
Robots that Validate Learned Perceptual Models

Ulrich Klank, Lorenz Mösenlechner, Alexis Maldonado and Michael Beetz
Department of Informatics, Technische Universität München

{klank,moesenle,maldonad,beetz}@cs.tum.edu

Abstract— Service robots that should operate autonomously
need to perform actions reliably, and be able to adapt to their
changing environment using learning mechanisms. Optimally,
robots should learn continuously but this approach often
suffers from problems like over-fitting, drifting or dealing with
incomplete data.

In this paper, we propose a method to automatically validate
autonomously acquired perception models. These perception
models are used to localize objects in the environment with the
intention of manipulating them with the robot.

Our approach verifies the learned perception models by
moving the robot, trying to re-detect an object and then to
grasp it. From observable failures of these actions and high-
level loop-closures to validate the eventual success, we can
derive certain qualities of our models and our environment.
We evaluate our approach by using two different detection
algorithms, one using 2D RGB data and one using 3D point
clouds. We show that our system is able to improve the
perception performance significantly by learning which of the
models is better in a certain situation and a specific context. We
show how additional validation allows for successful continuous
learning. The strictest precondition for learning such perceptual
models is correct segmentation of objects which is evaluated in
a second experiment.

I. INTRODUCTION

To enable a robot to perform complex actions such as
cooking meals and cleaning up skillfully and reliably in a
highly dynamic and changing environment such as a human
household, adaptation to the environment is essential. In
this paper, we discuss the special problem of encountering
unknown objects and learning perception models to recog-
nize these objects. However, most learning methods suffer in
some way from over-fitting and over-specialization or on the
other hand from a lack of expressiveness to encode required
facts. Furthermore, self-supervised learning schemes tend to
diverge over a longer continuous operation towards unwanted
or unexpected behavior.

In this paper, we show that those general problems related
to learning may be overcome by exploiting redundancy and
self-validation which is present inside an environment the
robot can interact with. More specifically, we present our
system setup around the perception system Cognitive
Perception (COP) that interacts with the environment to
validate object models and derive the quality of a learned
model. In essence, the robot verifies predictions it made
based on its current belief state. This allows to assess the
quality of a learned model, which we will refer to as high-
level loop-closure. We will show in our experiments two
examples of predictive models and their verification: in the
first experiment, the robot moves to detect a (re-detectable)

object on the table from different perspectives. During this
process, the objects on the table are assumed to be static.
Second, a well segmented and rigid object will be moved by
the robot taking it and placing it somewhere else. In the first
experiment, we show the validity of a model by detecting
an object from different view-points. Here, the loop-cosure
happens by a successful re-detection of an object at the same
place according to the odometry which indicates a valid
model. In the second experiment we perform a pick-and-
place action to verify the segmentation of an object. The
loop-closing event is here the following: If the object has
been segmented correctly we can pick it up and put it down
at a different location and still re-detect the object at the now
expected new position using the previously learned model.
Failure indicates a poor model which should be abandoned.

We significantly improve the recognition performance of
the system by allowing the robot to validate its models.
This is implemented by using the outcome of actions as
input for the feedback system of COP. This learning pro-
cess transparently integrates into the robot’s high-level task
execution system, i.e. learning is done without increasing the
calculation times of object recognition and without adding
offline computations. In our test scenario, the performance
increase is measured by the capability to decide which of
two learned perceptual models is better or if none of them
is applicable in the current situation. One of the two models
is based on the texture and silhouette, the other model on
the 3D shape. Figure 1 shows an example of a scene where
four objects cannot be distinguished by their shape, but
significantly by their texture.

Fig. 1. To detect some objects, texture is more relevant than shape, for
other objects, shape is more relevant.

The integration of the perception system in the robot’s
entire system is shown in Figure 2. The control of the

robot has to be accurate and failure and error aware, i.e.
all components need to be able to detect failures such as
objects slipping out of the robot’s gripper. This is necessary
be able to perform high-level loop-closure. The entire system
is considered as the contribution of this paper. It allows for
continuous self validation of several aspects of its perception
mechanism and enables self-supervised learning. Addition-
ally, we introduce several minor improvements to the used
perception mechanism and several interesting design patterns
in the used software which are required for the system to
work.

In the remainder of this paper we proceed as follows: After
discussing related work, we will introduce the perception
system in Section III and will give more background on the
used methods. Section IV we describe the executive which
is closing the high-level loop. It uses the perception system,
controls the robot accordingly and provides feedback for the
perception system. We will continue with the implementation
of the feedback and the actions that are triggered by positive
or negative feedback in Section V. Finally, Section VI, we
will present the results of our experiments.

CoP Action Module
Poses

of Objects and
Obstacles

Action
Tasks

Success
or Failure

Report

New
Models,
Poses

of
Objects

Perceptual
Tasks

Evaluation
of previous

Tasks

High level Control

World
belief state

Action

planning

Fig. 2. The integration of the executive with the perceptual system and
the actuation system.

II. RELATED WORK

Perceptual modeling of objects is a widely discussed prob-
lem and is often done semi-autonomously in order to achieve
better performance. Examples for automatic approaches are
Lai et al. [1] where the authors provide a strong RGB-D
descriptor for segmented objects or the work presented in [2]
which only expects that a robot has an object in its gripper
in order to learn textured 3D-representations.

There are currently several challenges set up in the area
of perception, which are interesting to compare with the
problem we impose here. For instance, the “Solutions In
Perception Challenge” was proposed and discussed in a
recent IROS Workshop [3]. It requests the recognition of
objects in cluttered scenes. In contrast to the presented
approach here, the provided data of objects are assumed

to be well segmented, rigid, textured and lambertian and
views are available from all directions. Such data, fulfilling
the above assumptions, cannot always be provided in an
unstructured environment. [4] assumes segmentation and
validation over multiple views, which results in nice 3D
object representations, but unfortunately requiring a static
world. A bit different is the approach proposed in [5] which
derives parameters for predefined functional models that are
applied on movable objects to extract basic properties. This
approach requires a function to explain all possible effects
and needs means to measure those effects, and both things
are not intrinsically verifiable.

III. PERCEPTION SYSTEM

The perception system COP selects and applies different
perception methods and manages sensors and perception
models to detect and re-detect a big variety of different ob-
jects. A perceptual model (in the remainder of this article just
model) is annotated information that can be used to segment,
identify or localize types of objects. A simple example is
a CAD model of a mug, which is used by an appropriate
method to localize objects that show approximately the 3D
shape described by the CAD model. A perception method
is anything that makes use of such models or learns new
perceptual models. The sensors are intuitively defined as any
incoming data which is not annotated by a high-level system.

The basic data structure controlling the perception system
COP for the segmentation and other basic properties is a
mapping of visual tasks onto a success statistics, wherein
the visual task is represented as a combination of a method,
a model, and a sensor configuration in space (i.e. its pose):

vis-task × 〈 method,model,sensor 〉 −→ success statistics

where each method is applicable only to a subset of model
types and specific sensor configurations. The statistics for
these methods, models and sensor combinations then form
the basis for selecting the task specific perception methods.
The acquisition of the success statistics is supervised by the
high-level control system of the robot that provides the feed-
back. This feedback contains information about whether or
not a perceptual task resulted in a successful task execution.
For example, the high-level controller might specify in the
context of a pick-up task that the localization of an object
was successful if the robot successfully grasped the object.
Otherwise the success of the visual task is unknown since
a grasp failure could have been caused by the hand or arm
controller or the perception routine.

COP essentially learns in two ways: first, given de-
tected object candidates, it creates new perceptual mod-
els for objects and extends the set of applicable
〈 method,model,sensor 〉 triples. Second, it learns the deci-
sion rules for selecting the appropriate method/model/sensor
combination by continuously collecting the results of their
application whenever they have been applied in the context
of problem-solving. We approximate the quality of a model
at a specific time instant based on the acquired feedback
information for a model using the following formula:

p(M) =
pM +

∑
∀f∈FM,O

f

1 + ‖FM,O‖

where pM is the overall performance of the method M ,
which is initially given for all methods and FM,O being the
list of all feedbacks that were reported regarding the method
M for the object O, a feedback f is a value between 0.0
(fail) and 1.0 (success). The highest p(Mi) decides on the
method Mi to be chosen for the next run.

In order to learn a perceptual model for a new object a
segmentation is necessary. By the segmentation, an object
hypothesis is formulated. The better this first hypothesis is,
the more valuable the later objects will be. All yet tested
segmentation methods fail from time to time, so any model
has to be considered as potentially wrong.

For the evaluation of this paper, we used, as mentioned
before, two methods to learn and localize objects. Even if
COP in its current implementation contains more methods,
we will exemplary evaluate our system with only two meth-
ods. The exact description of the perception methods is only
relevant for understanding and reproducing the experiments,
though only the integration into the error-aware system is
part of the contribution of this article.

Both of the methods have a fundamental property that
allows easier evaluation: the localization works without pre-
vious segmentation of a scene, but may be applied to only
parts of an image. The models of the objects are also robust
enough to withstand sensor noise and are general enough to
be applied to data from different sensors. Both models can
be learned successfully from only one view of the object if
the segmentation is correct. Additionally, both methods have
a similar runtime in our setup, which is below half a second
for the hardware setup we use.

A. Surface Model Extraction and Matching

Assuming the surface of the object is distinctive, we can
extract from a segment of a depth image a model describing
this surface using the relations of calculated normals on
the surface. The relation of two identified points and their
normals is already sufficient to estimate a pose of the
object. By performing a voting in a new depth image on
positions in space, the method presented in [6] relocates
the template again in different images (see Figure 3). The
pose winning the voting is refined with an ICP algorithm
(Interactive closest point) between the model points and the
new depth image. The voting is performed in a discretized 4D
space representing candidate locations of the object, given a
selected model point is at a certain position with a known
normal. Such a point is called seed point and all other points
of a sub-sampled version of the current scene are voting for
a position with orientation in this space. After several seed
points are tested, there are strong maxima for several of the
seed points which correspond to the best match in the image.
This method will find a present object with a high probability,
given the sampling in the scene is dense enough and it has
a unique shape with respect to the background and clutter.

(a) A point cloud segment used
for building a surface model.

(b) A point cloud segment used
for building a surface model.

(c) A match and the transformed
segment at a new position.

(d) The same match with a col-
ored point cloud.

Fig. 3. Surface model for localization of Objects.

The execution time of this method scales with the 3D
space that has to be searched, and comes to near real-time
performance in our setup if we reduce the search space in the
depth image to the current working volume without known
furniture.

B. Planar Shape Model Extraction and Matching

If we assume partial planarity of an object with sufficient
size, we can learn a shape model of the object. It is helpful
if the object is textured, but a prominent outer contour may
already be sufficient for a good recall. By saving a 3D
position of the estimated planar substructure and the image
region’s barycenter, a learned template can be re-localized in
3D (see Figure 4). For extracting the main planar substructure
we just calculate the SVD (Singular value decomposition)
of the segmented 3D points, and use the cross product of
the first two Eigenvectors as a plane normal through the
object’s center. This is done unless the normal direction is
too different from the viewing direction, which will lead to
the usage of a fall back solution taking the second most
prominent plane, assuming that a steeper view will make the
learned model worse.

A shape model generated from an earlier view of an
object is used to re-localize the object. With such a template
we can calculate a homography estimating the best 2D-2D
hypothesis between the training image and the final image
by using the method presented in [7]. Such a localization has
a relatively high residual error in the viewing direction of the
relevant sensor which is reduced by applying the method to
a second camera if available. If the results are consistent up
to a certain degree, the mean position and rotation of the two
results is used.

(a) The contour which is pro-
jected on the assumed plane.

(b) The same contour from a side
view to see the difference between
object and assumed plane.

(c) A contour for another object,
frontal view.

(d) A contour for another object,
side view.

Fig. 4. Planar Shape model for localization of Objects.

IV. EXECUTIVE

To close the high-level loop between perception and
manipulation, we use an executive that allows for reasoning
about plans and provides powerful mechanisms to react on
different errors under various contexts. The executive is
central component for generating feedback information used
by the lower level parts of the system in a flexible and general
way and to monitor continuous learning.

The executive is based on the CRAM Plan Language [8]
which is a rewrite of Drew McDermott’s RPL [9]. It provides
a rich set of expressions that allow for the specification
of highly parallel, synchronized, flexible and transparent
plans. Failure handling is achieved by an extensive, exception
based mechanism that also works across the boundaries of
multiple processes. More specifically, the language provides
constructs for parallel and sequential evaluation with various
failure semantics. Examples include par which executes pro-
gram instructions in parallel and terminates after all of them
terminated or pursue which executes instructions in parallel
and terminates when one of the sub-forms terminates.

Programs in our executive cannot only be executed but
also reasoned about [10]. This is achieved by providing
annotations for all higher-level actions such as picking up
an object, putting it down, perceiving an object or moving
the arm to a specific position. While executing a plan, an
execution trace is generated that contains all information that
is required to completely reconstruct the course of actions,
the beliefs of the robot during action execution (i.e. the
assignment of local and global variables) and the status of
control routines at any point in time (e.g. failed, succeeded,
etc.). Besides allowing us to infer what the robot did, when
and why after a plan has been executed, this also allows us
to directly infer the current context of actions during plan
execution. This provides valuable context information about

where a failure occurred and how it has been handled.
Causes for failures are manifold. The robot might fail

to navigate to a specific location because it is unreachable.
Manipulation might fail because the object cannot be reached
which might have several reasons: the object might be too far
away, the location of an object detected by perception might
be inaccurate or the self-localization of the robot drifts too
much and the robot misses the object while trying to grasp
it. Perception might fail, too. Our system requires the lower-
level routines such as navigation, manipulation or perception
to detect and signal errors such as “object not detected in the
gripper”. These errors are handled locally by, for instance,
changing the location of the robot, re-perceiving the object
and retrying the action.

While executing an action, the system asserts and retracts
information about the current context, currently executed
actions and their outcome, results and errors in a knowl-
edge base. There, a feedback mechanism that infers specific
failure conditions can hook in. If a specific combination of
execution context, failures and the corresponding parameter-
ization match a failure pattern, a feedback message for the
perception system is generated, containing all information
that is required to evaluate the perception action involved in
the error.

V. PERCEPTION ACTION LOOP

In order to generate feedback in the executive while
performing a task back to a perception system, we have to
consider several important facts: first, we need a communi-
cation infrastructure that allows to pass detailed information
about what happened and to which action of the perception
system this information refers to. Second, any feedback will
only help when it is consistent with the success or failure of
the perception system itself.

We solved the communication by assigning a unique ID to
each of the tasks which are performed by the perception sys-
tem. In the perception system the connections of performed
methods and models with this ID are memorized. In case
of a feedback, the combination of method and model are
evaluated accordingly, as well as any earlier action leading
to the creation of the model.

Much harder to meet is the second condition: given the
success of a plan or an error during execution, the direct
conclusion that also the perception routines succeeded or
failed is invalid. Therefore, the executive needs a deep insight
in preconditions and effects of executed plans in order to
solve that task. As an example we want to explain the details
of the task we used to evaluate our system, a pick-and-place
task.

A. Pick-and-Place Setup

In short, our plan performs only the following standard
pick-and-place task:

1) Segment the scene
2) Learn models for all objects
3) Try to grasp one of them
4) Put down the object at a different location

5) Validate the predicted position with the learned models
More interesting are the possibilities to detect and recover

from errors: If the models are learned and one of the objects
is selected, for this object, the model can be preliminary
validated by moving the robot in order to grasp the object
and using the new model to localize the object again before
grasping it. If this fails, the robot will retry which might
already cause the use of another perceptual model that is also
applicable in the current context. While grasping, the hand’s
torque parameters are observed to detect any unpredicted
collisions which may give information about unseen objects
or an inaccurate position estimation of the target. This
information might already indicate that the robot has moved
the object and in case nothing is grasped the object has to
be localized again. Whether the robot grasped something is
decided based on the joint angles of the hand after the grasp.
When they indicate a fully closed hand instead of a hand
holding an object, the grasp is considered a failure. Please
see [11] for more details of the used grasping system.

If the object is put down to an empty spot on the table, the
near environment of the put-down location is scanned for the
object again. If it appears to be close enough to the predicted
position, the entire process is considered successful. In most
cases, the model is even robust enough to localize the object
if it was not put down carefully enough to stand upright, i.e.
if it flipped over after the put-down action. This situation
may indicate a failure in the grasping, but is no indicator for
the quality of the perception at this point.

B. Feedback Generation

The high-level control program executes the simple pick-
and-place plan described above and observes the different
errors that may occur. For instance, if the object is not
reachable, the vision system is most probable not responsible
for this problem but the executive’s choice of a location
to stand for reaching the object could have been bad. On
the other hand, if the manipulation system does not detect
the object in the gripper, the perceived object location was
probably bad and the perception system receives a negative
evaluation value. Other errors that occur include that the
object could not be re-detected which indicates that the
learned object model does not fit under the current environ-
ment configuration and location of the robot. Such errors are
handled locally by moving the robot to a different location
and trying to perceive and pick up the object from there. If
the robot could successfully pick up the object, the system
puts it down at a different location and then searches for
it again at the put down location. Since the robots plans
the position to put down the object, it has implicitly a
qualified prediction about the expected location of the object.
Therefore, the distance between a re-detection of the object
and the expected location can be measured. If the object is
close to the desired pose, the perception system receives a
positive feedback, which is not only valid for the model used
for identification but also for the segmentation that preceded
the creation of the perceptual model. A re-detection of the
object that is not close to the put-down pose indicates a

Shape Model Surface Model Learning
Boxes 69.6% 55.0% 76.3%
Shapes 51.9% 62.5% 83.5%
Diverse 62.1% 60.0% 76.0%

All 67.9% 59.2 % 78.2%
‖Measurements‖ 125 240 239

TABLE I
COMPARISON OF THE TWO METHODS AND THE LEARNING PROCESS

OVER THE METHODS FOR DIFFERENT OBJECT SCENARIOS.

false-positive and the currently learned model for that object
receives a negative evaluation.

VI. RESULTS

In this section, we present the results of the two experi-
ments mentioned earlier in the paper.

A. Evaluation of Model Selection

To get an intuition how often a one-shot learning model
will succeed, and to visualize the differences of the models,
we made the following experiment: We let the robot learn
several objects in a scene from one view. Then the robot
moves to a set of points inside a region of about 2 square
meters. From all points the robot perceives the scene and
tries to localize the previously learned objects in the scene.
For this localization task, the search space is restricted to
“on the table” and the assumption of the previously known
location is dropped internally to prevent favoring of a similar
location. In addition, two different scene setups were used:
box-only scenes and diverse scenes as shown in Figure 5.

(a) One of the diverse scenes. (b) One of the boxes-only scenes.

Fig. 5. Examples of scenes that were used to evaluate COP’s model
selection.

By repeating this experiment, we extracted several key
parameters of our system which are summarized in Table
I: for most objects in our domain, i.e. a kitchen, the planar
shape model performs slightly better than the surface based
model. But this result is influenced by the selection of special
subsets of objects. When only the boxes are taken into
account, the shape model will be favored. On the other hand a
majority of texture-less objects will favor the surface model.
However, if the perception system is allowed to decide based
on its experience for the learned models which model to use
for localization, the performance is far better: Namely, we
achieved 78.2% correct detection within the localization error
of the robot compared to 59.0% and 68.0% for constantly
favoring one method. This requires, of course, that after every
trial, feedback about the success is provided to the system.

Segmentable Not Segmentable
Error in pickup phase 30% 50%

Error in put down phase 0% 10%
Model failed post move eval. 0% 20%

Plan Succeeded 70% 20%
|Trials| 30 10

TABLE II
STATISTICS OF RESULT STATES OF THE PLAN FOR TEST SCENES.

The learning switched in average 2 - 3, maximally 5 times
between the two models until the learning process converged
for a static scene. E.g. in the Boxes scenario with several
equal boxes and one distinct box, all but the distinct box
converged to the shape model. This shows the high context
awareness of the method, while never executing two methods
at once in order to avoid additional execution time.

B. Evaluation of the Pick-and-Place Plan

Segmentation is a crucial precondition to learn a valid
model for a new object candidate in nearly all current
methods, including the two methods we used in this ex-
periment. In order to validate the segmentation we perform
the following test: the robot is only able to move an object
away from its position when the previous segmentation was
correct. Otherwise, it will only move parts of the object or
it will fail when trying to pick up the object. We will apply
the previously mentioned action (see Section V-A) to a scene
which was set up with one of two modes:
• easily segmentable, i.e the distance between objects is

greater than five centimeters
• not segmentable in 3D space, i.e. two objects are

(almost) touching each other

(a) A setup for the pick-and-place
task. The objects are well seg-
mentable.

(b) A view of the verification step,
showing an object at a new posi-
tion.

Fig. 6. Snapshots from the experiment, used to evaluate the segmentation
and model building.

The resulting data from the experiment can be seen in
Table II and can be interpreted as follows: in case of a suc-
cessful segmentation, the objects could be always localized
correctly using the learned models, which were used at least
twice before. In both cases, in the segmentable scenes as
well as in the not segmentable scenes our grasping system
had some problems, in various cases caused by a bad model,
which was not giving a sufficiently accurate localization.
Examples for segmentable scenes can be found in Figure 6.
In case of the not segmentable scenes we observed four times
the trickier case when the robot moves part of the objects in

the selected segment. Figure 7(a) shows such a segment and
Figure 7(b) shows a grasp that was considered as successful
while only lifting the left object. The corresponding model
was then rejected due to low correlation of the placed object
and the learned model. The bold numbers in Table II show
cases which successfully generated information that could be
passed to the perception system. In only two tests in which
the plan was considered successful in the not segmentable
scenes, did the information lead to a wrong believe state of
the system about the quality of the model.

(a) Model learning step with
failed segmentation.

(b) The subsequent grasp, that
picked up one of the objects.

Fig. 7. The border case, when the grasping works even with wrongly
segmented objects, has to be recognized.

VII. DISCUSSION AND CONCLUSIONS

We showed how we could improve the performance for
a robotic perception system with a simple, self-supervised
learning system implemented on a robot. The learning effect
can be achieved independently of the underlying perception
methods and could be applied to any newly acquired model
that allows localization of an object. All feedback data
was based on the capabilities of the robot to observe the
outcome of certain actions in order to use this knowledge.
Even if both experiments still show room for improvement
in terms of robustness, we still see this as an interest-
ing step towards autonomy for service robots in domestic
environments. The results already show the feasibility of
continuous self-supervised learning in complex environments
with challenging tasks without risking diverging if the system
exploits implicit knowledge gathered through monitoring
actions and their outcome.

The manipulation system under the uncertainty of badly
segmented and represented objects still has some problems
that might be partially fixed by using more sensors to detect
contact in the hand and better grasp planners. We also did not
yet consider the calculation time to decide which perceptual
model will be used. This could lead to the possibility of
using combinations of methods, which could increase the
robustness of the system further.

ACKNOWLEDGMENTS

This work is partially supported by MVTec
GmbH, München, www.mvtec.com and the cluster of
excellence COTESYS (Cognition for Technical Systems,
www.cotesys.org)

REFERENCES

[1] K. Lai, L. Bo, X. Ren, and D. Fox, “Sparse distance learning for
object recognition combining rgb and depth information,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA), Shanghai,
China, May, 9–13 2011.

[2] K. Welke, J. Issac, D. Schiebener, T. Asfour, and R. Dillmann,
“Autonomous acquisition of visual multi-view object representations
for object recognition on a humanoid robot,” in IEEE International
Conference on Robotics and Automation (ICRA), 2010.

[3] G. Bradski, R. B. Rusu, and K. Konolige, “Opencv: Solutions in
perception challenge,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Workshop. Defining and Solving
Realistic Perception Problems in Personal Robotics, October 2010.

[4] M. Ruhnke, B. Steder, G. Grisetti, and W. Burgard, “Unsupervised
Learning of 3D Object Models from Partial Views,” in Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), Kobe, Japan, 2009.

[5] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing Object Affordances: From Sensory–Motor Coordination to Imita-
tion,” Robotics, IEEE Transactions on, vol. 24, no. 1, pp. 15–26, 2008.

[6] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3d object recognition,” in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
2010.

[7] A. Hofhauser, C. Steger, and N. Navab, “Edge-based template match-
ing with a harmonic deformation model,” in Computer Vision and
Computer Graphics: Theory and Applications - International Confer-
ence VISIGRAPP 2008, Revised Selected Papers, ser. Communications
in Computer and Information Science, A. K. Ranchordas, H. J. Araújo,
J. M. Pereira, and J. Braz, Eds., vol. 24. Berlin: Springer-Verlag, 2009,
pp. 176–187.

[8] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM – A Cogni-
tive Robot Abstract Machine for Everyday Manipulation in Human
Environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, Taiwan, October 18-22 2010, pp. 1012–
1017.

[9] D. McDermott, “A Reactive Plan Language,” Yale University,” Re-
search Report YALEU/DCS/RR-864, 1991.

[10] L. Mösenlechner, N. Demmel, and M. Beetz, “Becoming Action-aware
through Reasoning about Logged Plan Execution Traces,” in IEEE/RSJ
International Conference on Intelligent RObots and Systems., Taipei,
Taiwan, October 18-22 2010, pp. 2231–2236.

[11] A. Maldonado, U. Klank, and M. Beetz, “Robotic grasping of un-
modeled objects using time-of-flight range data and finger torque in-
formation,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Taipei, Taiwan, October 18-22 2010, pp.
2586–2591.

