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Abstract— AI knowledge representation and reasoning meth-
ods consider actions to be blackboxes that abstract away from
how they are executed. This abstract view does not suffice
for the decision making capabilities required by robotic agents
that are to accomplish manipulation tasks. Such robots have to
reason about how to pour without spilling, where to grasp a
pot, how to open different containers, and so on. To enable
such reasoning it is necessary to consider how objects are
perceived, how motions can be executed and parameterized,
and how motion parameterization affects the physical effects
of actions. To this end, we propose to complement and extend
symbolic reasoning methods with KNOWROBSIM , an addi-
tional reasoning infrastructure based on modern game engine
technology, including the subsymbolic world modeling through
data structures, action simulation based on physics engine, and
world scene rendering. We demonstrate how KNOWROBSIM

can perform powerful reasoning, prediction, and learning tasks
that are required for informed decision making in object
manipulation.

I. INTRODUCTION

Goal-directed manipulation of objects and substances is a

hallmark of intelligent agency [1]. In human evolution, the

size of the human brain had to increase drastically to meet

the requirements for competent object manipulation. To meet

the new challenges, the human brain also had to develop

new cognitive capabilities and substantially advance existing

ones. Examples of such cognitive capabilities include the

development of more powerful representations of actions [2],

the co-development of language and action [3], and more

powerful mechanisms for the mental imagination of actions

[4].

We believe that symbolic reasoning is necessary but not

sufficient to realize the full range of reasoning capabilities

needed for mastering object manipulation tasks. Thus, we

propose to complement the symbolic knowledge representa-

tion and reasoning system with an additional knowledge sys-

tem that can perform subsymbolic reasoning tasks including

visual imagination, mental simulations of actions, learning

from observation, and semantic retrieval of subsymbolic

information about objects, substances, actions, motions, and

their physical effects (see Figure 1).

The key strength of the KNOWROBSIM knowledge pro-

cessing system is that it unifies a collection of bleeding edge

reasoning mechanisms through symbolic representations at

a level of detail which enables control-level reasoning for
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Fig. 1: PR2 using KNOWROBSIM to learn how to prepare breakfast.

embodied agents. Robotic agents are supposed to assert their

belief state about the world as a KNOWROBSIM ‘world

state’ in a game engine by accessing the engine’s world

state data structure, annotating relevant data structures with

symbolic names, and asserting symbolic facts about these

data structures and their relations. The reasoning mechanisms

can view the world state as a (virtual) symbolic knowledge

base, where the mechanisms of the game engine, namely

data structure retrieval, physical simulation, and rendering,

are the essential reasoning mechanisms.

To realize this motor cognition reasoning system, this

paper makes the following key contributions:

• a computational infrastructure, called the

KNOWROBSIM inner world, that can generate and

maintain an approximate, photorealistic and physics

enabled, copy of the robot’s environment. This data

structure is then further used as a hybrid knowledge

base with a semantic information retrieval language.

The infrastructure provides and maintains semantic

environment and scene models with detailed position,

orientation, and state information. The infrastructure

also realizes a virtual hybrid symbolic/subsymbolic

knowledge base for the motion and image level of

robot control using the world state data structures.



Fig. 2: Software architecture of the game engine-enabled knowledge processing.

• a mechanism for parsing episodes in the KNOWROBSIM

inner world into hierarchical symbolic action models

represented in a first-order time interval logic.

• an infrastructure for capturing images from an envi-

sioned world with the intention of performing various

reasoning tasks, such as occlusion analysis and other

similar visual aspects.

• an interface for executing vision-guided control pro-

grams in the KNOWROBSIM inner world using pro-

grams similar to those executed on real robots.

• a knowledge acquisition component that can learn com-

monsense and naı̈ve physics knowledge from human

action demonstrations in a virtual environment.

II. OVERVIEW

Figure 2 shows the software architecture of the game

engine-based system which is part of the KNOWROB 2.0

knowledge processing framework [5]. For the purpose of this

paper the game engine handles one or more agents that can

be controlled from outside, and an environment with objects

and substances that evolve according to the laws of physics,

as implemented through the rigid body and particle based

physics engines.

The core component of the knowledge processing system,

called inner world performs a basic loop with the following

steps: (1) update the agent’s dynamic state (e.g., the control

signals send to the joint motors of a robotic agent), possibly

there will be a world process that also changes the state

of the world (e.g., other agents not under control), (2) the

world state is updated based on the current state and the

control inputs generated by the agent and the world process

(according to the laws of physics implemented by the physics

simulation), and (3) visually rendering the updated world

state. This loop evolves the virtual world state, which is

accessible through the application programming interface of

the game engine.1

1Our system is implemented using the game engine Unreal Engine 4[6].

The core is enclosed by the state and event abstraction

layer. The state and event abstraction layer abstracts the

world state into a representation that facilitates naive physics

and qualitative reasoning [7]. To do so, the layer automati-

cally computes physical and spatial relations as well as force-

dynamic events. An example of a naive physics relation is the

supported-by relation. An object O is supported by object S

if O is physically stable, in contact with, and above S. Other

relations are, doors and containers being open or closed,

substances being spilled, etc. Touching is an example of a

force-dynamic event, which happens when the hand makes

contact with another object. The detection of force-dynamic

events is essential for the recognition and the segmentation

of actions into motion phases. For example, grasping and

lifting an object is characterized by the hand touching an

object, keeping contact with the object, and the object losing

the contact to its supporting surface.

State and event abstraction is used by the knowledge

representation interface layer that provides modules for

activity parsing and recording, query answering, semantic

environment model extraction, and virtual image capturing.

The activity parsing and recording module takes the stream

of time-stamped world states together with the abstract world

states, force-dynamic events and motion events from the

agent and generates a symbolic activity representation stated

in a first-order time interval logic. The symbolic activity

representation is time synchronized with subsymbolic stream

data that includes the agents and objects poses and shapes,

and images. The semantic environment extraction module

maps over the data structures of the world state and asserts

for each relevant object and its parts symbolic names, the la-

bel category, the part-of hierarchy, the articulation chains and

models, and other relevant symbolic relationships (Figure 3).

The virtual image capturing module can place cameras in the

game environment, access their scene’s built in (deferred)

rendering information, such as color, depth, specular etc.

image data, and further extend it by segmenting the image

into objects and labeling them with their corresponding



symbolic names.

Fig. 3: Semantic environment model of a fridge.

Around the knowledge representation module layer is the

cognitive capabilities layer. This layer includes the KnowRob

query answering service, the robot perception component, a

component for the mental simulation of actions, a component

for learning from virtual reality demonstrations, and another

for learning action models from virtual experience data.

In the rest of this paper we explain the components of

game engine-enabled knowledge processing in more detail.

III. INNER WORLD IMPLEMENTATION

Modern game engine technology has reached an unprece-

dented level of sophistication and efficiency. This technology,

used in domains such as computer graphics, video games,

or animation movies, typically employs physics engines:

software providing an approximate simulation of certain

physical systems, such as rigid body dynamics (including

collision detection), soft body dynamics, and particle sim-

ulation. Physics engines such as Nvidia’s PhysX and FleX

have already reached a level of performance that allow us to

simulate manipulation actions with an accuracy and realism

sufficient to develop software for many subproblems in robot

control in simulation rather than requiring real physical robot

experiences [8]. Nowadays, game engines can simulate and

render complex scenes with update rates of up to 90hz

(typically required by VR applications), these simulated en-

vironments can be extended to large open worlds (hundreds

of square kilometers) while maintaining the accuracy of

being able to show realistic leaves on trees and single blades

of grass on fields [9]. Finally, the computational resource

requirements of physics engines have dropped such that they

can run on devices such as smart phones and within modern

web browsers.

The combination of these developments have brought us

to a point where it is easily possible to run physics engines

at execution time as components of robot control programs.

This makes it possible for robots to maintain a photorealistic

model of their environment (see Figure 3) with approximate

physics simulation. Having access to the data structures of

such a model, it allows robots to retrieve detailed subsym-

bolic information about their world, to mentally look at

scenes, and to simulate action executions. The size of the

environments, the number of objects and the level of detail

are modeled in a way that goes far beyond what symbolic

knowledge services could provide so far.

An advantage that we gain by combining game engine-

based knowledge processing with symbolic knowledge pro-

cessing is that robots can construct problem specific abstrac-

tions on the fly. For example the position of the cup can be

retrieved as a contact with a supporting surface (e.g. it is on

the table). Or, if required, the knowledge processing system

can infer the detailed pose, weight, fill level, etc. of the cup.

A limitation of using physics engines from game engines

is having many simultaneous physically stable contacts, as

required for grasp stability analysis [10]. For such applica-

tions due to the approximations of the effects simulations

can easily cause numerical instabilities. Precise simulations

also require very accurate models of articulated objects (e.g.

robots). Inaccurate modeling can quickly lead to numer-

ical instabilities, for example due to self collisions. On

the other hand, since technology leaders [8] start to target

robot simulation and learning as application domains, it

promises substantial advances in robot specific simulation

requirements.

IV. STATE AND EVENT ABSTRACTION

In the virtual world, the physics governing the evolution

of the world is implicit: in each simulation cycle numerical

physics laws are applied to everything to compute the state

of the next time step. In contrast, the physical interpretation

of perceived scenes is deeply integrated into the perception

system of humans. If we observe a heavy object without

support not falling down, we immediately conclude the

object to be fixed to the wall behind it. If an object is

on top of another one without moving we conjecture that

it is supported by the other object. We understand the world

by generating explanations about the forces that interact

between objects and agents.

The role of force interaction between entities is also put

forward in cognitive linguistics by Talmy [11] who proposes

to characterize situations and actions through concepts such

as the exertion of force, resistance to such exertion and

the overcoming of such resistance, blockage of a force

and the removal of such blockage, and so forth. Force

dynamics analyzes “causing” into finer primitives and sets

it naturally within a framework. Thus, force dynamic states

and events can build a strong foundation of a naive physics

understanding of the world.

To realize a similar conceptual apparatus in our knowledge

processing system we have to automatically assert the respec-

tive relations based on the monitoring of what happens in the

physics simulation. For this we have various nodes built in

the game world which continuously monitor such relations.

When a corresponding event happens these will trigger an

assertion of the symbolic representation of the event into the

knowledge base.

One basic monitor node is listening for contact events,

namely, whenever relevant objects are beginning or ending a

physical contact. This node can be further extended for more



specific events, such as the supported-by event, which addi-

tionally checks if the supported object is stable and on top

of the supporting one. For grasping events, the monitoring

node checks for contacts between the palm and/or fingers and

the grasped object and if the object is secured in the hand.

Another example is a monitor for the states of articulation

models, for example triggering whenever a door/drawer gets

opened/closed, or a knob/button gets turned/pressed etc.

Other mechanisms for translating data into symbolic ab-

stractions are the interpretation of hand-object interactions,

the classification of grasp types, the interpretation of motion

patterns (e.g., walking), and the abstraction of motion fea-

tures (e.g., keeping containers upright). In addition, objects

and their structures need to be interpreted. This includes the

inference of part-of hierarchies of objects (partonomies) and

the articulation models of objects such as doors, drawers,

knobs, lids, and the like.

V. THE KNOWLEDGE REPRESENTATION INTERFACE

LAYER

The next layer builds up the more complex hybrid knowl-

edge representation structures and the mechanisms for query

answering.

A. Semantic Activity Parsing

A key mechanism of the game engine-enabled knowledge

system is the automatic translation of actions and events

simulated in the inner world into the appropriate hybrid,

symbolic-subsymbolic activity and event representations.

Fig. 4: Flannagan’s fetch and place motion model.

Cognitive scientists study the organization of actions in

terms of motion phases and how expectations about per-

ceived events and prediction enable human motor cognition

help to accomplish manipulation tasks so competently. Fig-

ure 4 shows the model proposed by Flannagan et al. [12]

that forms the basis of our knowledge representation. It

structures actions into motion phases, where the phases have

subgoals, which are force dynamic events that also generate

distinctive sensory feedback. Motor cognition and robot

control conceptualize the parameterization and optimization

of motion parameters that enable the robot to cause the

desired physical effects and avoid the unwanted ones.

Furthermore, a study in cognitive linguistics [11] suggests

that the semantics of action verbs can be grounded in force

dynamic events and that the semantics of action verbs can

be defined through verb-specific temporal patterns of force
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Fig. 5: Representation of a fetch and place activity episodes in
KNOWROBSIM .

dynamic events. This means by detecting force dynamic

events and classifying them an activity parser interpreting

the evolution of the inner world can automatically recognize

actions, categorize them, and decompose them into their

motion phases.

The inferred action models are then represented as state-

ments in a first-order time interval logic. An activity repre-

sentation for a fetch and place episode is depicted in Figure 5.

It shows a human operator in a virtual kitchen environment

fetching milk from a fridge, pouring it into a bowl, and

putting it back into the fridge again.

The activity semantics can not be monitored directly.

Instead, we detect force dynamic events in the physics engine

of the virtual reality such as the human hand getting in

contact with the fridge door handle, the milk package ending

contact with the shelf, and milk particles moving from the

container to the bowl. The monitored events yield assertions

in the symbolic knowledge base about the occurrence of

events, their types, and entities that were involved such as

the objects in contact or the milk particles that were poured

into the bowl. Facts about events may refer to symbols that

describe the virtual reality world such as the objects present,

their parts, and the self model of the human. The first-order

logics based representation of virtual worlds directly maps

to data structures used by the game engine which allows to

synchronize the virtual world with its semantic description,

and to spawn new worlds according to facts in the knowledge

base.

Temporal patterns of memorized force dynamic events de-

termine the motion phases of the recorded activity. Reaching

motions are indicated by objects getting in contact with



the hand, and a (successful) grasping motion occurred if

the object stays in contact to the hand while leaving its

supporting surface. The human operator transports the milk

to pour from it such that the first transport motion phase

is determined according to the force dynamic event that

corresponds to the first particle leaving the milk package.

Further, we can state that a pouring motion occurred starting

from the first particle, and ending with the last particle

leaving the milk package. Finally, we can state that the

second transport motion phase ends with the milk package

being in contact with the supporting plane of the shelf again.

The symbolic representation of motion phases is used as a

search index into a noSQL data base that stores high volume

data such as poses of objects and images generated by the

rendering engine. High volume data pieces that correspond

to motion phases can be accessed by navigating through

the symbolic representations. To this end, we use procedural

hooks in the symbolic knowledge base that define particular

ways of abstracting the high volume data on demand for

reasoning tasks at hand. This is, for example, useful for

qualitative spatial reasoning where the existence of some

spatial relation is only relevant for a particular time interval

(e.g., during some motion phase). This data can further

be used as an evidence for more specific classification of

the recorded activity (e.g., if the particles were poured or

scooped).

B. Query answering

Another essential information service provided by

KNOWROBSIM is the answering of semantic queries. Many

queries have a similar structure. They infer an action (or

object) using a symbolic high-level query, then they use the

name of the action to infer the time instant when the action

started and terminated and use the time instants in order

retrieve subsymbolic information (such as the pose of objects

and agents at the respective time instants or motions during

the respective time intervals).

Let us consider the following example query to get a better

intuition of the nature and the reasoning power of these

queries:

:− e n t i t y ( FP , [ an , even t , [ type , ’ Con tac t−S i t u a t i o n ’ ] ,

[ in−c o n t a c t , [ an , o b j e c t , [ type , ’ E n d E f f e c t o r ’ ] , EE ] ] ,

[ in−c o n t a c t , [ an , o b j e c t , [ name , O ] ] ] ] ) ,

e n t i t y ( , [ an , even t , [ type , ’ T r a n s p o r t a t i o n ’ ] ,

[ o b j e c t , [ an , o b j e c t , [ name , O ] ] ] , [ during , FP ] ] ) ,

occurs ( FP , [ Begin , End ] ) ,

p o s e a t t i m e ( EE , Begin , [ Pos , Rot ] ) .

FP = ’ Con tac t−S i t u a t i o n u d 4 f ’ , O = ’ M i l kP acka ge 2dF l ’ ,

EE = ’ LeftHand uNGy ’ , [ Begin , End ] = [ 1 6 . 9 2 , 5 5 . 3 9 ] ,

[ Pos , Rot ] = [ [ 0 . 1 , 0 . 3 , 1 . 2 ] , [ 1 . 0 , 0 . 0 , 0 . 7 6 , 0 . 0 ] ] . . .

This query navigates through experienced situations FP that

are subsumed by the partial description provided, and re-

trieves the time interval during which the situation occurred.

It is important to note that partial descriptions expand to first-

order logic formulas, and that possible bindings for occurring

variables are searched such that the corresponding formula

holds (i.e., entities that are subsumed by the description).

The subsumption hierarchy further allows to query for more

general concepts, such as end effector, rather then for more

specific ones, such as the simulated hand.

Entity descriptions include an ordered sequence of sym-

bolic constraints that must be satisfied by matching entities.

In this case, matching entities must be a contact situation

between some object O and the end effector in contact during

which the object was transported. The pose at time predicate

represents the subsymbolic data (the pose) of the end effector

at the given timestamp. The temporal predicate during shows

another strength of query answering in KNOWROBSIM: its

existence is not known in advance but can be proven at query

time using rules that operate on facts in the knowledge base

(in this case using Allen’s interval algebra [13]). Predicate

computation rules do not necessarily need to strictly follow

first-order logic formalism and may only do a general

computation but in the end need to abstract some data to

a predicate symbol in the knowledge base. This mechanism

allows KNOWROBSIM not only to reason with heterogeneous

and high-volume data sources, such as the stream of rendered

virtual reality images or the recorded pose of the human

operator over time, but also to interface reasoning techniques

such as temporal reasoning, or semantic activity parsing.

The example query can also be interpreted as a parser for

fetch and place activities. It is surely a simplified view to

classify any contact situation between an end effector and

an object during which the object was transported as fetch

and place activity, but it already captures the characteristic

force dynamic events. Such simple rules serve the purpose to

define some rather abstract facts about occurring situations,

while more specialized activity parsers can refine these

general descriptions to more specific ones that describe finer

details. We could, for example, state that fetch and place

actions during which some particles were transported from

one container to another can be classified as pouring activity.

This activity parser could be written as query in the following

way:

?− e n t i t y ( FPP , [ an , a c t i v i t y , [ type , ’ Fe t chAndPlace ’ ] ,

[ o b j e c t , [ an , o b j e c t , [ name , C o n t a i n e r ] ,

[ type , ’ C o n t a i n e r ’ ] ] ] ] ) ,

e n t i t y ( , [ an , even t ,

[ type , ’ P a r t i c l e T r a n s p o r t a t i o n ’ ] , [ during , FPP ] ,

[ from , [ an , o b j e c t , [ name , C o n t a i n e r ] ] ,

[ to , [ an , o b j e c t , [ type , ’ C o n t a i n e r ’ ] ] ) .

One of the strong aspects of query answering in

KNOWROBSIM is that knowledge can be inferred on de-

mand from raw data available (such as the record of hand

and object poses over time). During pouring activities, for

instance, the milk package needs to be tilted and held such

that the fluid can flow into the bowl without spilling it

onto the counter top. Motion parameters such as the tilting

angle are not explicitly logged but can be computed at query

time with some spatial reasoning hooks into the symbolic

knowledge base. The tilting angle is computed as the angle

between container and horizontal plane, and for specific time

instants (in this case the end of the pouring motion) it can

be computed with following query:

?− e n t i t y ( Pour ing , [ an , even t , [ type , ’ P o u r i n g ’ ] ,

[ o b j e c t , [ an , o b j e c t , [ name , C o n t a i n e r ] ] ] ] ) ,



occurs ( Pour ing , [ , End ] ) ,

holds ( t i l t i n g A n g l e ( C o n t a i n e r ,D) , End ) .

D = 4 3 . 7 5 ˆ Degree , . . .

C. Virtual Camera

Another workhorse for reasoning about manipulation ac-

tions is the KNOWROBSIM virtual camera infrastructure.

This infrastructure enables the robot to assert a 6d pose for a

virtual camera and capture an image of the rendered virtual

world. As depicted in Figure 6, the camera returns not only

the captured image but also the ground truth segmentation for

each object depicted in the scene together with the respective

symbolic object name. An example is shown in Figure 6,

which depicts the captured image (scene), the ground truth

of object segmentation (object masking), the overlapping

segments of the milk carton and the bottle in front of it

(overlapping area), and the non-occluded part of the milk

carton (visible texture). These different views of captured

images are computed automatically and very efficiently by

the rendering mechanism of the game engine and can be

greatly accelerated through the use of GPUs.

Fig. 6: Virtual camera image of the milk carton in the fridge.

Using the virtual camera infrastructure KNOWROBSIM

can answer queries such as suppose we place the cam-

era at position x and point it into the direction d, then

KNOWROBSIM can answer queries such as (*) which object

occludes the milk carton?, (*) how much of the milk carton is

visible?, (*) could the milk carton be detected with a SIFT

feature based object detector?, (*) is the text on the milk

carton readable?, and so on.

D. Executing plans in the inner world

The fourth capability is the percept-guided execution of

robot plans. Where we consider plans to be robot control

programs that can be executed, reasoned about, and modified

[14]. KNOWROBSIM provides a user-provided robot plan

interpreter with a stream of images captured with the virtual

camera being positioned at the respective pose of the real

robot camera. This way KNOWROBSIM can mimic the

images captured by the robot in the real world. Further

the percept-guided execution can issue parameterized motion

specifications that can be realized through the agent motion

control of the inner world. Thus, by issuing a parameter-

ized motion control command, executing a simulation step,

rendering the resulting world state, and capturing the image

from the robot’s camera point of view, the mental plan

simulator can run a very detailed and realistic perception

action loop of the robot. In addition, the evolution of the

world state when executing a plan can then be segmented and

interpreted through the semantic activity parsing described in

Section V-A generating a symbolic knowledge base of the

imagined activity.

In the current state of implementation, we can only ex-

ecute simplified versions of mental simulation, namely the

controlled motion of an object and the the control of a simple

robot hand. We are currently implementing simulation and

virtual control models for complete and complex mobile

robot manipulation platforms.

VI. REASONING, PERCEPTION, AND LEARNING

Let us now consider how we can realize cognitive capa-

bilities with the KNOWROBSIM representation and reasoning

infrastructure.

A. Learning from Observation

Observing human-scale manipulation tasks in game en-

vironments enables the possibility to collect a variety of

commonsense and naive physics knowledge. This knowledge

is intensively used by humans to accomplish their tasks suc-

cessfully, and can be used by robotic agents to fill knowledge

gaps caused by incomplete instructions. For example, the

robot can learn the motion constraints for carrying opened

containers without spilling their content. These constraints

can be further parameterized to depend on the fill level of

the containers, or on the tasks being executed.

By monitoring and observing the force-dynamics states

and events we can learn generalized action and motion

models. Such as, the standing location of the robot in

order to successfully pick up an object, by running multiple

simulations and learning a classifier that predicts success

[15]. The recognition of force interactions patterns between

entities leads to the characterization and segmentation of

various actions. For example a generic fetch pattern, from a

fetch-and-place action, would have the following interaction

sequence: (1) object in contact with a surface, (2) hand

in contact with object, (3) object attached to hand, (4)

contact broken between the surface and the object. We can

recognize the action of getting the milk out of the fridge

by extending the aforementioned sequence with opening and

closing the fridge door interaction. By computing multiple

sequences of relevant force dynamic states and events, the

reasoning infrastructure can recognize more complex actions

and segment them into relevant motion phases.

B. Mind’s eye reasoning

1) Learning action-related concepts: Robots that do ev-

eryday manipulation tasks can immensely benefit from being

able to predict consequences of their actions just before the



execution. An advantage of having a “mind’s eye” simulation

with the inner world model is being able to predict outcomes

before execution. The main requirement for this is being able

to operate in a physics-enabled and photorealistic inner world

model. Currently, there are still ongoing developments on

generating robot models with complex kinematic structures

in game engines. In [16], the authors demonstrate how

a robot can formalize its simulation goals using PROLOG

queries inside KNOWROBSIM and, in response, the knowl-

edge base spawns the simulation with desired world and

parameters, and executes the corresponding plan.

Representing self and being able to operate with own

control and planning systems in an inner world model

has various advantages for high-level planners. First it can

give hints about which parameters will lead to a successful

outcome before the actual execution. Second, since robots

use similar control executives, similar episodic memories are

generated from simulation for later reasoning. Lastly, it can

generate data for training of a classifier or other machine

learning tools.

2) Robot perception: Robots can also make use of their

“mind’s eye” to boost perception abilities and increase res-

olution of their object belief-states. Spawning and mainte-

nance of object belief states in gaming environments will

offer many possibilities such as having a constant connection

between how a scene looks like after manipulation and how

a robot ”imagines” it to look like. Additionally, it can also

estimate object poses where perception fails due to reasons

such as occlusion or losing sight.

VII. EVALUATION, DISCUSSION, AND RELATED WORK

A. Evaluation

As an AI knowledge representation and reasoning (kr&r)

system, an adequate evaluation for KNOWROBSIM is to

assess it with respect to the desired properties of such kr&r

systems, to show where KNOWROBSIM improves on these

properties, and explain why. Empirical evaluations are not

suitable means for evaluation because they evaluate the tools

that KNOWROBSIM is built upon, that is the simulation and

rendering methods, but not KNOWROBSIM itself. Frequently

used desired properties of kr&r systems are: representational

adequacy, inferential adequacy, inferential efficiency, and ac-

quisitional efficiency. Representational adequacy assesses the

ability of kr&r systems to represent the knowledge needed

for manipulation control; inferential adequacy is concerned

with the ability to infer answers to relevant queries from

the represented knowledge; inferential efficiency assesses

the computational resources needed to answer queries, and

finally, acquisitional efficiency considers how well the kr&r

system supports the acquisition of new knowledge.

KNOWROBSIM is representationally more adequate than

AI action representations, because AI representation systems

make the so-called atomic state-transition system assumption

[17]. KNOWROBSIM also represents the “continuous” flow

of the underlying dynamic system, including motions, in-

stantaneous force-dynamic events, as well as the variations

of physical effects caused by variations of motion parame-

terizations. The representation of these aspects are essential

for competent reasoning about object manipulation.

KNOWROBSIM is also inferentially more adequate be-

cause we can formulate and answer queries about manipula-

tion actions that can not be handled by AI action represen-

tations. We will give two examples of such queries but any

query regarding motions generated by manipulation actions,

force dynamic events, and the relation between motions and

their effects can not be handled in a kr&r system making the

atomic state transition system assumption.

An example, we collect negative training set for a pouring

trajectory generator. We can consider a pouring trajectory

as a failure when there is a spillage over the table. In

KNOWROBSIM , we can detect such a spillage by checking

whether there exists a contact between a fluid particle and

dining table during pouring. Thus, the query in PROLOG

syntax is as follows:

?− e n t i t y (G, [ an , a c t i v i t y ,

[ type , ’ Fe t chAndPlace ’ ] ,

[ o b j e c t , [ an , o b j e c t , [ name , O] ,

[ type , ’ C o n t a i n e r ’ ] ] ] ] ) ,

occurs (G, [ , End ] ) ,

e n t i t y ( E , [ an , even t , [ type , ’ Con tac t−S i t u a t i o n ’ ] ,

[ in−c o n t a c t , [ an , o b j e c t ,

[ type , ’ L i q u i d T a n g i b l e T h i n g ’ ] ] ] ,

[ in−c o n t a c t , [ an , o b j e c t ,

[ type , ’ D i n i n g T a b l e ’ ] ] ] ] ) ,

occurs ( E , [ S p i l l T i m e , ] ) ,

S p i l l T i m e < End , S t a r t < S p i l l T i m e .

Another example was shown earlier related to Figure 5.

KNOWROBSIM is also inferentially efficient as it uses

the physics simulation and rendering engines as inference

mechanisms. Physical simulation and rendering are gpu-

accelerated inference mechanisms that scale much better

towards realistic action projection than AI approaches that

have been shown to generate huge search spaces in state tran-

sition graphs. KNOWROBSIM is also acquisitionally efficient

because we can extent creation process for game environ-

ment such that it automatically creates the KNOWROBSIM

environment representation as a side effect.

B. Discussion

A number of researchers question the usefulness of simu-

lations as a model for robot behavior and a prediction model

for physical effects because simulations are not considered

as accurate enough [18]. We believe that this conclusion is

not valid for several reasons.

First, humans also often make informative predictions

without detailed knowledge of the physics simulation pa-

rameters. For example, when humans predict the effects

of pouring they do not need to know the viscosity of the

fluid inside a bottle. Second, it is often possible to learn or

make predictions in state spaces that do not require detailed

knowledge of physics. For example, instead of predicting

the effects of pouring pancake mix onto an oven in terms of

fluid viscosity we can express the prediction model in terms

of how the shape of the pancake evolves. In this case, the

viscosity is compiled into the growth rate of the pancake size.



Another possibility to transfer knowledge from simulation

and apply it in the real execution context is to identify the

proper models at execution time. The usage of game engine

environments for learning real world robot control is also

starting to gain momentum [19].

C. Related Work

Polceano and Buche [20] give a comprehensive review

of computational mental simulation, which categorizes pro-

posed approaches with respect to their functional roles and

link them to cognitive science research. Ullman et al. [21]

propose game engines for intuitive physics, which take distri-

butions over natural scene descriptions, scene images, mem-

ories, etc, simulate the physics for a set of scenarios sampled

from the respective distribution and generalizes knowledge

from the distribution of simulations. Their approach is con-

ceptually the closest to ours. In contrast, KNOWROBSIM

realizes a wider range of cognitive reasoning capabilities

and provides a proper integration into a symbolic reasoning

framework. Feldman and Narayanan [22] propose the neural

theory of language (NTL) that aims at providing a simulation

based interpretation of natural language sentences that is

based on mentally simulating action verbs. KNOWROBSIM

shares the concentration on actions but uses a much more

fine-grained simulation model that is based on physics sim-

ulation rather than a Petri net simulation. Billing et al. [23]

propose robots that generate an internal simulations of the

sensory-motor interactions with the environment and use

these internal simulations to generalize and reproduce the

demonstrated behavior through imitation learning. Again,

KNOWROBSIM provides a broader range of cognitive rea-

soning capabilities and a proper interface to logic-based

knowledge representation. Wächter et al. [24] propose a

framework allowing robots to solve complex tasks from

natural language in dynamic environments. The framework

provide predicates to abstract away sensory data into discrete

symbolic one, describing states as an AI representation. Our

predicates contain subsymbolic data as well, such as the

pose of the hand when grasping, the physical force values,

furniture states include opening angles, the amount of a

substance present in a container.

VIII. CONCLUSIONS

In this paper we have proposed KNOWROBSIM , a knowl-

edge processing infrastructure that enables robotic agents to

reason, plan, and learn at the image and motion level of

object manipulation. We propose to use the data structures of

game engines as an implementation basis for the knowledge

system. Data structures are annotated with symbolic names,

which are linked ontologies and symbolic background knowl-

edge. At the same time the data structures associated with the

symbolic names allow access to subsymbolic information. In

addition, the physics engines of the game engines are instru-

mented to detect force dynamic events that are necessary for

the automated recognition of actions and their segmentation

into motion phases. We have demonstrated through example

queries that the proposed knowledge system can answer

queries that are essential for the competent execution of

manipulation actions that, to the best of our knowledge,

cannot be answered by other robot knowledge systems.
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