
Camera-based Observation of Football Games
for Analyzing Multi-agent Activities

Michael Beetz
beetz@in.tum.de

Jan Bandouch
bandouch@in.tum.de

Suat Gedikli
gedikli@in.tum.de

Nico v. Hoyningen-Huene
hoyninge@in.tum.de

Bernhard Kirchlechner
kirchlec@in.tum.de

Alexis Maldonado
maldonad@in.tum.de

Intelligent Autonomous Systems Group
Technische Universität München, Munich, Germany

ABSTRACT
This paper describes a camera-based observation system for foot-
ball games that is used for the automatic analysis of football games
and reasoning about multi-agent activity. The observation system
runs on video streams produced by cameras set up for TV broad-
casting. The observation system achieves reliability and accuracy
through various mechanisms for adaptation, probabilistic estima-
tion, and exploiting domain constraints. It represents motions com-
pactly and segments them into classified ball actions.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
Video analysis

General Terms
Motion tracking, Analysis of intentional activity

Keywords
video analysis, state estimation, object tracking, motion interpreta-
tion

1. INTRODUCTION
In order to realize computer systems that can interpret and an-

alyze cooperative and competitive activity in multi agent systems,
we need to realize powerful observation systems for agent behav-
ior. One domain that is intensively studied and has proven to be
a very interesting and challenging domain in the multi-agent com-
munity is football — in particular in the context of the RoboCup
competitions.

In this paper, we investigate the observation of real football games
based on video streams provided by a set of TV cameras. This com-
putational problem is interesting because it can be solved with an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

ordinary setup for broadcasting football games without further ad-
ditions. Based on the camera image streams the software system
computes a representation of the game that enables it to answer
questions such as: What are the characteristic offensive plays of
the two teams? What are the strengths/weaknesses of a particular
team/player? What roles do the players have? Do their capabilities
match their roles? Do they achieve their tasks? How does a team
create scoring opportunities? What are each players’ skills? What
is the tactical formation of a team?

Here we consider the problem of generating an action model
suitable for answering such questions. The knowledge represen-
tation mechanisms needed for inferring such answers and the ap-
plication of these techniques to the analysis of football games are
investigated in a companion paper [3].

Building up a game representation for analyzing multi-agent ac-
tivity requires a software system to exhibit the following capabili-
ties,
• The reliable and accurate estimation of the positions of the

players and the ball.
• The compact representation of motions and their segmenta-

tion into actions
The realization of these capabilities is also very difficult for var-

ious reasons. The positions, direction, and zooming factor of the
camera are not known and must therefore, be estimated from the
image stream. Processing the image streams is made difficult by
the change in lighting conditions. These conditions change sub-
stantially when taking a camera sweep from one part of the field
to another one or from one moment to the next when clouds are
passing. Other complications include the inaccuracy in depth esti-
mations caused by the low height of the camera positions and the
fact that TV cameras are typically placed only on one side of the
field resulting in players at the other side being very small in the
image. There are also frequent occlusions of players by other ones.

The contributions of this paper are twofold. First, we describe
the design, implementation, and empirical analysis of a camera-
based observation system for football games. Second, we demon-
strate how abstract representations of the game actions can be in-
ferred that enable automatic game analysis systems to represent and
reason about the actions in multi agent systems in sophisticated
ways. These techniques are described in a companion paper [3].

In the remainder of the paper we proceed as follows. The next
section presents an overview of the observation and interpretation
mechanisms of the system. Section 3 details the components and
methods used for the visual perception of the players and the ball.
Section 4 then describes the probabilistic estimation methods that

enable the system to keep track of players on the field and estimate
their postions more accurately. The interpretation of position data
in terms of actions is detailed in section 4. We conclude with a
discussion of related work and our conclusions.

2. SYSTEM OVERVIEW
Before we dive into the technicalities of the vision-based game

analysis system let us first describe the sensing apparatus of the
system and the overall software architecture.

2.1 Physical Setup
The physical setup of the system consists of a set of cameras used

to broadcast football games on television. The cameras are pointed
and zoomed by a camera man and provide complete image streams.
The game observation system passively receives the camera stream
without having control over it, and without receiving information
about the pan and tilt angles of the camera nor its zoom parameters.

The cameras do only partly cover the playing field and not all
players are visible all the time. In addition the cameras usually fo-
cus on the surroundings of the ball that is information about other
parts of the field are only available at a substantially lower reso-
lution. Another complication is the lack of height of the camera
positions. Because the cameras are fixed in a maximal height of
about 18 meters the depth resolution of a pixel imaging the oppo-
site side of the field is about 1,5 meters. The sizes of players are
only about 35 pixels where the course grained resolution of pixels
blurrs the colors. Therefore the appearance of players close to the
camera differs substantially from those of distant players. Finally,
drastical and abrupt changes of lighting conditions complicate the
reliable interpretation of color information.

2.2 Software Architecture
The software architecture of the game analysis system is de-

picted in figure 1. The system is decomposed into two main compo-
nents: the model acquisition and the reasoning and model mining
component.

The model acquisition component consists of thevisual percep-
tion module, the blob tracker, and themotion and action inter-
preter. Thevisual perception modulereceives multiple streams of
camera images and computes for each image the blobs that corre-
spond to players, the referee, and the ball. A blob description con-
tains an〈x, y〉 coordinate on the field, a class label that specifies
the team the player belongs to or whether it is a referee, and the co-
variance as a measure of the expected inaccuracy of the estimated
position.

CAESAR FIPM

Game Model
Database

Model Miner
and Reasoner

Motion and Action Interpreter
blob trajectory segments

image blob sets

Blob Tracker

Visual Perception Module

Figure 1: Software architecture of the FIPM analysis system.

Theblob trackerintegrates the observations generated by thevi-
sual perception moduleand produces trajectories of the observed

object motions and associates these trajectories with the respec-
tive players. Using temporal redundancy and coherence theblob
tracker estimates the player motions much more reliably and ac-
curately. Additional computational tasks that the blob tracker per-
forms are the association of player track identities with blobs and
the completion of partly unobserved object tracks through proba-
bilistic guessing.

The final component of the model acquisition component is the
motion and action interpreter. The interpreter stores the motion
data very compactly as a concise motion model and structures the
continuous motions into application specific ball actions such as
passes, dribblings, and shots. The interpreted motions and ball ac-
tions are then stored into the game model database that is used by
thereasoner and model minerfor game analysis purposes.

The reasoner and model minerlearns situation specific models
of the skills and action selection criteria of the football players us-
ing the game model database as the relevant set of experiences. It
then uses the models in order to predict, analyze, and diagnose the
teams’ playing behavior.

The FIPM system is implemented as a distributed system run-
ning on multiple computers. In the current version the visual per-
ception module for each camera is running on its own computer, so
is the tracking, and the motion interpretation module. The modules
communicate via Corba.

3. VISUAL PERCEPTION
As we have sketched before the computational task of visual per-

ception is to estimate the 3D position of each player, the referees,
and the ball in the camera view. A camera image and the recog-
nized objects and their positions are shown in figure 6. Since the
estimated positions are inaccurate the expected accuracy is com-
puted and returned with the estimates.

Figure 2: Output of the visual perception. The players and the
ball in the camera view are detected. The players are labelled
with respect to the team they belong to. For each player, the
referee, and the ball the〈x, y〉 position is estimated.

The visual perception of the players and the ball based on a
stream of camera images entails a number of difficult computa-
tional problems. The first problem is the camera position that gives
the system a very flat viewing angle, which causes high inaccura-
cies in depth estimates. For example, if a player is at the opposite
side of the field one pixel in the image corresponds to more than

1,50m depth. Also, if the camera does not zoom in on a player who
stays at the other side of the field the size of the player in the image
is about 35 pixels. This reduction in size also results in a consid-
erable change of the visual appearance of players causing the color
models of football dresses to exhibit much higher entropies. There
is also frequent occlusion especially caused by one player covering
another one. Luckily the space occluded by players is quite small
because of the distance and position of the camera. Another issue
is the rapid change of lighting conditions either due to change of
cloudiness or due to the sharp shadow caused by the stadium roof
in intense sun shine.

There are, on the other hand, also a number of assumptions that
we can make in order to simplify the computational task of visual
perception drastically [7]. The first assumption is theground plane
assumption. We can assume that all objects that interest us are
standing on the field and have roughly the same size. Another im-
portant assumption is thedistinctive colorassumption: we assume
that objects and their classes can be recognized by their colors. The
football field is green and the lines white and the two teams are re-
quired to wear dresses that are visually easy to distinguish. We
further know the static environment: the form of the field lines and
all but a few parameters such as the length and the width of the
field. Also since the frame rate is about 25 frames per second and
the motions of the observing cameras and the players are not too
fast, there is a high temporal coherence between subsequent cam-
era images.

The visual perception of football games is decomposed into three
closely interrelated subproblems: (1) the identification of the rele-
vant color regions, (2) the estimation of the pan- and tilt angle of the
camera and the zooming parameter, and (3) the identification and
positioning of the players and the ball that are in the camera view.
In the remainder of this section we will describe our approaches to
the solution of these computational problems.

3.1 Color Segmentation
Since football is a spectator sport the playing field, the lines, and

the dresses of the players are designed to be visually distinctive.
From the visual features that allow for these distinctions color is
the most informative one: the field is green, the lines are white, and
the players of the teams are required to dress so as to achieve the
highest possible contrast.

Figure 3: Computing the regions that are colored football field
green.

Thus our first step in processing the camera images is to apply
color classification and segmentation to the images. Given a pre-
viously learned set of color classes including ones forfield green,
ones for the dresses of the teams, and others, the visual perception

module finds the regions of interest by first mapping the image pix-
els into the respective color class and then grouping the pixels that
belong to the same color class into regions using morphological op-
erations for noise elimination. Figure 3 shows the mapping of an
image into the color class field green. The white pixels belong to
this class the black ones not.

In order to find meaningful regions or blobs, in particular those
that correspond to the objects of interest, the visual perception mod-
ule applies morphological operations to the images resulting from
color classifications.This step eliminates noise and makes regions
more homogeneous.

In addition, we can characterize the objects of interest through
properties of the image blobs they generate. In particular, using the
assumptions that players are in upright positions and having con-
tact with the field plane (at least, if we consider image sequences
of particular length) we obtain very accurate estimates of the blob
sizes based on the〈x, y〉-coordinates of blobs in the image. Fur-
thermore, the objects of interest, the players and the ball, have to
satisfy certain compactness (ratio between area and perimeter). We
can apply these assumptions to filter the data, and to more reliably
extract the relevant objects.

Having color regions and color blobs as building blocks we can
define complex regions of interest to which we might apply certain
image processing operations. For example, in order to look for field
lines in a focussed way we consider the image region that is field
green, in the area where we expect the field but disregard those
regions that are occluded by a player or the referee. This region
can be expressed by:(¬ green∩ field region) - Team1Regions -
Team2Regions - RefereeRegion.

Robustness of Color Classification.Lighting conditions
change when the camera sweeps from one side to the other, when
the clouds change, when it begins to rain, etc. For these reasons
reliable color segmentation cannot be achieved by learning color
classes in advance and then hold them fix during the game. Rather
they have to be adapted on the fly, in particular the color classfield
green. Thus we adapt the color classfield greenin an expectation
maximization manner. In one step we use the estimates of the cam-
era parameters to identify those regions that must befield green
given the field model and the camera parameters. The relevant re-
gion is: FieldRegion - Team1Regions - Team2Regions - RefereeRe-
gion - neighborhoods of fieldlines ...processed by some morpho-
logical operators to eliminate holes in the regions. We then take the
pixels in these regions to estimate the color classfield green. This
color model is then used for the estimation of the camera parame-
ters. In praxis, the class model can be estimated at a much lower
rate than the camera parameters.

3.2 Estimation of Camera Parameters
In order to estimate the 3D position of the players and the ball,

we need estimates of the camera parameters, that is its position, the
direction it is pointed to, and the zoom parameter. Given the camera
parameters and an assumption about the plane in which pixels lie
the 3D coordinates of each pixel can be determined. In this section
we will investigate the estimation of the camera parameters for a
given image sequence.

We will do so by first describing our model of football fields.
Then we look at the three-step iterative estimation process, detailed
in section 3.2.2.

3.2.1 The Model of the Football Field
The purpose of the field model is the estimation of the exact posi-

tion of the camera, of the direction it is pointed to, and the zoom of

the camera. Based on these camera parameters and the knowledge
of the exact position and orientation of the field plane the visual
perception module can accurately determine the〈x, y〉 positions of
the players on the field (see section 3.3).

The model of the football field is a set of 3D curves where each
curve can either be a line or an edge. Edges are curves that separate
two neighboring surfaces. Lines are combinations of two parallel
curves where the area between the curves is visually distinct from
the areas left and right of the line. The field lines are perfect exam-
ples of this line notion.

Figure 4: Field model used for estimating the camera parame-
ters. Curve segments are depicted in blue and triangles in red.

The FIPM system uses the field model depicted in figure 4. The
model contains the lines on the field. In addition, it contains the
boards surrounding the football field and the stands. Both the boards
and the stands are modeled as triangles with given position and ori-
entation in space. Using these triangles the visual perception sys-
tem can accurately determine the 3D position of each pixel that lies
in the projection of such a triangle onto the image.

The boards and the stands are included in the field model be-
cause for many camera views the field lines alone do not suffice to
unambiguously estimate the camera parameters. Using the boards
and stands submodels the visual perception module can on the fly
determine visual landmarks on the boards and in the stands and use
them for estimating the camera parameters even if no field lines are
in the camera view.

3.2.2 Estimation Process
We formulate the estimation of the camera parameters as an iter-

ative optimization problem. The opimization process performs in
each iteration three steps. In the first step the model is projected
onto the image using the predicted parameter values. In the second
step the optimizer searches for the image points that correspond
to given model points. In the third step, the predicted parameter
settings are modified such that we obtain the best match between
the model and the image data. The search window for finding the
best match is determined based on the expected innaccuracy of the
predicted parameters. These three steps are depicted in figure 5.

Since the frame rate of the camera is about 25Hz (50 Hz in-
terlaced) the change from one image to the following one is typ-
ically very small, the exceptions being camera sweeps following
very long and hard passes. We will return to this issue later in
section 3.2.3. So in the typical case, where the changes are small
the predictions are also very accurate allowing for the use of small
search windows.

The search methods for correspondences are specific to the dif-
ferent types of curves which allows for the realization of a high

performance hybrid correspondence search. This means that we
have curve segment specific “curve line” detectors. For example,
the lines on the field are detected by looking for edges in thefield
greenregion, the edges resulting from lawn mowing look for points
along the search perpendicular such that brightness variation left
and right of the point becomes mininmal, that is the points to the
left have a very similar brightness and so do the pints on the right.
Other mechanisms for finding correspondences are taken for the
edges between the field and the surrounding boards.

Given the correspondences we perform an optimization of the
camera parameters such that the distance between corresponding
points becomes minimal. This is done by a Newton iteration step.
The system also estimates the covariance of the parameter values
which captures the expected accuracy of the estimation outcome.
The camera parameter values resulting from this optimization step
is returned as the estimate of the parameters.

3.2.3 Increasing Robustness
In order to estimate the camera parameters reliably and accu-

rately even if the field lines in the camera view do not suffice for
an unambiguous estimation we generate visually distinctive land-
marks on the fly and track them over sequences of camera images.

For this purpose, we first generate regions of interest by project-
ing the triangles of the field model onto the image. These are the
regions where we can determine the 3D coordinates of the surface
that generated the pixel. To these regions of interest we apply the
feature detection and tracking method of Shi and Tomasi [14].

Even with these extensions the estimation of the camera param-
eters will sometimes fail, in particular when the camera man makes
fast sweeps. To deal with failures in parameter estimation we run
a monitoring process in parallel with the estimation process. This
monitoring process signals a failure whenever the quality of the
match between the predicted parameters and the parameters that
result in the best local fit fall below a specified threshold. In this
case a reinitialization of the camera parameters is triggered.

3.2.4 Empirical Results
At the current state of implementation the system can keep track

of the camera orientation and the zoom parameter for up to 2,5
minutes, depending on the speed of camera motion and zooming
and the visible components in the camera view. As far as we can tell
the cases where the system looses track are caused by our model of
the field beeing too inaccurate. In general, the length and the width
of the field can vary substantially from stadium to stadium. An
accurate and reliable estimate of these parameters from an image is
not possible because if the camera view covers enough of the field
then the field lines of the opposite side are blurred too much. Thus,
so far we work with field models that are locally consistent with
respect to the assumed camera position but not globally accurate.
We currently, work on mechanisms that are less sensitive to the lack
of globally accurate field models.

When successfully tracking the camera position the average ac-
curacy of the field model being back projected onto the image is
typically within a pixel occasionally 3-4 pixels. The system can
automatically recover from lost tracks if the estimate is still within
the convergence area of the model fitting procedure. For the re-
maining situations we currently develop a monitoring mechansm
that detects lost tracks and reinitializes the system as soon as the
camera view allows for an unambiguous match of the field lines.

At the moment processing an image can still take up to more
than a second. We expect that by applying faster methods, and
exploiting more prior information, we can reduce the processing
time and bring the system close to frame rate.

Figure 5: Estimating the camera parameters by taking the current parameters, projecting the field model using the current parame-
ters onto the image (left), finding the correspondences between model points and the imagepoints (middle), and adjusting the camera
parameters to achieve minimal errors (right).

3.3 Blob Recognition and Localization
The visual perception module gets all blobs in the field green

region as its input. These are obtained through the regional expres-
sion: InRegion(field)∩ ¬FieldGreen∩min ≤ Compactness ≤
max ∩min ≤ Size(blob, distance) ≤ max

skin/hair

shirt

shorts

skin

socks/shoes

skin/hair

shirt

shorts

skin

socks/shoes

Figure 6: Player blobs segmentation. The player blob detection
algorithm finds compact regions that are not field-green. The
segmentation of players close to the camera is fairly accurate,
but the situation is harder for the distant players because of the
course grainedness, which causes some of their pixels to look
field-green. Then they are segmented into two regions.

The next step is the blob classification. Blobs are classified into:
the ball, the players of the one and the players of the other team and
the referees. All other blobs on the field are ignored. The classifi-
cation of the blobs into the different categories is straight forward.
We first apply size constraints to the blobs and then identify the
dress colors of the players. These color models are learned and
updated during the game. The biggest complication are the partly
occluded players that result in bigger blobs with possibly not iden-
tifiable color classes. These complications are resolved using the
information provided by the object tracking system (see next sec-
tion).

Another module monitors the blob sizes in the camera image. If
the blob size is big enough, the blob identifier attempts to read the
player number — if possible. If the player number is recognized
the information is passed to the object tracker as evidence about
the players’ identity.

Given a blob that is inferred to be a player or ball the FIPM
system estimates the〈x, y〉 of the corresponding object on the field.
To do so, we estimate the 3D position of the center of gravity of a
player which can be much more reliably and accurately estimated
than the position where the player stands on the field. The gain
in accuracy and reliability has been empirically studied in several
experiments.

Surprisingly, the player blob detection and localization was sub-
stantially less robust and accurate than we initially expected. This
is explained by a number of reasons including the motions of the
legs and the typical colors of skin and player dresses varying sub-
stantially. In particular as the players in the image are smaller and
more distant a pixel in the image covers a much larger area in the
world. Therefore many of the pixels depicting the player have a
high fraction of field green and therefor cannot be segmented eas-
ily from the background.

To deal with these issues we have then implemented blob recog-
nition using predictions made on the basis of previous observations
(see next section). In this method the perception module receives
hypotheses about players from the state estimation system and then
validates and rejects these hypotheses based on the image. This
way we can concentrate the player recognition mechanisms on se-
lected regions of interest and use much more informative expecta-
tions about the blob size and the color distribution within the blob.
Using this prior knowledge the accuracy and reliability of player
recognition is increased substantially while at the same time reduc-
ing the computational cost for the player recognition.

4. PLAYER TRACKING
The detection of players and their classification based on single

images is unreliable. Players might violate size restrictions when
bending down or when colors get blurred due to fast camera mo-
tion. Sometimes players are hallucinated due to specular reflections
in the field that make regions appear to be not field green.

4.1 Multi-Object Tracking
To reliably estimate the positions and motions of the players we

apply probabilistic multi object tracking algorithms to keep track
of player positions.

We use an extension of Reid’s Multiple Hypothesis Tracking

(MHT) algorithm [11, 4] that has been further developed by Schmitt
and his colleagues [12, 13]. Using probabilistic motion and cam-
era models the MHT maintains probabilistic estimates of the play-
ers positions and update these estimates with each new observa-
tion. The computational structure of the algorithm is shown in
Fig. 7. An iteration begins with the set of hypotheses of player
statesHk = {hk

1 , . . . , hk
m} from the previous iterationk. Eachhk

i

is a random variable ranging over the possible positions of a player
on the field and represents a different assignment of measurements
to players, which was performed in the past. The algorithm main-
tains a Kalman filter for each hypothesis.

algorithm MULTIPLEHYPOTHESISTRACKING()

1 let Ĥk = {ĥk
1 , . . . , ĥk

mk
} % pred.hypos.

2 Z(k) = {z1(k), . . . , znk (k)} % ob.feat.
3 Hk = {hk

1 , . . . , hk
ok
} % new hypos.

4 Xk−N % world state at time k-N.
5 do for k ← 1 to∞
6 do Z(k)← INTERPRETSENSORDATA();

7 Ĥk ← APPLYMOTIONMODEL(Hk−1, M);
8 for i← 1 to nk

9 do for j ← 1 to mk

10 do hk
ij ← ASSOCIATE(ĥk

j , zi(k));

11 COMPUTE(P (hk
ij |Z(k)))

12 for j ← 1 to nk

13 do Hk ← Hk ∪ {GENERNEWHYP(zj(k))};
14 PRUNEHYPOTHESIS(Hk);
15 Xk−N ← {xk−N

1 , . . . , xk−N
ok−N

}

Figure 7: The multiple hypothesis tracking algorithm.

With the arrival of new sensor data (6),Z(k + 1) = {z1(k +
1), . . . , znk+1(k + 1)}, the motion model (7) is applied to each

hypothesis and intermediate hypothesesĥk+1
i are predicted. As-

signments of measurements to players (10) are accomplished on
the basis of a statistical distance measurement, such as the Maha-
lanobis distance. Each subsequent child hypothesis represents one
possible interpretation of the set of observed players and, together
with its parent hypothesis, represents one possible interpretation of
all past observations. With every iteration of the MHT probabil-
ities (11) describing the validity of an hypothesis are calculated.
Furthermore for every observed player a new hypothesis with asso-
ciated probability is created (13).

Obviously, the heart of the MHT algorithm is the computation
of the likelihood of the different hypothesis-observation associa-
tions,P (hk+1

ij |Z(k)), in line 12 of the algorithm in Algorithm 7.
Let Zk be the sequence of all measurements up to timek. A new
hypothesis of a player at timek is made up of the current set of as-
signments (also called an event),θ(k), and a previous state of this
hypothesis,hk−1

j , based on observed features up to time stepk− 1
inclusively. We can transform the probability of a player’s hypoth-
esisP (ht

i|Zk) using Bayes’ rule and the Markov assumption in an
expression that can be obtained more easily:

P (hk
i |Zk) = P (θ(k), hk−1

j |Z(k), Zk−1) (1)

= P (θ(k), hk−1
j |Z(k), Hk) (2)

= α ∗ P (Z(k)|θ(k), hk−1
j , Zk−1) (3)

P (θ(k)|hk−1
j , Zk−1)P (hk−1

j |Zk−1)

According to Bar-Shalom and Fordham [1], this equation can be
transformed into an expression over a set of parameters, and they

allow us to fine tune the calculation of probabilities to exploit the
domain constraints. These parameters include ones for prior proba-
bility mass functions of the number of spurious measurements and
of new detection of players, probabilities of detection and termi-
nation of a track originating from a particular hypothesis, model
the declination of an unobserved hypothesis probability over time,
and total numbers of spurious measurements and new detections of
players. The exact form of the transformed data association proba-
bility and a more thorough explanation of its terms and parameters
can be found in the papers by Cox and Hingorani [4] and Schmitt
et al. [13].

In our tracking system we dynamically modify these parameters
for each track and measurement according to the relevant situation.
For example, it is highly unlikely that a player disappears while be-
ing well observed by the camera and in the middle of the field. The
likely explanation is that the player is being obstructed by another
one and the detection module is having problems detecting him/her.
In this case, we set the parameters accordingly to favour the con-
tinuation of the track without measurements, hoping to detect the
player in the next images. See section 4.2 for further discussion of
the used constraints.

4.2 Exploiting domain constraints
The nature of our tracking task allows us to make assumptions

that do not hold in the general case of multi object tracking. Un-
der these assumptions we are able to substantially increase the ro-
bustness, accuracy, as well as reduce the required computational
resources by specializing the estimation and inference techniques
to the characteristics of the application. We will list some of these
assumption that result in substantial improvements of the algorithm
below.

The first and obvious way of increasing the performance of the
MHT is to set the parameter of the formula in situation specific
ways. For example, players cannot magically appear or disappear
in the middle of the camera frame. This constraint is implemented
by adjusting the average time of new track appearance and track
termination. New tracks are to be primarily created at the board-
ers of the camera frame. The same holds for the termination of
tracks. Making these assumptions enables the system to substan-
tially prune the hypotheses tree and therefore allows for more thor-
ough analysis of the individual hypotheses. This is done by main-
taining hypotheses trees of greater depth.

Another improvement is the handling of occlusions of one player
by another one. This could be handled by increasing the time that
a track survives without being supported by additional observa-
tion. A more controlled way of “remembering” occluded players
is to generate virtual observations from hypotheses that the sys-
tem knows to be occluded. A similar mechanism was used by Fox
and his colleagues [6] to avoid collisions with known obstacles that
were invisible for the robot sensors.

Another twist of the tracking problem is that we can assume that
the players all move in the same 3D plane. Under these conditions a
player is closer to the camera if and only if his position in the image
is lower than that of the other one. This qualitative relationship
holds independently of the inaccuracy of our estimate of the camera
position and can be exploited to reject many data associations that
are impossible with respect to this constraint.

These and other modifications to the MHT algorithm allow for
reliable and accurate player tracking in situations where the more
general version of the algorithm is doomed to fail [7].

At the moment our algorithm generates maximally extended tra-
jectories for which the system is sure that they are generated by the
same player. The player identity itself is specified manually.

In particular the semi-automatic inference of the player identity
will be a focus of our future research. The tracking system will use
prior distributions of player positions, knowledge about the player
roles, occasionally read player numbers, the identity of players that
are known in order to estimate a probability distribution over the
identity of a given but unknown player.

5. MOTION AND ACTION RECOGNITION
Motion and action recognition abstracts away from the details of

the estimated position data and the track segments generated by the
Multi Hypothesis tracking algorithm. The raw data are transformed
into compact motion models and then classified into ball actions
[2]. These computational tasks are detailed in this section.

5.1 Motion Interpretation
The motion interpreter computes motion models for the play-

ers and the ballo that are sequences of motion segmentsm =
m1, m2, ..., mn. The trajectory of an object is represented as a
piecewise defined functionf that maps time indices into the respec-
tive x andy coordinates of the object. The functionf is defined for
all t with t1 ≤ t2 andf(t) returns the position ofo at t. The indi-
vidual tuplesmi have the form〈o, t1, t2, p1, p2, f : T→ P〉where
o denotes the object (ball or player number),t1, t2 the starting and
end time point of the motion segment, andp1, p2 the respective
start- and end position.

The motion model also contains the set of all ball contacts, ball
out of bounds, and referee whistles (game interruptions and contin-
uations) as instantaneous events. These events are asserted manu-
ally. Ball contact events are those where the ball is accelerated due
to the action of a player. Ball out of bounds events occur if the ball
leaves the football field.

As the motion model we have chosen piecewise linear models.
This model is very efficient to compute and the motion tuples are
very compact. The linear modeling of motions also simplifies the
computation of distances, intersections, and other derived informa-
tion. The accuracy can, as in the other models be adjusted through
the segmentation thresholds.

The motion interpreter maps the position data into a sequence of
motion tuples, where each motion tuple describes a uniform mo-
tion segment. The interpreter works iteratively. If it has a partial
segmentmi it represents this partial segment as a motion function.
It then uses this motion function to predict the next positionpj . If
the difference between the predicted and the observed next posi-
tion is smaller than a thresholdε1 thenmi is extended to coverpj

and the motion function is updated accordingly. Otherwisemi is
asserted to the motion model as a complete motion segment and a
new motion segmentmi+1 is started.

Instantaneous motion events are currently recognized mainly man-
ually. Referee whistles are explicitly asserted. Out of bounds events
are detected by intersecting the linear motion segments with the
field lines. Finally, the ball contacts are asserted by hand.

5.2 The Episode Model
The motion model is further abstracted into the episode model.
In the episode model we consider the episodes of ball movement

to be primary. This is natural because people watching football
and summarize plays in football games primarily as a sequence of
ball actions. Actions away from the ball are included only if they
become relevant for the ball actions later.

We distinguish three different classes of ball actions: keeping
control over the ball, passing, and shooting. If ball actions had very
high success rates we could recognize them using simple rules. A
ball possessionis a sequence of ball contacts of the same player.

A passis a ball contact of one player followed by a ball contact of
another player (hopefully a team mate). Ashotis a ball contact of a
player followed by an out of bounds event, where the out of bounds
event occurs in or close to the goal.

Unfortunately, the high technical difficulty of playing football
makes such simple classification rules very inaccurate. Control
over the ball, in particular with opponents around, is very difficult
and therefore actions do not only have nondeterministic effects but
often fail completely: the player looses possession of the ball. It
is often impossible to distinguish whether a lost ball is caused by
a bad pass, shot, or dribbling. In our approach we deal with these
ambiguities with probabilistic reasoning techniques.

We consider anepisodee to be a triple〈〈mi, ..., mj〉, se, fe〉
wheremi, ..., mj is a sequence of motion segments,se is the start-
ing and fe the finishing event. To be an episode the triple must
satisfy the following requirements: (1)mi is started by ball contact
se of playerp. (2) mj is ended byfe, which is of the type ball
contact, referee whistle, or out of bounds. (3) All eventse that oc-
cur are ball contacts of playerp. (4) mi, ..., mj is the maximum
sequence of segments that satisfies (1) to (3).

For the recognition of episodes we use a small finite automa-
ton that starts a motion segment sequence if it receives a motion
segment starting with a ball contact of playerp. The automaton
stays in its intermediate state as long as the motion events are ball
contacts of playerp. It terminates for all other motion events. All
accepted motion sequences are episode candidates.

The episode model differentiates between passes, shots, and ex-
tended ball possessions of a single player. The main problem is
the classification of football actions that have failed. To deal with
ambiguities in the classification of failed actions we apply classifi-
cation rules that assign classes to episodes with a subjective prob-
ability. To get a principled way of stating such rules we apply de-
cision tree learning . Given a set of classified examples a decision
tree learning algorithm learns a set of classification rules with the
objective of making the rules as general and accurate as possible.
Decision tree learning algorithms also estimate the expected accu-
racy of the classification rules.

When we apply decision tree learning to the acquisition of clas-
sification rules for football actions two problems must be solved.
First, we need a suitable feature language for representing episodes
such that their representation correlates well with their classifica-
tion. Second, we must provide the examples that we need for learn-
ing. The main problem here is that we need to know the intentions
of the players to provide examples of ball actions and their classi-
fication. For the feature language we have used the following fea-
tures: the duration, the number of ball contacts within the episodes,
whether ball possession changed from one player to another one,
from one team to the other one, the dominant motion direction, and
the average velocity of the ball.

We obtained the best results by classifying at the toplevel into the
action classes pass, dribbling, and shot and adding one additional
class “lost ball” that comprises the episodes where ball possession
goes from a player to the other team, from a player to the out, and
episodes interrupted by referee whistles. In this approach, we have
the advantage that we can specify all toplevel classes crisply. The
top-level classification rules are complete and classify uniquely.
That implies that every episode candidate is classified as an in-
stance of exactly one top-level class. The biggest assumption is that
the classification assumes that if a football action was successful the
player has intended it. We believe that by making this assumption
the resulting accuracy is higher than it would be when learning the
classes from examples. We will reevaluate this assumption when
we have comprehensive data from real games.

classification tree with predefined class definitions

learned tree

root

successful
pass

condition
for pass

successful
shot

condition
for shot

successful
dribbling

condition
for dribbling

lost ball

player_changed <= 0 player_changed > 0

zigzag <= 1.970642

pass (23.0/1.0)

zigzag > 1.970642 velocity_ball_middle <= 1409.269104 velocity_ball_middle > 1409.269104

pass (2.0)

attack_direction <= 0.686266

shot (4.0/1.0)

attack_direction > 0.686266

dribbling (20.0)

team_changed <= 0 team_changed > 0

dribbling (92.0/5.0)

velocity_ball_middle <= 1247.964783 velocity_ball_middle > 1247.964783

attack_direction <= 0.894554

dribbling (5.0)

attack_direction > 0.894554

dribbling (5.0/1.0)

attack_direction <= 0.3349

pass (7.0/1.0)

attack_direction > 0.3349

dribbling (6.0)

team_changed <= 0 team_changed > 0

dribbling (7.0/1.0)

attack_direction <= 0.259852 attack_direction > 0.259852

velocity_ball_middle <= 2229.721985 velocity_ball_middle > 2229.721985

pass (42.0/2.0)

attack_direction <= 0.991565 attack_direction > 0.991565

dribbling (3.0)

duration <= 7 duration > 7

velocity_ball_middle <= 1594.404785

pass (3.0)

velocity_ball_middle > 1594.404785

pass (2.0)

velocity_ball_middle <= 1514.206177

dribbling (2.0)

velocity_ball_middle > 1514.206177

pass (4.0/1.0)

attack_direction <= 0.991565

shot (2.0)

attack_direction > 0.991565

Figure 8: Classification tree. To classify the ball actions into
different action classes we use a classification tree consisting of
defined conditional leafs for successful actions and a learned
decision subtree for lost balls.

In this approach we apply decision tree learning only to the class
of lost ball possession. A sample classification rule that we ob-
tained is: A failed pass is an episode in which the ball is played to
the front but not in the accurate direction of the opponent goal, the
ball velocity is smaller than that of shots, and the ball possession
changes from one team to the other.

6. RELATED WORK
A number of observation systems for football games and sport

games have been developed, most of them in the sport sciences
and some of them even commercially. Those systems are typically
characterized by their requirements for extensive manual data en-
try by operators. Intille and Bobick [9, 8] have developed a semi-
nal visual observation system for American Football and this is the
closest approach to ours. Their system include mechanisms for ac-
tion, formation, and play recognition. Differences are caused by the
different natures of the game. American football is structured into
modular, preplanned plays with failed actions (interceptions and
turnovers) being exceptions, players having very specific roles in
plays, and the ball being held most of the time. In the real football
these characteristics are not met and complicate the visual obser-
vation drastically. Another difference is our emphasis on accurate
estimation of player positions which is the key for the recognition
of game situations such as scoring opportunities, players being un-
der pressure, passing opportunities, etc.

The research work in computer vision that is applicable to game
observation is too big to be discussed in detail. Perhaps most rele-
vant is the work of Malik’s and Forsyth’s vision group. In particular
ideas of their work on recognizing actions at a distance [5] and the
learning and application of appearance models for tracking human
action [10] have been incorporated into our system.

7. CONCLUSIONS
This paper has described the nuts and bolts of observing multi

agent systems for analyzing agent behavior. We have considered
a particular application domain: the visual observation of football
games. Football, in particular in the disguise of RoboCup has be-
come a challenging testbed for agent technology.

The observation and interpretation system described in this paper
is a part of a larger system. The analysis of Football games based
on position data is discussed by Beetz, Kirchlechner and Lames
[3]. Kinds of action models that are proposed in this paper are also

used for making autonomous robots ”action-aware” [15].
We plan to showcase the vision-based game observation system

for games of the Football World Championship 2006 in Germany.1

8. REFERENCES
[1] Y. Bar-Shalom and T. Fortmann. Tracking and data

association. Academic Press., 1988.
[2] M. Beetz, S. Flossmann, and T. Stammeier. Motion and

episode models for (simulated) football games: Acquisition,
representation, and use. In3rd International Joint
Conference on Autonomous Agents & Multi Agent Systems
(AAMAS), 2004.

[3] M. Beetz, B. Kirchlechner, and M. Lames. Computerized
real-time analysis of football games.IEEE Pervasive
Computing, 4(3):33–39, 2005.

[4] I. J. Cox and S. L. Hingorani. An efficient implementation of
reid’s multiple hypothesis tracking algorithm and its
evaluation for the purpose of visual tracking.IEEE Trans.
Pattern Anal. Mach. Intell., 18(2):138–150, 1996.

[5] A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing
action at a distance. InIEEE International Conference on
Computer Vision, pages 726–733, Nice, France, 2003.

[6] D. Fox, W. Burgard, S. Thrun, and A. Cremers. A hybrid
collision avoidance method for mobile robots. InProc. of the
IEEE International Conference on Robotics and Automation,
Leuven, Belgium, 1998.

[7] I. Horswill. Analysis of adaptation and environment.
Artificial Intelligence, 73(1-2):1–30, 1995.

[8] S. Intille. Visual Recognition of Multi-Agent Action. PhD
thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1999.

[9] S. Intille and A. Bobick. Recognizing planned, multi-person
action.Computer Vision and Image Understanding,
81:414–445, 2001.

[10] D. Ramanan and D. Forsyth. Finding and tracking people
from the bottom up. In2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR ’03), 2003.

[11] D. Reid. An algorithm for tracking multiple targets. IEEE
Transactions on Automatic Control, 24(6):843–854, 1979.

[12] T. Schmitt, M. Beetz, R. Hanek, and S. Buck. Watch their
moves: Applying probabilistic multiple object tracking to
autonomous robot soccer. InThe Eighteenth National
Conference on Artificial Intelligence, Edmonton, Canada,
2002.

[13] T. Schmitt, R. Hanek, M. Beetz, S. Buck, and B. Radig.
Cooperative probabilistic state estimation for vision-based
autonomous mobile robots.IEEE Transactions on Robotics
and Automation, 18(5), October 2002.

[14] J. Shi and C. Tomasi. Good features to track. InIEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’94), Seattle, June 1994.

[15] F. Stulp and M. Beetz. Action awareness – enabling agents to
optimize, transform, and coordinate plans. InAccepted for
the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2006.

1The research reported in this paper is partly funded by the
Deutsche Forschungs Gemeinschaft.

