Data Generation

For the data generation, the robot performed its usual
pick and place plans with 3 different objects: fork, cup and
bowl. The scenario was as following: (1) all the objects are
spawned on one side of the kitchen (sink-area) in random
positions and with random orientations, (2) the robot picks a
random object from the set of four and fetches it with one of
its two arms and with one of the possible known grasps for
this object, picked randomly, (3) the robot delivers the object
to the other side of the kitchen (kitchen-island) to a randomly
picked point on the surface with a random orientation, (4)
the robot fetches the object again and delivers it back to the
sink-area onto a randomly picked location on the surface,
(5) the loop continues with the next randomly picked object.
We decided to generate 500 episodic memories for the model
generation to evaluate how much improvement gain can be
achieved already with a small training set.

B. Model Generation

The Feature Extractor module of our system extracted the
required features to train our MLNs and the naive Bayes
classifier from the 500 generated log episodes. Since we only
had a small dataset, we decided to skip individual validation
of the generated models. However, since the MLNs are white
box models, we could understand what the agent learned

http://search.cpan.org/dist/WordNet-Similarity/lib/WordNet/Similarity/path.pm
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from the dataset. For instance, it learned that the agent was
more successful when grasping the cup from its robot facing
side instead of grasping it from the top or sideways. Figure
1 shows how the heuristic-based distribution for robot’s base
location differs from the learned one. One can observe that
the agent learned that in order to successfully grasp a cup
from the front, the robot should stand a bit further away from
the object, due to joint limit restrictions of robot’s elbow.

C. Evaluation in Projection Environment

As evaluation criterion of execution in projection environ-
ment we have chosen to count the number of successful fetch
and deliver actions as well as the number of failures, i.e. the
general number of retries while performing those actions.
For the projection, we are not measuring the execution time,
since robot movements in simulation can be executed in
nanoseconds and, therefore, difficult to compare.

For the test dataset we have chosen 3 objects – cup,
bowl and spoon. Compared to data generation scenario, we
replaced the fork with the spoon, which is an object unseen
in the training dataset. In order to minimize the influence of
irrelevant parameters involved in pick and place actions, we
have chosen 4 specific object configurations, including the
object spawning location and the goal location. We have also
fixed the robot arm (left or right) used for the fetching and
delivering. The parameters that remain varied are the robot
base locations and the grasp orientations, which the robot
choses on its own. The scenario is as following: (1) the robot
fetches the bowl from its initial location at the sink-area and
delivers it to its goal location on the kitchen-island, (2) the
robot transports the spoon from sink-area to kitchen-island,
(3) the robot takes away the cup from the kitchen-island and
brings it to the sink-area.

Initially, we have performed the scenario with the gen-
eral plan, which resulted in the heuristic-based methods
answering the queries. We performed 25 runs of each of
the 4 configurations. Next, we performed 25 runs of the
4 configurations again with the specialized plans. Table II
shows the performance of all plans over the 4 scenarios.

Plan Fetch Deliver #Actions #Retries #Retries/
#Actions

Projection
G 274/300 239/300 513/600 488 0.95
S 296/300 280/300 576/600 269 0.47

Real Robot
G 11/12 8/12 19/24 24 1.26
S 10/12 9/12 19/24 9 0.47

TABLE II
OVERVIEW OF THE NUMBER OF SUCCESSFUL ACTIONS AND RETRIES,

COMPARING THE GENERAL PLAN WITH THE SPECIALIZED ONE

If all plans executed in projection would perform success-
fully, there would be 300 successful fetching and delivering
actions in total, i.e. a plan could perform 600 successful
actions in total. However, some actions failed and some
were not executed as a result. Thus, if fetching of an object
failed, the delivering action on that object was not performed

anymore. This means that the number of retires in the general
plan might be significantly higher if the general plan would
have the same amount of successful fetching actions.

The evaluation shows that the specialized plan outper-
formed the general plan in any category. The specialized
plan performed more actions successfully and also needed
only almost half of the number of retries compared to the
general plan.

D. Evaluation on Real Robot

On the real robot the evaluation criteria have been chosen
to be the number of successful actions and retries as well
as execution time. As it is very difficult to collect enough
data points on a real robot to give a meaningful empirical
estimate of the costs, we do not claim the experiments on
the real robot to be a valid empirical evaluation, rather, these
experiments are to prove that the framework is feasible on
the real robot and has promising improvements in the number
of failures and execution time that we have observed from a
few experimental runs.

We have executed each of the 4 configurations once with
the general plan and once with the specialized plan. Table
II shows the number of successful actions and retries. In
total the number of successful actions was the same between
the plans, however the specialized plan was able to execute
those actions with 60% less retries. Table III shows that
the specialized plan reduced the average execution time of
fetching on a real PR2 by almost 30%. The delivering
execution time got reduced by at least 17% in average.

Plan Avg. Fetching Time Avg. Delivering Time
General 151 secs 115 secs

Specialized 109 secs 95 secs

TABLE III
COMPARISON OF AVERAGE ACTION EXECUTION TIME BETWEEN THE

GENERAL PLAN AND SPECIALIZED PLAN PERFORMED ON A PR2

VI. RELATED WORK AND DISCUSSION

In this paper, we presented a general learning framework
that is capable to improve the performance of mobile ma-
nipulation actions by learning answers to queries that infer
parameters of the actions. Thereby the emphasis is on being
able to learn the answers to any inference query, be it in
continuous or discrete domain, independent of the amount
and type of features, if the features are explicitly given or
have to be inferred, etc. The idea of a general framework
that can learn any action parameter has been considered pre-
viously [8], [9]. The main disadvantage of such frameworks
is that the learning problems and the models used to solve
them have to be explicitly stated inside the robot’s plan. This
means that if the designer decides to change the underlying
model or the model requires a new feature, robot’s plan has to
be rewritten. In this paper, we present a learning framework
that is seamlessly integrated into the plan, such that the plan
is not even aware if the answers to the inference tasks are
coming from the learning framework or from a different,
e.g., heuristics-based, method. The training data is, thereby,



automatically acquired during normal robot execution, such
that over time the plan performance is improved significantly,
without any changes happening in the plan itself. If a model
requires a new feature that is not explicitly given in the
plan, the framework can infer it based on execution logs
and robot’s world state.

The state of the art in supervised learning demonstrates
extreme improvements in manipulation tasks with deep rein-
forcement learning approaches [10], [11], [12], [13], mostly
concentrating on learning a specific skill, e.g., calculating
grasps or in-hand manipulation. Some apply end-to-end
approaches to solve longer-horizon multi-stage manipula-
tion tasks [14]. In this paper, we consider more complex
mobile manipulation tasks, i.e. combined manipulation and
navigation, and solve it with a different approach, which is
to split one big learning problem of learning trajectories to
execute the full task into smaller and simpler subproblems.
As statistical models for our learning problems, we have
chosen MLNs, where we can utilize first-order logic to
represent complex relations and are able to understand what
the agent learned from its own experiences. We consider that
MLNs being white box models is an advantage compared
to black box models such as neural networks, as it allows
to identify important features that are robot-independent
or object-independent and transfer this knowledge to other
robots and environments. It also allows to reuse full models,
e.g., we applied the model of reachability learned for picking
up actions also to placing actions with similar success.
Transferability is especially important in the context of
generalized fetch and place, which is expected to work in
a diverse environment such as a human household.

Data-hungry deep learning methods require millions of
data points, which is very challenging to collect for such
long time horizon tasks as mobile manipulation. We are not
claiming that MLNs are outperforming the deep learning
solutions at the moment. However, it is interesting to see that
already 500 data points were enough to improve the agent’s
performance significantly and, in combination with FUZZY-
MLN, we can transfer the knowledge to unseen objects.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented an approach to utilize the
robot’s experiment experiences to generate specialized plans
from general ones. Our approach is an architecture which
generates and updates statistical models to enable plan spe-
cialization. We compared the general and specialized plan
by letting the agent perform various manipulation tasks,
using once the general plans and once the specialized. The
evaluation showed that a small number of data points was
already enough to create a specialized plan, which improved
agent’s performance of manipulation tasks significantly.

In its current state, the proposed architecture is not able to
automatically identify the required statistical models for the
learning problems and the required features for improving the

answers of the inference tasks of the general plan. Therefore,
in the nearest future we will focus on auto machine learning
for our framework.

As statistical models we use MLNs, for which, to the best
of our knowledge, no incremental learning algorithms exist.
As a result, we have to retrain the models every time with
the complete training set. Thus, we will additionally focus on
online learning algorithms for MLNs to enable incremental
learning. Currently, we apply our framework to only three
inference tasks, and our goal is to learn answers to all queries
that the robot can ask in the context of fetch and place.
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