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Abstract— In this paper, we will describe AMEVA (Auto-
mated Models of Everyday Activities), a special-purpose knowl-
edge acquisition, interpretation, and processing system for
human everyday manipulation activity that can automatically
(1) create and simulate virtual human living and working
environments (such as kitchens and apartments) with a scope,
extent, level of detail, physics, and close to photorealism that
facilitates and promotes the natural and realistic execution of
human everyday manipulation activities; (2) record human
manipulation activities performed in the respective virtual
reality environment as well as their effects on the environment
and detect force-dynamic states and events; (3) decompose and
segment the recorded activity data into meaningful motions
and categorize the motions according to action models used in
cognitive science; and (4) represent the interpreted activities
symbolically in KNOWROB[1] using a first-order time interval
logic representation.

I. INTRODUCTION

As we now have robotic agents that can accomplish mo-

bile fetch&place tasks [2], [3], [4], the next challenge is how

we can extend these capabilities into mastering human-

scale manipulation tasks such as setting and cleaning the

table, loading and unloading the dishwasher, or putting

items back into cupboards. One of the biggest barriers

in meeting these challenges will be the knowledge that

the robotic agents have to be equipped with in order to

accomplish these tasks successfully.

Consider for example the task of setting the table. If the

robotic agent gets a task as underdetermined as “set the

table” it needs a lot of knowledge to accomplish the task in

the expected manner. It needs to know what is needed on

the table, where the objects can be found, which objects

can be used (you do not want to put dirty or broken plates

on the table), how the objects should be arranged. All this

depends on the meal that is to be served, whether it is

casual or formal, whether a place is set for an adult or a

small child, and other contexts.

The knowledge is not only needed to infer what has to

be done but also for how it can be done. The robot needs

to know where it has to position itself in order to pick

up objects successfully, which hand to use, which grasp

type to apply, where to position the fingers, how much

grasp force to apply, how much lift force to apply, where

to hold them, etc. Also, how to perform the fetch&place

tasks efficiently, whether to use both hands, stack items,
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Fig. 1. Overlapping images of a fetch&place action execution in a virtual
environment, illustrating: (1) the symbolic representation and visualiza-
tion of the world state, including the trajectory of the manipulated item
(center); and (2) the simulated kitchen environment (periphery)

use a tray, leave cupboard doors open during table setting.

In Figure 1 we illustrate a task execution by a human in a

virtual environment and the visualization in OPENEASE[5]

of the result of a query showing the world state and the

trajectory of the spoon being transported by the right

hand from the drawer to the tray.

Most of the manipulation tasks as we humans accom-

plish during the day are very knowledge intensive, even

though it seems that we are not even consciously thinking

about them. As Pratt has claimed in his article “Is a

Cambrian Explosion Coming for Robotics?” [6]: “The key

problems in robot capability yet to be solved are those of

generalizable knowledge representation and of cognition

based on that representation.”. But before the knowledge

can be represented and reasoned about it first has to be

acquired. This is a particularly tricky task as the type of

knowledge that is most critically needed is commonsense

and naive physics knowledge, the knowledge that all

humans have and apply without even being aware of it

and often have difficulties in formulating it.

Modern technology, in particular games and virtual

reality, gives us novel ways of acquiring commonsense

and naive physics knowledge. Instead of engineering this

knowledge [7], [8], [9] or crowd sourcing it [10], [11] we can

set up tasks in games that require the commonsense and

naive physics reasoning, as people to perform the tasks

and mine the knowledge from the observed behavior.

In this paper we propose AMEVA (Automated Models of



Everyday Activities), a special-purpose knowledge acqui-

sition, interpretation, and processing system for human

everyday manipulation activity that can automatically

• create and simulate virtual human living and working

environments (such as kitchens and apartments) with

a scope, extent, level of detail and physics that facili-

tates and promotes the natural and realistic execution

of human everyday manipulation activities;

• create a symbolic knowledge base from virtual real-

ity environments that represents all objects in the

environment, their parts and articulation models.

This makes the system omniscient with respect to

the environment. The knowledge base is extended

with naive physics, commonsense, and background

knowledge about the objects;

• record human manipulation activities performed in

the respective virtual reality environment as well as

their effects on the environment and detect force

dynamic states and events;

• decompose and segment the recorded activity data

into meaningful motions and categorize the motions

according to action models used in cognitive science;

• represent the interpreted activities symbolically in

KNOWROB using first-order time interval logic formu-

las linked to subsymbolic data streams;

We apply AMEVA to generalized fetch&place tasks (in-

cluding organizing the kitchen, setting and cleaning the

table, loading and unloading the dishwasher). The chal-

lenges are getting access to the relevant data structures of

the game environment including objects, to the functional

structure of the objects and their articulation models and

to the force dynamic events that happen in the physics

simulation of the environment.

We collect, manage, and provide public access to the

observation data, models, and the symbolic representa-

tions of the activity episodes through the open and web-

based robot knowledge service OPENEASE [5].

The remainder of this paper is organized as follows. In

the following two sections we describe the functional view

and the system architecture of AMEVA. In Section IV we

introduce in detail the virtual environment. In Section V

we present how the system observes, logs and recognizes

activities. We thereafter show our collected experiments

and results in Section VI.

II. FUNCTIONAL VIEW OF AMEVA

A key part of AMEVA is the automatic recognition of

actions and events during task execution. For this we are

using the model proposed in by Flannagan et al. [12],

which has the concept, as illustrated in Figure 2, that

actions are structured into motion phases, where phases

have associated motion goals, which typically correspond

to force dynamic events (distinctive events in the control

apparatus). These motion phases have knowledge precon-

ditions such as reaching motion, pregrasp pose, goal pose

etc. By extracting regularities from the motion of people

we can derive motion constraints and objective functions

Fig. 2. Flannagan’s fetch&place motion model

for constraint-based robot control. Figure 3 shows an

example of automatically segmented action using the

aforementioned model proposed by cognitive scientists.

It segments the data according to the defined phases and

can automatically extract all the knowledge preconditions

such as the grasp and the pregrasp pose at the key frames,

including trajectory data.

The purpose of AMEVA is to extend the commonsense

knowledge that robots have, to be able to answer ques-

tions such as “what are the arrangement of objects for

table setting”, “where can I find a particular object for table

setting”, to learn motion constraints e.g. filled cups have to

be held upright during transportation to avoid spilling. It

not aiming for extracting robot specific information, hence

the virtual worlds do not have to be configured to mimic

the uncertainty that robots face in the real world.

Fig. 3. Fetch&place activity recognition with scene reconstruction

III. SYSTEM ARCHITECTURE OF AMEVA

The system architecture of AMEVA is depicted in Fig-

ure 4. A detailed, realistic virtual model of a robot’s

working environment is created. In our case a kitchen

environment, with cupboards, electrical devices with artic-

ulation and physical process models such as a simulated

freezing process in the fridge. The environment is also

equipped with objects of daily use such as plates, cups,

milk boxes, knives, forks, etc. The environment has an

integrated physics simulation that causes objects to fall

down, move when they are pushed, and collide with other

objects.



Fig. 4. System architecture of AMEVA: (1) users are asked to perform various tasks from underspecified instructions in a (2) virtual environment
coupled with the robot’s ontology. During execution (3) symbolic and subsymbolic data is automatically interpreted and logged to KNOWROB. From
the observed activities (4) robots can then learn generalized models of actions and motions.

To interact with the virtual world, the user uses an

off-the-shelf virtual reality headset with hand tracking

controllers. The tracked poses of the headset and the game

controllers are then mapped onto the user’s virtual head

and hands. The mapping of the hands movements are

done using force-based PD controllers, resulting in a more

realistic interaction that in typical game environments.

The virtual hands are fully rigged (e.g. every finger bone

has a collision and is constrained by a joint) and collide

with all the entities in the simulated world, thus the

“harder” the user pushes/pulls against an object the larger

is the force applied to it. The closing and opening of the

hands are controlled by applying forces to the actuated

finger joints. Considering that there is no finger tracking of

the user’s hands, these forces ar mapped from the analog

button of the game controller. Since such force-based

grasping is only possible in limited situations with well

tuned physics engines, currently a fixation based grasping

is used in the experiments.

The user is then instructed with a particular task such

as “set the table for two people who will have coffee and

cereals for breakfast”. He/she will then walk through the

virtual environment to the cupboard, open it in order

to fetch the bowls for the cereals, he/she will then get

spoons from the drawers and a milk carton from the

fridge. Eventually, he/she will fetch the coffee cups, put

them under the coffee machine and fill them.

All the objects in the virtual environment are coupled

with the robot ontology of KNOWROB. They all belong to

a corresponding class in the ontology, this way a robot

will be able to improve its knowledge acquisition skills

by including background knowledge about the objects in

his queries. For example it would know that the specific

milk from the virtual world is of class type milk, which in

turn is a dairy product, which has the property of being a

perishable product. Subsequently it can discover that the

fridge is a suitable place to store such products.

The natural setup for observing human-scale manipula-

tion tasks in virtual environments can be used to acquire

a variety of commonsense and naive physics knowledge

that humans apply to accomplish their tasks successfully.

For example, we can learn which objects humans believe

to be necessary for having coffee and cereal for breakfast,

where are these objects usually found, how should they

be arranged on the table, how humans reach for, grasp, or

hold them. The opportunities for commonsense and naive

physics knowledge extraction from such natural everyday

activities are diverse.

During the task execution: positions and orientations

of all the entities in the virtual world are streamed to a

database; objects states and their physical interactions are

detected, interpreted and stored. In this interpretation the

detection and categorization of force dynamic events is

particularly important [13], [14]. For example, fetching and

placing an object generates a sequence of force dynamic

states where a hand touches the object to be fetched,

the object losing contact to its supporting surface, then

making contact with the supporting surface at the placing

destination, followed by the hand releasing the object.

These events are essential for understanding observed

activities, because they can characterize and define action

categorizes, thus allowing the segmentation of continuous

motions into meaningful motion phases.

AMEVA then uses the motion data stream together

with the time-synchronized force dynamic events in order

to generate a hierarchical symbolic-subsymbolic activity

representation. The symbolic part of this representation

is stated in a first-order time interval logic [15]. In this

formalism motion phases (and actions) are represented as

occurs(mp,[t1,t2]) asserting that motion phase mp occurs

in the time interval starting at time instant t1 and ending

at time instant t2. If the motion phase is the object transfer

phase of a fetch&place action then the force dynamic

event losing contact to the supporting surface would occur

at t1 and the contact of the object with the supporting

surface at the destination. By retrieving the respective

pose data from the subsymbolic data stream AMEVA can

retrieve the motion trajectory of the object and the hand



in the time interval [t1,t2]. Thus the result of the activity

interpretation phase is a knowledge base that symbolically

represents the observed activity and uses the symbolic

part to retrieve subsymbolic data such as motions and

poses of objects and body parts, as shown in Figure 1.

The last component of the AMEVA activity observation

and interpretation system is action mining and machine

learning. The purpose of this component is to learn

generalized models of actions and motions that can be

used by robots to fill knowledge gaps that are caused by

underdetermined instructions. For example, the robot can

learn the motion constraints for carrying open containers

that are filled with substances.

In the remainder of the paper we will describe and

discuss the components of the AMEVA system in more

detail.

IV. ENVIRONMENT

Important factors for the acquisition of high quality

action and motion data from virtual reality demonstra-

tions is that humans performing the activities have the

impression that the virtual reality environments look pho-

torealistic, articulation models behave realistically, and the

hand manipulation is intuitive and effortless.

Figure 5 shows the level of detail of the environment

models. The depicted refrigerator is modeled through a

detailed CAD model including a hierarchical object part

model as well as a realistic articulation model of the

door of the refrigerator. In addition, the presence of the

dynamic light, in the form of the refrigerator light bulb,

ensures realistic lightning conditions inside the refrigera-

tor.

Besides the models of the devices and the pieces of

furniture, the virtual kitchen environments also includes

realistic models of objects of daily use, including mugs,

bowls, spoons, forks, knives, cereal boxes, and the like.

These object models allow us to create very realistic

scenarios. For example, we can put all the objects of daily

use on the kitchen counter and ask humans to put the

items where they belong in order to learn the principles

of how people organize their kitchens.

Fig. 5. Level of detail of the 3d models and textures in the virtual world

A. The virtual reality environment as a knowledge base

What sets observation and interpretation of human

activities in virtual reality environments apart from the ob-

servation of real human actions through cameras or other

observation means, are two key advantages. The first being

that in virtual environments the activity interpretation

algorithms have access to the simulation process and data

structures. Therefore the algorithms have ground truth

data on states and poses of objects as well as to the force

dynamic states and events making activity interpretation

easier, more accurate and fully automated. Second, we can

use the data structures of the virtual environment in order

to automatically create a symbolic knowledge base that

contains all the relevant background knowledge about the

objects in the environment. Knowing the purpose and the

functionalities of the objects, supports the interpretation

and the generalization of the observed activities, and the

learning of generalized action and motion models.

Fig. 6. Environment represented in the knowledge base, including
hierarchies and articulations

When creating a new AMEVA environment, all the exist-

ing entity types (furniture, utensils etc.) need to be marked

with their corresponding class type from the KNOWROB

ontology. If the case, articulation properties or part of

relations will be added as well. After this manual step, the

system automatically assigns persistent unique identifiers

for each entity and creates a semantic representation of

the environment. This will assure that all future episodes

will be commonly linked against the same representation,

even if executed remotely or on multiple PCs. This allows

the generated knowledge base to be constantly increased

with new data.

Figure 6 shows the representation detail in the knowl-

edge base of the environment, including parent-child hier-

archies and articulations. We represent the hierarchies in

a similar fashion to a semantic robot description language

[16]. For the exemplified fridge cladding in the image, we

have: a hinge joint between the door panel and the base;

a linear joint between the bottom drawer and the base;

and static fixations between the handles and the panel, re-

spectively the drawer. Fluents, such as opening angles and

poses of objects (or joints), are automatically updated and

logged with their currently corresponding states (Opened,



Closed, HalfOpened, etc.) during execution.

V. ACTIVITY OBSERVATION

A. Representation of episodes

During the task execution AMEVA tracks the pose of

each object, and their relevant parts, in the virtual world as

well as the state of doors, drawers, knobs, etc. All tracking

results are automatically optimized (filtering redundant

data out) and logged into a noSQL database.

After each execution in the virtual environment, the re-

sulting symbolic-subsymbolic activity representation data,

coupled with the knowledge base can be loaded and

visualized in OPENEASE. Figure 7 depicts the reconstruc-

tion of the virtual world at various key events from a

logged episode. In the scenario the user was given the

task so set the table for a 4 person breakfast. He was also

instructed to use a tray in order to optimize his actions.

The generated images illustrate the start of a fetch&place

action, and highlight the trajectory of the grasped object

during the action: grasping a bowl from the drawer and

placing it on the tray; grasping the tray and placing it on

the table; placing the milk from the tray on the table and

taking the tray back to the kitchen island.

Fig. 7. Reconstruction and visualization of a recorded episode from the
knowledge base

B. Recognizing force dynamic states and events

We propose to base action recognition on patterns of

force interaction between entities. For example, we can

characterize a fetch&place action through a sequence of

force dynamic states and events. For fetch&place this

sequence is (1) the object to be fetched supported by

a supporting surface, (2) a hand touching the object,

(3) the object being attached to the hand, (4) the hand

not touching the object anymore, and the object being

held by the supporting surface of the destination. Such a

pattern is visualized Figure 2 from Section II.

Our hypothesis is that different actions can be char-

acterized through their respective and distinct patterns

of force dynamic interactions of objects and body parts

and in particular hands. This view has been proposed

in linguistics by Talmy who argued that the meaning of

words can be effectively semantically categorized in terms

of force dynamics and has later been adopted in action

recognition and modeling in artificial intelligence [13].

The reason that the force dynamic characterization of

actions is important for the action recognition in vir-

tual environments is that the force dynamic states and

events can be easily, reliably, and accurately detected by

monitoring the physics simulation underlying the virtual

reality environment. By computing the sequence of all

relevant force dynamic states and events during an activity

episode the interpretation algorithm can easily recognize

and segment actions into the relevant motion phases.

In Figure 8 we can recognize the event of getting milk

out of the fridge by comparing the various key frames

in the executed action. The colored timelines from the

image represent the automatically recorded events from

the episode. We can see that the state of the fridge door

changes while the hand is in contact with the door handle.

After grasping the milk container, it is no longer in contact

with the bottom shelf of the fridge, and it ends up on

the table. Though, before ending up on the table we can

observe that the free hand is again in contact with the

door handle, and the state of the door is changing to

closed.

Fig. 8. Timelines showing the key frames of getting milk from the fridge

VI. EXPERIMENTS

To showcase the capabilities of AMEVA we collected a

set of 27 episodes where the users were given the task

to set the table for a breakfast scenario with various

variations:

• the number of persons to eat (1P, 2P, 4P);

• and, using 1 hand, 2 hands and 2 hands and a tray

(1H, 2H, 2HT);

Being given the same task, or a similar one, to a robot,

it could now use this data to optimize his steps during

the task execution.

In Table I we have depicted the results of queries that

check for the duration and the traveled distance during

a correctly executed episode. The queries are created in

a similar fashion as described in our previous work [17].

From the results we can notice that: time-wise it only

starts to be useful to use a tray to carry items if the amount

of persons to serve is at least 4 (or, the number of items

to manipulate/carry is larger than the one used for this



particular scenario); traveled distance-wise, using a tray is

the most advantageous; executing the task using only one

hand is a definite disadvantage for both cases;

User 1P1H 1P2H 1P2HT 2P1H 2P2H 2P2HT 4P1H 4P2H 4P2HT

Duration (seconds)

1 72.8 67.3 82.7 85.4 69.6 74.4 119.0 101.9 83.2

2 73.5 53.8 57.3 83.6 65.2 77.5 118.6 88.6 86.7

3 71.7 56.0 58.6 76.2 70.2 75.7 122.0 86.7 79.1

Avg 72.6 59.0 66.2 81.7 68.3 75.8 119,8 92.4 83.0

SD 0.74 5.91 11.6 3.98 2.22 1.27 1.51 6.76 3.10

Distance (meters)

1 25.2 14.6 15.4 33.5 21.7 18.2 53.5 33.7 22.9

2 25.6 15.0 14.3 33.7 21.4 19.1 55.8 32.5 25.6

3 24.6 17.2 13.9 32.8 22.0 18.5 53.4 31.6 22.6

Avg 25.1 15.6 14.5 33.3 21.7 18.6 54.2 32.6 23.7

SD 0.41 1.30 0.63 0.38 0.24 0.37 1.10 0.86 1.34

TABLE I

EXPERIMENT RESULTS

Now assuming that a robot has prior knowledge about

his skills and capabilities needed to execute this task

(grasp objects, open drawers, carry items, etc.), it could

now use this information to re-map the results for his

own case. For example, if the robot is very slow at grasping

objects, but doesn’t have any issues with navigation/mov-

ing, then most probably using a tray would not be of its

advantage since it will always include extra manipulation

actions.

VII. RELATED WORK

Similarly to our approach, in [18] Bates et al. use a

virtual reality environment as a viable way to collect

semantic information about human behavior. They have

set up a framework able to extract and reason on semantic

data collected in real time. The user’s known motions

are continuously segmented and semantically classified by

the system, while being capable to learn novel ones on

demand. From the continuous observation of the users

the system extracts the task space utilized by them in

a form of a graph of all related activities. They use the

KNOWROB ontology as well to store the classifications

and the initial knowledge about the objects in the virtual

world. In a similar fashion the virtual objects are tagged

to their corresponding classes in the ontology. The focus

of the paper was to recognize and learn new activities in

complex virtual environments without prior training.

In [19] Fang et al. use a virtual environment from

a robotic simulator to learn the relation between the

physical effects a pouring action and the various variations

in their execution style. Their proposed framework acquire

and applies action knowledge from virtual user from

naive user demonstrations in an interactive simulation

environment under varying conditions. The authors argue

that by collecting data from human users rather than a

large set of automatically generated simulations, they can

ignore a large proportion of the possible motion space.

Using this data as a prior they can drastically reduce

the computation time for learning parameters for the

controller. They believe that using human demonstrations

will help to construct a general framework capable of

learning everyday manipulation skills.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented AMEVA (Automated Models

of Everyday Activities), a special-purpose knowledge ac-

quisition, interpretation and processing framework. The

framework uses physics enabled and close to photore-

alistic virtual environments to promote a natural and

realistic execution of human everyday activities. During

execution the manipulation activities performed, as well

as their effects on the environment, are recorded together

with the detected force-dynamic states and events. The

recorded activities are then decomposed and segmented

into meaningful motions.

To showcase the capabilities of the framework we col-

lected a set of 27 episodes where the users were given the

task to set the table for a breakfast scenario with variations

in the number of persons to serve and limiting the number

of hands and tools to use. All the collected knowledge is

symbolically represented in KNOWROB and available in the

web-based knowledge service OPENEASE.

In our future research we plan to extend the action

observation infrastructure to meal preparation tasks: we

consider specific action verbs, including wiping, cutting,

pouring and learn how to perform the respective actions

for different objects, with different tools, and for different

purposes. In the current state of implementation the

objects of daily use are not modeled in depth. It is on

our agenda to further detail the models so that milk

cartons have a lid with an opening mechanism and that

the containers are filled with virtual milk. With these deep

models of objects of daily use we intend to enable high

performance learning of everyday manipulation tasks.

We are working on introducing purely physics based

grasping models, giving the users the possibility to change

between various defined styles during runtime, thus end-

ing up with a useful mapping of grasping styles to specific

objects and scenarios.

We are advancing with the integration of full body track-

ing systems (Figure 9) using physics enabled movements.

This would result in more natural movements, since kine-

matically impossible situations such as crossing the arms,

switching hands, floating above objects etc. would be

physically avoided. These movements are planned to be

semantically mapped to a fully articulated human model

represented in the knowledge base.

Fig. 9. Physics enabled full body tracking



REFERENCES

[1] M. Tenorth and M. Beetz, “KnowRob – A Knowledge Processing
Infrastructure for Cognition-enabled Robots,” Int. Journal of
Robotics Research, vol. 32, no. 5, pp. 566 – 590, April 2013. [Online].
Available: http://ijr.sagepub.com/content/32/5/566.short

[2] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Lessons
from the amazon picking challenge.” CoRR, vol. abs/1601.05484,
2016. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/
corr1601.html#CorrellBBBCHORR16

[3] L. P. Kaelbling and T. Lozano-Perez, “Hierarchical task and
motion planning in the now,” in IEEE Conference on Robotics
and Automation (ICRA), 2011, finalist, Best Manipulation Paper
Award. [Online]. Available: http://people.csail.mit.edu/lpk/papers/
hpnICRA11Final.pdf

[4] J. Winkler, F. Bálint-Benczédi, T. Fromm, C. A. Müller, N. Vaskevi-
cius, A. Birk, and M. Beetz, “Knowledge-enabled robotic agents for
shelf replenishment in cluttered retail environments,” in Proceed-
ings of the 15th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), Singapore, 2016.

[5] M. Beetz, M. Tenorth, and J. Winkler, “Open-EASE – a knowledge
processing service for robots and robotics/ai researchers,” in IEEE
International Conference on Robotics and Automation (ICRA), Seat-
tle, Washington, USA, 2015, finalist for the Best Cognitive Robotics
Paper Award.

[6] G. A. Pratt, “Is a cambrian explosion coming for robotics?” Journal
of Economic Perspectives, vol. 29, no. 3, pp. 51–60, August 2015.

[7] D. B. Lenat and R. V. Guha, Building Large Knowledge-Based
Systems; Representation and Inference in the Cyc Project, 1st ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1989.

[8] E. Davis, Representations of Commonsense Knowledge. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990.

[9] E. T. Mueller, Commonsense Reasoning: An Event Calculus Based
Approach, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2015.

[10] P. Singh, T. Lin, E. T. Mueller, G. Lim, T. Perkins, and W. L.
Zhu, “Open mind common sense: Knowledge acquisition from the

general public,” in Proceedings of the First International Conference
on Ontologies, Databases, and Applications of Semantics for Large
Scale Information Systems, 2002, pp. 1223–1237.

[11] H. Liu and P. Singh, “Conceptnet — a practical commonsense
reasoning tool-kit,” BT Technology Journal, vol. 22, no. 4, pp.
211–226, Oct 2004. [Online]. Available: https://doi.org/10.1023/B:
BTTJ.0000047600.45421.6d

[12] J. R. Flanagan, M. C. Bowman, and R. S. Johansson, “Control
strategies in object manipulation tasks,” Curr. Opin. Neurobiol.,
vol. 16, no. 6, pp. 650–659, Dec 2006.

[13] L. Talmy, Toward a Cognitive Semantics, ser. Bradford book. MIT
Press, 2000, no. v. 1. [Online]. Available: https://books.google.de/
books?id=g7IoanNUNksC

[14] J. M. Siskind, “Grounding the lexical semantics of verbs in visual
perception using force dynamics and event logic,” CoRR, vol.
abs/1106.0256, 2011. [Online]. Available: http://arxiv.org/abs/1106.
0256

[15] J. F. Allen, “Maintaining knowledge about temporal intervals,”
Commun. ACM, vol. 26, no. 11, pp. 832–843, Nov. 1983. [Online].
Available: http://doi.acm.org/10.1145/182.358434

[16] L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot de-
scription languages,” in IEEE International Conference on Robotics
and Automation (ICRA), Shanghai, China, May, 9–13 2011, pp. 5589–
5595.

[17] A. Haidu and M. Beetz, “Action recognition and interpretation
from virtual demonstrations,” in International Conference on
Intelligent Robots and Systems (IROS), Daejeon, South Korea,
2016. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=7759439

[18] T. Bates, K. Ramirez-Amaro, T. Inamura, and G. Cheng, “On-line
simultaneous learning and recognition of everyday activities from
virtual reality performances,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2017)I, IEEE, Ed. IEEE,
2017.

[19] Z. Fang, G. Bartels, and M. Beetz, “Learning models for constraint-
based motion parameterization from interactive physics-based sim-

ulation,” in International Conference on Intelligent Robots and
Systems (IROS), Daejeon, South Korea, 2016.


